1
|
Bertuccio FR, Montini S, Fusco MA, Di Gennaro A, Sciandrone G, Agustoni F, Galli G, Bortolotto C, Saddi J, Baietto G, Melloni G, D’Ambrosio G, Corsico AG, Stella GM. Malignant Pleural Mesothelioma: From Pathophysiology to Innovative Actionable Targets. Cancers (Basel) 2025; 17:1160. [PMID: 40227645 PMCID: PMC11988075 DOI: 10.3390/cancers17071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a rare and highly aggressive cancer which arises from mesothelial layer and primarily linked to asbestos exposure, genetic predispositions, and specific mutations. Despite current treatment modalities, including chemotherapy, antiangiogenic therapy and more recently immunotherapy, the prognosis remains dismal, with a median survival time of 6-18 months. OBJECTIVES The urgent need for novel therapeutic strategies has prompted research into molecular targets and precision medicine approaches. At present, many potential targets for therapeutic strategies have been identified, and emerging clinical trials are demonstrating certain clinical efficacy. METHODS This review examines advancements in understanding PM's genetic and epigenetic landscape, signaling pathways, and promising therapeutic targets. RESULTS We also discuss the results of recent clinical trials and their potential implications for future treatment paradigms.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Fusco
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonella Di Gennaro
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gaetano Sciandrone
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Saddi
- Unit of Radiation Therapy, Department of Oncology, Clinical-Surgical, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Guido Baietto
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (G.M.)
| | - Giulio Melloni
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.B.); (G.M.)
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (S.M.); (M.A.F.); (A.D.G.); (G.S.); (F.A.); (G.G.); (A.G.C.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Cerbone L, Orecchia S, Bertino P, Delfanti S, de Angelis AM, Grosso F. Clinical Next Generation Sequencing Application in Mesothelioma: Finding a Golden Needle in the Haystack. Cancers (Basel) 2023; 15:5716. [PMID: 38136262 PMCID: PMC10741845 DOI: 10.3390/cancers15245716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mesothelioma comprises a group of rare cancers arising from the mesothelium of the pleura, peritoneum, tunica vaginalis testis and pericardium. Mesothelioma is generally associated with asbestos exposure and has a dismal prognosis, with few therapeutic options. Several next generation sequencing (NGS) experiments have been performed on mesothelioma arising at different sites. These studies highlight a genomic landscape mainly characterized by a high prevalence (>20%) of genomic aberrations leading to functional losses in oncosuppressor genes such as BAP1, CDKN2A, NF2, SETD2 and TP53. Nevertheless, to date, evidence of the effect of targeting these alterations with specific drugs is lacking. Conversely, 1-2% of mesothelioma might harbor activating mutations in oncogenes with specifically approved drugs. The goal of this review is to summarize NGS applications in mesothelioma and to provide insights into target therapy of mesothelioma guided by NGS.
