1
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2024; 28:3445-3456. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Wang B, Guo J, Chen B, Jiao Y, Wan Y, Wu J, Wang Y. Combination of ligand‑based and structure‑based virtual screening for the discovery of novel Janus kinase 2 inhibitors against philadelphia-negative myeloproliferative neoplasms. Mol Divers 2024:10.1007/s11030-024-10938-1. [PMID: 39210217 DOI: 10.1007/s11030-024-10938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.
Collapse
Affiliation(s)
- Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianmin Guo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Bo Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Chifotides HT, Masarova L, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapeutic Strategies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:219-231. [PMID: 36797153 PMCID: PMC10378306 DOI: 10.1016/j.clml.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Development of myelofibrosis (MF) therapeutics has reached fruition as the transformative impact of JAK2 inhibitors in the MPN landscape is complemented/expanded by a profusion of novel monotherapies and rational combinations in the frontline and second line settings. Agents in advanced clinical development span various mechanisms of action (eg, epigenetic or apoptotic regulation), may address urgent unmet clinical needs (cytopenias), increase the depth/duration of spleen and symptom responses elicited by ruxolitinib, improve other aspects of the disease besides splenomegaly/constitutional symptoms (eg, resistance to ruxolitinib, bone marrow fibrosis or disease course), provide personalized strategies, and extend overall survival (OS). Ruxolitinib had a dramatic impact on the quality of life and OS of MF patients. Recently, pacritinib received regulatory approval for severely thrombocytopenic MF patients. Momelotinib is advantageously poised among JAK inhibitors given its differentiated mode of action (suppression of hepcidin expression). Momelotinib demonstrated significant improvements in anemia measures, spleen responses, and MF-associated symptoms in MF patients with anemia; and will likely receive regulatory approval in 2023. An array of other novel agents combined with ruxolitinib, such as pelabresib, navitoclax, parsaclisib, or as monotherapies (navtemadlin) are evaluated in pivotal phase 3 trials. Imetelstat (telomerase inhibitor) is currently evaluated in the second line setting; OS was set as the primary endpoint, marking an unprecedented goal in MF trials, wherein SVR35 and TSS50 at 24 weeks have been typical endpoints heretofore. Transfusion independence may be considered another clinically meaningful endpoint in MF trials given its correlation with OS. Overall, therapeutics are at the cusp of an exponential expansion and advancements that will likely lead to the golden era in treatment of MF.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
4
|
The Role of NLRP3, a Star of Excellence in Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054860. [PMID: 36902299 PMCID: PMC10003372 DOI: 10.3390/ijms24054860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) is the most widely investigated inflammasome member whose overactivation can be a driver of several carcinomas. It is activated in response to different signals and plays an important role in metabolic disorders and inflammatory and autoimmune diseases. NLRP3 belongs to the pattern recognition receptors (PRRs) family, expressed in numerous immune cells, and it plays its primary function in myeloid cells. NLRP3 has a crucial role in myeloproliferative neoplasms (MPNs), considered to be the diseases best studied in the inflammasome context. The investigation of the NLRP3 inflammasome complex is a new horizon to explore, and inhibiting IL-1β or NLRP3 could be a helpful cancer-related therapeutic strategy to improve the existing protocols.
Collapse
|
5
|
Karhadkar TR, Chen W, Pilling D, Gomer RH. Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. Int J Mol Sci 2022; 24:239. [PMID: 36613682 PMCID: PMC9820515 DOI: 10.3390/ijms24010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
6
|
Passamonti F, Heidel FH, Parikh RC, Ajmera M, Tang D, Nadal JA, Davis KL, Abraham P. Real-world clinical outcomes of patients with myelofibrosis treated with ruxolitinib: a medical record review. Future Oncol 2022; 18:2217-2231. [PMID: 35388710 DOI: 10.2217/fon-2021-1358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To assess real-world ruxolitinib treatment patterns and outcomes in patients diagnosed with primary or secondary myelofibrosis. Materials & methods: Patient medical records were reviewed in six countries. Results: Eligible patients (n = 469) had a mean age of 63.5 years, and most were male (66.5%) with primary myelofibrosis (78.5%). Median duration of ruxolitinib treatment was 13.1 months; 40% of patients initiated treatment at the recommended dose. The Kaplan-Meier estimate of median survival from ruxolitinib initiation was 44.4 months (95% CI, 38.8-50.2 months). Approximately one quarter (23%) of patients continued ruxolitinib after progression. Conclusion: These results suggest an unmet need for more effective treatments for patients with myelofibrosis who failed ruxolitinib.