Collapse
Affiliation(s)
- Luigi Cerbone
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Orecchia
- Molecular Pathology Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy;
| | - Pietro Bertino
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Delfanti
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Antonina Maria de Angelis
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Federica Grosso
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| |
Collapse
|
3
|
Bertuccio FR, Agustoni F, Galli G, Bortolotto C, Saddi J, Baietto G, Baio N, Montini S, Putignano P, D’Ambrosio G, Corsico AG, Pedrazzoli P, Stella GM. Pleural Mesothelioma: Treatable Traits of a Heterogeneous Disease. Cancers (Basel) 2023; 15:5731. [PMID: 38136277 PMCID: PMC10741585 DOI: 10.3390/cancers15245731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pleural mesothelioma is an aggressive disease with diffuse nature, low median survival, and prolonged latency presenting difficulty in prognosis, diagnosis, and treatment. Here, we review all these aspects to underline the progress being made in its investigation and to emphasize how much work remains to be carried out to improve prognosis and treatment.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Saddi
- Department of Oncology, Clinical-Surgical, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Guido Baietto
- Cardiothoracic and Vascular Department, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Nicola Baio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paola Putignano
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (F.R.B.); (F.A.); (G.G.); (N.B.); (S.M.); (P.P.); (A.G.C.); (P.P.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
5
|
Toyokuni S, Kong Y, Katabuchi M, Maeda Y, Motooka Y, Ito F, Yanatori I. Iron links endogenous and exogenous nanoparticles. Arch Biochem Biophys 2023; 745:109718. [PMID: 37579931 DOI: 10.1016/j.abb.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Current progress in biology and medical science is based on the observation at the level of nanometers via electron microscopy and computation. Of note, the size of most cells in higher species exists in a limited range from 5 to 50 μm. Recently, it was demonstrated that endogenous extracellular nanoparticles play a role in communication among various cellular types in a variety of contexts. Among them, exosomes in serum have been established as biomarkers for human diseases by analyzing the cargo molecules. No life on the earth can survive without iron. However, excess iron can be a risk for carcinogenesis in rodents and humans. Nano-sized molecules may cause unexpected bioeffects, including carcinogenesis, which is a process to establish cellular iron addiction with ferroptosis-resistance. Asbestos and carbon nanotubes are the typical examples, leading to carcinogenesis by the alteration of iron metabolism. Recently, we found that CD63, one of the representative markers of exosomes, is under the regulation of iron-responsive element/iron-regulatory protein system. This is a safe strategy to share excess iron in the form of holo-ferritin between iron-sufficient and -deficient cells. On the other hand, damaged cells may secrete holo-ferritin-loaded exosomes as in the case of macrophages in ferroptosis after asbestos exposure. These holo-ferritin-loaded exosomes can cause mutagenic DNA damage in the recipient mesothelial cells. Thus, there is an iron link between exogenous and endogenous nanoparticles, which requires further investigation for better understanding and the future applications.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Misako Katabuchi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, Widyowati R, Ekasari W, Khan J, Bhattacharjee B, Goyal M, Bhattacharya S, Jangde RK. Malignant mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying clinical studies. Front Oncol 2023; 13:1204722. [PMID: 37469419 PMCID: PMC10353315 DOI: 10.3389/fonc.2023.1204722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sakina Ruhi
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ayesha Syed
- Department of Anatomy, Physiology, and Biochemistry, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Sanjay Nagdev
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, Madhya Pradesh, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | | | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, MH, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
7
|
Al Khatib MHDO, Pinton G, Moro L, Porta C. Benefits and Challenges of Inhibiting EZH2 in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:1537. [PMID: 36900330 PMCID: PMC10000483 DOI: 10.3390/cancers15051537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer that is mainly associated with prior exposure to asbestos fibers. Despite being a rare cancer, its global rate is increasing and the prognosis remains extremely poor. Over the last two decades, despite the constant research of new therapeutic options, the combination chemotherapy with cisplatin and pemetrexed has remained the only first-line therapy for MPM. The recent approval of immune checkpoint blockade (ICB)-based immunotherapy has opened new promising avenues of research. However, MPM is still a fatal cancer with no effective treatments. Enhancer of zeste homolog 2 (EZH2) is a histone methyl transferase that exerts pro-oncogenic and immunomodulatory activities in a variety of tumors. Accordingly, a growing number of studies indicate that EZH2 is also an oncogenic driver in MPM, but its effects on tumor microenvironments are still largely unexplored. This review describes the state-of-the-art of EZH2 in MPM biology and discusses its potential use both as a diagnostic and therapeutic target. We highlight current gaps of knowledge, the filling of which will likely favor the entry of EZH2 inhibitors within the treatment options for MPM patients.
Collapse
Affiliation(s)
- MHD Ouis Al Khatib
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| |
Collapse
|
8
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
9
|
Barbarino M, Bottaro M, Spagnoletti L, de Santi MM, Guazzo R, Defraia C, Custoza C, Serio G, Iannelli F, Pesetti M, Aiello R, Rosati D, Zanfrini E, Luzzi L, Bellan C, Giordano A. Analysis of Primary Cilium Expression and Hedgehog Pathway Activation in Mesothelioma Throws Back Its Complex Biology. Cancers (Basel) 2022; 14:5216. [PMID: 36358635 PMCID: PMC9654223 DOI: 10.3390/cancers14215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 08/06/2023] Open
Abstract
The primary cilium (PC) is a sensory organelle present on the cell surface, modulating the activity of many pathways. Dysfunctions in the PC lead to different pathologic conditions including cancer. Hedgehog signaling (Hh) is regulated by PC and the loss of its control has been observed in many cancers, including mesothelioma. Malignant pleural mesothelioma (MPM) is a fatal cancer of the pleural membranes with poor therapeutic options. Recently, overexpression of the Hh transcriptional activator GL1 has been demonstrated to be associated with poor overall survival (OS) in MPM. However, unlike other cancers, the response to G-protein-coupled receptor smoothened (SMO)/Hh inhibitors is poor, mainly attributable to the lack of markers for patient stratification. For all these reasons, and in particular for the role of PC in the regulation of Hh, we investigated for the first time the status of PC in MPM tissues, demonstrating intra- and inter-heterogeneity in its expression. We also correlated the presence of PC with the activation of the Hh pathway, providing uncovered evidence of a PC-independent regulation of the Hh signaling in MPM. Our study contributes to the understanding MPM heterogeneity, thus helping to identify patients who might benefit from Hh inhibitors.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Bottaro
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Laura Spagnoletti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | | | - Raffaella Guazzo
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Chiara Defraia
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Cosimo Custoza
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation-DETO, University of Bari, G. Cesare 1 Sq., 70121 Bari, Italy
| | - Francesco Iannelli
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Matilde Pesetti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Raffaele Aiello
- Toma Institute Srl, Via Cesare Rosaroll 24, 80139 Napoli, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Edoardo Zanfrini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
10
|
Falanga F, Rinaldi P, Primiceri C, Bortolotto C, Oneta O, Agustoni F, Morbini P, Saracino L, Eleftheriou D, Sottotetti F, Stella GM. Feasibility and safety of extended pleurectomy/decortication for malignant pleural mesothelioma. A single group experience. Thorac Cancer 2022; 13:2792-2798. [PMID: 36052736 PMCID: PMC9527178 DOI: 10.1111/1759-7714.14627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Surgery is part of a multimodal therapeutic approach to malignant pleural mesothelioma (MPM) although its real beneficial effect is still controversial. The optimal precise sequence of treatments within the trimodality is unclear, and should be decided upon a multidisciplinary consensus for each individual patient. Here, we analyzed the perioperative data of 19 MPM patients who underwent extended pleurectomy/decortication (EPD) with curative intent. The mean age at diagnosis was 67 years; 11 males and eight females. Ten patients were diagnosed with MPM via medical thoracoscopy (MT), and nine via video‐assisted thoracoscopic surgery (VATS). The vast majority of cases harbored epitheliod forms. We compared neoadjuvant chemotherapy (NCT) followed by surgery (11 cases) versus surgery followed by adjuvant chemotherapy (ACT, 8 cases) within a 3‐year period. All patients had extended pleurectomy/decortication and none had an extended pneumonectomy. Analysis of survival curves suggested that the short‐term outcomes are better with upfront EDP followed by ACT if compared to EDP preceded by NCT. Although limited, the data highlighted the safety and feasibility of EPD, with manageable postoperative complications and no major burden for the patients.