Collapse
Affiliation(s)
| | - Florian H Heidel
- Internal Medicine C, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Rohan C Parikh
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Mayank Ajmera
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Derek Tang
- Hematology, Bristol Meyers Squibb, Lawrenceville, NJ 08648, USA
| | | | - Keith L Davis
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Pranav Abraham
- Hematology, Bristol Meyers Squibb, Lawrenceville, NJ 08648, USA
| |
Collapse
|
7
|
Chifotides HT, Bose P, Masarova L, Pemmaraju N, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:210-223. [PMID: 34840087 DOI: 10.1016/j.clml.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Myeloproliferative neoplasms research has entered a dynamic and exciting era as we witness exponential growth of novel agents in advanced/early phase clinical trials for myelofibrosis (MF). Building on the success and pivotal role of ruxolitinib, many novel agents, spanning a wide range of mechanisms/targets (epigenetic regulation, apoptotic/intracellular signaling pathways, telomerase, bone marrow fibrosis) are in clinical development; several are studied in registrational trials and hold great potential to expand the therapeutic arsenal/shift the treatment paradigm if regulatory approval is granted. Insight into MF pathogenesis and its molecular underpinnings, preclinical studies demonstrating synergism of ruxolitinib with investigational agents, urgent unmet clinical needs (cytopenias, loss of response to JAK inhibitors); and progressive disease fueled the rapid rise of innovative therapeutics. New strategies include pairing ruxolitinib with erythroid maturation agents to manage anemia (luspatercept), designing rational combinations with ruxolitinib to boost responses in both the frontline and suboptimal response settings (pelabresib, navitoclax, parsaclisib), treatment with non-JAK inhibitor monotherapy in the second-line setting (navtemadlin, imetelstat), novel JAK inhibitors tailored to subgroups with challenging unmet needs (momelotinib and pacritinib for anemia and thrombocytopenia, respectively); and agents potentially enhancing longevity (imetelstat). Beyond typical endpoints evaluated in MF clinical trials (spleen volume reduction ≥ 35%, total symptom score reduction ≥ 50%) thus far, emerging endpoints include overall survival, progression-free survival, transfusion independence, anemia benefits, bone marrow fibrosis and driver mutation allele burden reduction. Novel biomarkers and additional clinical features are being sought to assess new agents and tailor emerging therapies to appropriate patients. New strategies are needed to optimize the design of clinical trials comparing novel combinations to standard agent monotherapy.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
8
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
9
|
Chifotides HT, Bose P, Verstovsek S. Momelotinib: an emerging treatment for myelofibrosis patients with anemia. J Hematol Oncol 2022; 15:7. [PMID: 35045875 PMCID: PMC8772195 DOI: 10.1186/s13045-021-01157-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
The suite of marked anemia benefits that momelotinib has consistently conferred on myelofibrosis (MF) patients stem from its unique inhibitory activity on the BMP6/ACVR1/SMAD and IL-6/JAK/STAT3 pathways, resulting in decreased hepcidin (master iron regulator) expression, higher serum iron and hemoglobin levels, and restored erythropoiesis. Clinical data on momelotinib from the phase 2 and the two phase 3 SIMPLIFY trials consistently demonstrated high rates of sustained transfusion-independence. In a recent phase 2 translational study, 41% of the patients achieved transfusion independence for ≥ 12 weeks. In the phase 3 trials SIMPLIFY-1 and SIMPLIFY-2, 17% more JAK inhibitor-naïve patients and two-fold more JAK inhibitor-treated patients achieved or maintained transfusion independence with momelotinib versus ruxolitinib and best available therapy (89% ruxolitinib), respectively. Anemia is present in approximately a third of MF patients at diagnosis, eventually developing in nearly all patients. The need for red blood cell transfusions is an independent adverse risk factor for both overall survival and leukemic transformation. Presently, FDA-approved medications to address anemia are lacking. Momelotinib is one of the prime candidates to durably address the critical unmet needs of MF patients with moderate/severe anemia. Importantly, momelotinib may have overall survival benefits in frontline and second-line MF patients. MOMENTUM is an international registration-track phase 3 trial further assessing momelotinib’s unique constellation of anemia and other benefits in second-line MF patients; the results of the MOMENTUM trial are keenly awaited and may lead to regulatory approval of momelotinib.
Collapse
|
10
|
Giai V, Secreto C, Freilone R, Pregno P. Philadelphia-Negative MPN: A Molecular Journey, from Hematopoietic Stem Cell to Clinical Features. MEDICINA-LITHUANIA 2021; 57:medicina57101043. [PMID: 34684081 PMCID: PMC8537741 DOI: 10.3390/medicina57101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Philadelphia negative Myeloproliferative Neoplasms (MPN) are a heterogeneous group of hematopoietic stem cell diseases. MPNs show different risk grades of thrombotic complications and acute myeloid leukemia evolution. In the last couple of decades, from JAK2 mutation detection in 2005 to the newer molecular trademarks studied through next generation sequencing, we are learning to approach MPNs from a deeper perspective. Here, we intend to elucidate the important factors affecting MPN clonal advantage and the reasons why some patients progress to more aggressive disease. Understanding these mechanisms is the key to developing new treatment approaches and targeted therapies for MPN patients.
Collapse
|
11
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|