Collapse
Affiliation(s)
- Francesco Falanga
- Department. of Intensive Medicine, Unit of Cardiothoracic Surgery, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Pietro Rinaldi
- Department. of Intensive Medicine, Unit of Cardiothoracic Surgery, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Cristiano Primiceri
- Department. of Intensive Medicine, Unit of Cardiothoracic Surgery, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, Pavia, Italy.,Department of Intensive Medicine, Unit of Radiology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Olga Oneta
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Francesco Agustoni
- Department of Intensive Medicine, Unit of Medical Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Patrizia Morbini
- Department of Molecular Medicine, University of Pavia Medical School, Pavia, Italy.,Unit of Pathology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Laura Saracino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | | | | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
| |
Collapse
|
11
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
12
|
Usuda K, Niida Y, Ishikawa M, Iwai S, Yamagata A, Iijima Y, Motono N, Yamada S, Uramoto H. Genomics of Tumor Origin and Characteristics for Adenocarcinoma and Malignant Pleural Mesothelioma: A Case Report. Front Oncol 2022; 12:858094. [PMID: 35664766 PMCID: PMC9160749 DOI: 10.3389/fonc.2022.858094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
A female underwent a right middle lobectomy for a pulmonary adenocarcinoma (AD). She eventually died of a right malignant pleural mesothelioma (MPM; sarcomatoid type) 4 years and 7 months after the removal of the AD even though she did not have any history of asbestos exposure, smoking, or radiation exposure. Her chest CT revealed multiple pulmonary nodules and bilateral pleural effusion with a right pleural tumor directly invading into the abdominal cavity. The genomics of tumor origin and characteristics were examined for the AD and the MPM. As a result, 50 somatic variants were detected in the AD, and 29 somatic variants were detected in the MPM. The variants which were common in both the AD and the MPM were not present, which suggested that the AD and the MPM had occurred independently in different origins. The MPM had two driver oncogenes of TP53 and EP300, but the AD did not. Two driver oncogenes of TP53 and EP300 were hypothesized to make the MPM aggressive. The speed at which the MPM progressed without the patient having a history of asbestos exposure, smoking, or radiation exposure was alarming.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan.,Department of Rehabilitation Medicine, Shimada Hospital, Fukui, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Genomic Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Aika Yamagata
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
13
|
Mielgo-Rubio X, Cardeña Gutiérrez A, Sotelo Peña V, Sánchez Becerra MV, González López AM, Rosero A, Trujillo-Reyes JC, Couñago F. Tsunami of immunotherapy reaches mesothelioma. World J Clin Oncol 2022; 13:267-275. [PMID: 35582652 PMCID: PMC9052072 DOI: 10.5306/wjco.v13.i4.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/04/2021] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is the most common type of malignant mesothelioma. It is a rare tumor linked to asbestos exposure and is associated with a poor prognosis. Until very recently, patients with advanced or unresectable disease had limited treatment options, primarily based on doublet chemotherapy with cisplatin and pemetrexed. In 2020 and 2021, after more than a decade with no major advances or new drugs, two phase III clinical trials published results positioning immunotherapy as a promising option for the first- and second-line treatment of MPM. Immunotherapy has revolutionized the treatment of many cancers and is also showing encouraging results in malignant mesothelioma. Both immune checkpoint inhibition and dual cytotoxic T-lymphocyte-associated antigen 4 and programmed death-ligand 1 pathway blockade resulted in significantly improved overall survival in randomized phase III trials. In the CheckMate 743 trial, first-line therapy with nivolumab plus ipilimumab outperformed standard chemotherapy, while in the CONFIRM trial, nivolumab outperformed placebo in patients previously treated with chemotherapy. These two trials represent a major milestone in the treatment of MPM and are set to position immunotherapy as a viable alternative for treatment-naïve patients and patients with progressive disease after chemotherapy.
Collapse
Affiliation(s)
- Xabier Mielgo-Rubio
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, Alcorcón 28922, Madrid, Spain
| | - Ana Cardeña Gutiérrez
- Department of Medical Oncology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canarias 38010, Spain
| | | | | | | | - Adriana Rosero
- Department of Medical Oncology, Hospital Universitario Del Henares, Coslada 28822, Madrid, Spain
| | - Juan Carlos Trujillo-Reyes
- Department of Thoracic Surgery, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08029, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alcorcón 28223, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Medicine Department, Universidad Europea de Madrid, Villaviciosa de Odón 28670, Madrid, Spain
| |
Collapse
|
14
|
Lisini D, Lettieri S, Nava S, Accordino G, Frigerio S, Bortolotto C, Lancia A, Filippi AR, Agustoni F, Pandolfi L, Piloni D, Comoli P, Corsico AG, Stella GM. Local Therapies and Modulation of Tumor Surrounding Stroma in Malignant Pleural Mesothelioma: A Translational Approach. Int J Mol Sci 2021; 22:9014. [PMID: 34445720 PMCID: PMC8396500 DOI: 10.3390/ijms22169014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches. Based on the peculiar disease features of MPM, several strategies for local therapeutic delivery have been developed over the past years. The common rationale of these approaches is: (i) to reduce the risk of drug inactivation before reaching the target tumor cells; (ii) to increase the concentration of active drugs in the tumor micro-environment and their bioavailability; (iii) to reduce toxic effects on normal, non-transformed cells, because of much lower drug doses than those used for systemic chemotherapy. The complex interactions between drugs and the local immune-inflammatory micro-environment modulate the subsequent clinical response. In this perspective, the main interest is currently addressed to the development of local drug delivery platforms, both cell therapy and engineered nanotools. We here propose a review aimed at deep investigation of the biologic effects of the current local therapies for MPM, including cell therapies, and the mechanisms of interaction with the tumor micro-environment.
Collapse
Affiliation(s)
- Daniela Lisini
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Sara Lettieri
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Sara Nava
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Giulia Accordino
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Simona Frigerio
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Laura Pandolfi
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Davide Piloni
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| |
Collapse
|
15
|
Saracino L, Bortolotto C, Tomaselli S, Fraolini E, Bosio M, Accordino G, Agustoni F, Abbott DM, Pozzi E, Eleftheriou D, Morbini P, Rinaldi P, Primiceri C, Lancia A, Comoli P, Filippi AR, Stella GM. Integrating data from multidisciplinary Management of Malignant Pleural Mesothelioma: a cohort study. BMC Cancer 2021; 21:762. [PMID: 34210265 PMCID: PMC8252222 DOI: 10.1186/s12885-021-08532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy that most commonly affects the pleural layers. MPM has a strong association with asbestos, mainly caused by exposure to its biopersistent fibers in at least 80% of cases. Individuals with a chronic exposure to asbestos might develop disease with a 20-40-year latency with few or no symptoms. Such has been the case in the Italian regions of Piedmont and Lombardy, where industrial production of materials laden with asbestos, mainly cements, has been responsible for the onset of a large epidemic. Since 2018, a multidisciplinary team at San Matteo hospital in Pavia has been collecting data on over 100 patients with MPM. The main goal of this project is to define and describe an integrated profile for each MPM case at diagnosis by using data mining and partition analysis. METHODS Here we bring together exhaustive epidemiologic, histologic and radiologic data of 88 MPM patients that came to our observation and draw correlations with predictive and prognostic significance. RESULTS The median overall survival (OS) was 15.6 months. Most patients presented with pleural effusion, irrespective of disease stage. Quite unexpectedly, no statistically significant association was demonstrated between OS and TNM disease stage at diagnosis. Although average OS is similar in male and female patients, partition analysis of data underlined a significant differential hierarchy of predictor categories based on patient gender. In females with no smoking history, full chemotherapeutic regimens are associated with better outcomes. Moreover, concerning second line treatments, vinorelbine emerged as the most advantageous choice for female patients, whereas in the male subgroup no statistically significant difference resulted between gemcitabine and vinorelbine. CONCLUSION A multidisciplinary approach to MPM is mandatory to define better therapeutic approaches, personalize the management and improve patient outcomes.
Collapse
Affiliation(s)
- Laura Saracino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Stefano Tomaselli
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Elia Fraolini
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Matteo Bosio
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - David M Abbott
- Department of Anesthesia and Intensive Care, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | - Emma Pozzi
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy
| | | | - Patrizia Morbini
- Department of Molecular Medicine, Unit of Pathology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Pietro Rinaldi
- Department of Intensive Medicine, Unit of Cardiothoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Cristiano Primiceri
- Department of Intensive Medicine, Unit of Cardiothoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Andrea Lancia
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Andrea R Filippi
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Pavia, Italy
| | - Giulia M Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100, Pavia, Italy.
| |
Collapse
|
16
|
黄 亚, 孟 庆. [Research Progress of Immune Checkpoint Inhibitors
in Malignant Pleural Mesothelioma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:441-446. [PMID: 34157803 PMCID: PMC8246391 DOI: 10.3779/j.issn.1009-3419.2021.102.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor with strong invasiveness, low survival rate and lack of effective treatment options. As the only first-line treatment plan for the advanced MPM, combination of pemetrexed and cisplatin chemotherapy have been existing since the last 20 years. Immunotherapy has long been considered as a potential treatment plan for MPM, mainly including immune checkpoint inhibitors (ICIs), immunotoxin therapy, anti-cancer vaccine and adoptive T-cell therapy. This review focuses on summarizing the current research status of immune checkpoint inhibitors in MPM, discusses the effect of tumor heterogeneity on ICIs treatment, and describes that the biomarker-oriented immunotherapy is a new vision for the realization of individualized treatment of MPM.
.
Collapse
Affiliation(s)
- 亚茹 黄
- />150000 哈尔滨,哈尔滨医科大学附属肿瘤医院Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - 庆威 孟
- />150000 哈尔滨,哈尔滨医科大学附属肿瘤医院Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
| |
Collapse
|
17
|
Napoli F, Listì A, Zambelli V, Witel G, Bironzo P, Papotti M, Volante M, Scagliotti G, Righi L. Pathological Characterization of Tumor Immune Microenvironment (TIME) in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2564. [PMID: 34073720 PMCID: PMC8197227 DOI: 10.3390/cancers13112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that arises from pleural mesothelial cells, characterized by a median survival of approximately 13-15 months after diagnosis. The primary cause of this disease is asbestos exposure and the main issues associated with it are late diagnosis and lack of effective therapies. Asbestos-induced cellular damage is associated with the generation of an inflammatory microenvironment that influences and supports tumor growth, possibly in association with patients' genetic predisposition and tumor genomic profile. The chronic inflammatory response to asbestos fibers leads to a unique tumor immune microenvironment (TIME) composed of a heterogeneous mixture of stromal, endothelial, and immune cells, and relative composition and interaction among them is suggested to bear prognostic and therapeutic implications. TIME in MPM is known to be constituted by immunosuppressive cells, such as type 2 tumor-associated macrophages and T regulatory lymphocytes, plus the expression of several immunosuppressive factors, such as tumor-associated PD-L1. Several studies in recent years have contributed to achieve a greater understanding of the pathogenetic mechanisms in tumor development and pathobiology of TIME, that opens the way to new therapeutic strategies. The study of TIME is fundamental in identifying appropriate prognostic and predictive tissue biomarkers. In the present review, we summarize the current knowledge about the pathological characterization of TIME in MPM.
Collapse
Affiliation(s)
- Francesca Napoli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Angela Listì
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Vanessa Zambelli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Gianluca Witel
- Department of Medical Sciences, University of Turin, City of Health and Science, 10126 Torino, Italy;
| | - Paolo Bironzo
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Mauro Papotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Pathology Unit, City of Health and Science, 10126 Torino, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Luisella Righi
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| |
Collapse
|
18
|
Pinelli S, Alinovi R, Poli D, Corradi M, Pelosi G, Tiseo M, Goldoni M, Cavallo D, Mozzoni P. Overexpression of microRNA‑486 affects the proliferation and chemosensitivity of mesothelioma cell lines by targeting PIM1. Int J Mol Med 2021; 47:117. [PMID: 33955505 PMCID: PMC8083808 DOI: 10.3892/ijmm.2021.4950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Dysregulated levels of microRNAs (miRNAs or miRs), involved in oncogenic pathways, have been proposed to contribute to the aggressiveness of malignant pleural mesothelioma (MPM). Previous studies have highlighted the downregulation of miRNA miR-486-5p in patients with mesothelioma and the introduction of miRNA mimics to restore their reduced or absent functionality in cancer cells is considered an important therapeutic strategy. The aim of the present study was to evaluate the mechanisms through which miRNAs may influence the functions, proliferation and sensitivity to cisplatin of MPM cells. In the present study, a miR-486-5p mimic was transfected into the H2052 and H28 MPM cell lines, and cell viability, proliferation, apoptosis and mitochondrial membrane potential were monitored. miR-486-5p overexpression led to a clear impairment of cell proliferation, targeting CDK4 and attenuating cell cycle progression. In addition, transfection with miR-486-5p mimic negatively regulated the release of inflammatory factors and the expression of Provirus integration site for Moloney murine leukaemia virus 1 (PIM1). The sensitivity of the cells to cisplatin was enhanced by enhancing the apoptotic effects of the drug and impairing mitochondrial function. On the whole, the present study demonstrates that miR-486-5p may play an important role in MPM treatment by targeting multiple pathways involved in tumour development and progression. These activities may be mostly related to the downregulation of PIM1, a crucial regulator of cell survival and proliferation. Furthermore, these results provide support for the combined use of miR-486-5p with chemotherapy as a therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, I-00078 Rome, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, I-43126 Parma, Italy
| |
Collapse
|
19
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
20
|
Pezzuto F, Lunardi F, Vedovelli L, Fortarezza F, Urso L, Grosso F, Ceresoli GL, Kern I, Vlacic G, Faccioli E, Schiavon M, Gregori D, Rea F, Pasello G, Calabrese F. P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment. Front Oncol 2021; 11:653497. [PMID: 33828993 PMCID: PMC8019896 DOI: 10.3389/fonc.2021.653497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The CDKN2A gene plays a central role in the pathogenesis of malignant pleural mesothelioma (MPM). The gene encodes for two tumor suppressor proteins, p16/INK4A and p14/ARF, frequently lost in MPM tumors. The exact role of p14/ARF in MPM and overall its correlation with the immune microenvironment is unknown. We aimed to determine whether there is a relationship between p14/ARF expression, tumor morphological features, and the inflammatory tumor microenvironment. METHODS Diagnostic biopsies from 76 chemo-naive MPMs were evaluated. Pathological assessments of histotype, necrosis, inflammation, grading, and mitosis were performed. We evaluated p14/ARF, PD-L1 (tumor proportion score, TPS), and Ki-67 (percentage) by immunohistochemistry. Inflammatory cell components (CD3+, CD4+, CD8+ T lymphocytes; CD20+ B-lymphocytes; CD68+ and CD163+ macrophages) were quantified as percentages of positive cells, distinguishing between intratumoral and peritumoral areas. The expression of p14/ARF was associated with several clinical and pathological characteristics. A random forest-based machine-learning algorithm (Boruta) was implemented to identify which variables were associated with p14/ARF expression. RESULTS p14/ARF was evaluated in 68 patients who had a sufficient number of tumor cells. Strong positivity was detected in 14 patients (21%) (11 epithelioid and 3 biphasic MPMs). At univariate analysis, p14/ARF-positive epithelioid mesotheliomas showed higher nuclear grade (G3) (p = 0.023) and higher PD-L1 expression (≥50%) (p = 0.042). The percentages of CD4 and CD163 in peritumoral areas were respectively higher and lower in p14/ARF positive tumors but did not reach statistical significance with our sample size (both p = 0.066). The Boruta algorithm confirmed the predictive value of PD-L1 percentage for p14/ARF expression in all histotypes. CONCLUSIONS p14/ARF-positive epithelioid mesotheliomas may mark a more aggressive pathological phenotype (higher nuclear grade and PD-L1 expression). Considering the results regarding the tumor immune microenvironment, p14/ARF-negative tumors seem to have an immune microenvironment less sensitive to immune checkpoint inhibitors, being associated with low PD-L1 and CD4 expression, and high CD163 percentage. The association between p14/ARF-positive MPMs and PD-L1 expression suggests a possible interaction of the two pathways. Confirmation of our preliminary results could be important for patient selection and recruitment in future clinical trials with anticancer immunotherapy.
Collapse
Affiliation(s)
- Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Luca Vedovelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Federica Grosso
- Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Mesothelioma and Rare Cancer Unit, Alessandria, Italy
| | | | - Izidor Kern
- Pathology Laboratory, University Clinic Golnik, Golnik, Slovenia
| | - Gregor Vlacic
- Pathology Laboratory, University Clinic Golnik, Golnik, Slovenia
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marco Schiavon
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Department of Oncology, Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
21
|
Lettieri S, Bortolotto C, Agustoni F, Lococo F, Lancia A, Comoli P, Corsico AG, Stella GM. The Evolving Landscape of the Molecular Epidemiology of Malignant Pleural Mesothelioma. J Clin Med 2021; 10:jcm10051034. [PMID: 33802313 PMCID: PMC7959144 DOI: 10.3390/jcm10051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy that most commonly affects the pleural lining of the lungs. It has a strong association with exposure to biopersistent fibers, mainly asbestos (80% of cases) and—in specific geographic regions—erionite, zeolites, ophiolites, and fluoro-edenite. Individuals with a chronic exposure to asbestos generally have a long latency with no or few symptoms. Then, when patients do become symptomatic, they present with advanced disease and a worse overall survival (about 13/15 months). The fibers from industrial production not only pose a substantial risk to workers, but also to their relatives and to the surrounding community. Modern targeted therapies that have shown benefit in other human tumors have thus far failed in MPM. Overall, MPM has been listed as orphan disease by the European Union. However, molecular high-throughput profiling is currently unveiling novel biomarkers and actionable targets. We here discuss the natural evolution, mainly focusing on the novel concept of molecular epidemiology. The application of innovative endpoints, quantification of genetic damages, and definition of genetic susceptibility are reviewed, with the ultimate goal to point out new tools for screening of exposed subject and for designing more efficient diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Filippo Lococo
- Thoracic Unit, Catholic University of the Sacred Heart, Fondazione Policinico A. Gemelli, 00100 Rome, Italy;
| | - Andrea Lancia
- Department of Intensive Medicine, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo G. Corsico
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Giulia M. Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
- Correspondence:
| |
Collapse
|
22
|
Fernandez-Cuesta L, Mangiante L, Alcala N, Foll M. Challenges in lung and thoracic pathology: molecular advances in the classification of pleural mesotheliomas. Virchows Arch 2021; 478:73-80. [PMID: 33411030 DOI: 10.1007/s00428-020-02980-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The diagnosis and classification of malignant pleural mesothelioma (MPM) is extremely challenging; obtaining an accurate histopathological diagnosis of the different types and subtypes requires expert assessment and suitable biopsies that are not always available, which can leave doctors uncertain about the patient's diagnosis, sometimes resulting in a delay in the start of treatment. In this review, we discuss recent major advances in the molecular characterisation of MPM and their implications for histological classification. We detail what is known of the molecular landscape of MPM at the genomic, transcriptomic, and epigenomic levels, describe the similarities and dissimilarities of the multiple molecular classifications that have been proposed, and provide an overview of the current state of knowledge regarding inter- and intra-tumour heterogeneity. We also highlight the current gaps in knowledge and how addressing them would benefit classification, as well as the patients in general.
Collapse
Affiliation(s)
| | - Lise Mangiante
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Nicolas Alcala
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Matthieu Foll
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
23
|
Optimization of a Luciferase-Expressing Non-Invasive Intrapleural Model of Malignant Mesothelioma in Immunocompetent Mice. Cancers (Basel) 2020; 12:cancers12082136. [PMID: 32752156 PMCID: PMC7465989 DOI: 10.3390/cancers12082136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.
Collapse
|