1
|
Oto J, Herranz R, Plana E, Pérez-Ardavín J, Hervás D, Cana F, Verger P, Ramos-Soler D, Martínez-Sarmiento M, Vera-Donoso CD, Medina P. Validation of a microRNA profile in urine liquid biopsy with diagnostic and stratification value for bladder cancer classification, available through the open app BladdermiRaCan. Exp Hematol Oncol 2025; 14:58. [PMID: 40217499 PMCID: PMC11987439 DOI: 10.1186/s40164-025-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
We aimed to identify a profile of urine microRNAs (miRNAs) with diagnostic and stratification potential in the whole range of bladder cancer (BC) categories, to avoid current invasive, harmful and expensive procedures. We collected a first morning urine sample from the screening (35 BC patients and 15 age- and gender-matched controls) and validation cohorts (172 BC and 94 controls). In the screening stage we analyzed the expression level of 179 miRNAs by real-time reverse transcription quantitative PCR in urine supernatants. miRNA levels in each sample were normalized by the levels of the previously identified and stably expressed miR-29c-3p. We performed an ordinal regression for each miRNA with False Discovery Rate (FDR) adjustment to identify dysregulated miRNAs, and an ordinal elastic net logistic regression model to identify a miRNA profile for BC diagnosis and stratification with the software R (v3.5.1). Next, we validated the most dysregulated miRNAs, and empirically identified the real miRNA targets in BC cells by miR-eCLIP immunoprecipitation and sequencing. We identified 70 dysregulated miRNAs in BC patients (p < 0.05 FDR-adjusted). With the expression level of 7 miRNAs in urine (miR-221-3p, miR-93-5p, miR-362-3p, miR-191-5p, miR-200c-3p, miR-192-5p, miR-21-5p) we could stratify BC patients and control subjects. To enable the global use of our model, we developed the free BladdermiRaCan online tool. Furthermore, we identified miR-21-5p, miR-425-5p and miR-99a-5p as follow-up markers for BC relapse, and miR-21-5p and miR-221-3p as markers for metastasis. These miRNAs were also dysregulated in BC tissue sections from a subgroup of patients from which urine samples were studied. In conclusion, we have validated and patented a 7-miRNAs urine profile able to diagnose and stratify BC patients; BladdermiRaCan will enable the global use of our model. The experimentally verified target proteins identified for these miRNAs may unravel novel therapeutic targets.
Collapse
Affiliation(s)
- Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Javier Pérez-Ardavín
- Department of Urology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - David Hervás
- Biostatistics Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Department of Applied Statistics and Operations Research, and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Patricia Verger
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - David Ramos-Soler
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - César D Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, Valencia, Spain
- School of Medicine, Universidad Católica de Valencia, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Health Research Institute Hospital La Fe, Valencia, Spain.
| |
Collapse
|
2
|
Mikhalev SA, Kurtser MA, Radzinsky VE, Orazov MR, Beeraka NM, Mikhaleva LM. Exploring the Role of Lower Genital Tract Microbiota and Cervical-Endometrial Immune Metabolome in Unknown Genesis of Recurrent Pregnancy Loss. Int J Mol Sci 2025; 26:1326. [PMID: 39941094 PMCID: PMC11818274 DOI: 10.3390/ijms26031326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Recurrent pregnancy loss (RPL) of unknown genesis is a complex condition with multifactorial origins, including genetic, hormonal, and immunological factors. However, the specific mechanisms underlying endocervical cell proliferation disorders in women with RPL remain inadequately understood, particularly concerning the role of microbiota and viral infections. The aim of this study was to investigate the mechanisms of endocervical cell proliferation disorders in women with RPL of unknown genesis by examining microbiota, human papillomavirus (HPV) typing, and the expression levels of key molecular biological markers, including p16/Ki-67, BCL-2, miR-145, and miR-34a. A prospective observational comparative study was executed on women with RPL and healthy pregnant controls with full ethical approval. Samples were collected for HPV typing and immunocytochemical analysis to evaluate the expression of p16, Ki-67, BCL-2, and the anti-oncogenic microRNAs (miR-145 and miR-34a). The expression of mRNA for the progesterone receptor (PGR-A) was also assessed, alongside local immune status markers, including proinflammatory T-lymphocytes (Th17/Th1) and regulatory CD4+ Tregs. Overexpression of p16, Ki-67, and BCL-2 was observed in 52.5% of women with RPL who had an ASC-US/LSIL cytogram, with the average double expression of p16/Ki-67 being three times higher than in the healthy pregnant group. A significant decrease in PGR-A mRNA expression in the endocervix of women with RPL was noted, accompanied by a dysregulated local immune status characterized by an increased prevalence of Th17/Th1 cells and a reduction in regulatory CD4+ Tregs. Additionally, the expression of miR-145 and miR-34a in the endocervix and endometrium of women with RPL significantly differed from the physiological pregnancy group, particularly in the context of high-risk HPV infection. The findings describe that disorders of endocervical cell proliferation in women with RPL of unknown genesis are associated with overexpression of specific molecular markers, impaired immune regulation, and altered microRNA profiles. These alterations may contribute to the pathophysiology of RPL, highlighting the need for further research into targeted interventions that could improve reproductive outcomes in affected individuals.
Collapse
Affiliation(s)
- Sergey A. Mikhalev
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
- City Clinical Hospital No. 31 Named After Academician G.M. Savelyeva of the Department of Health, 119415 Moscow, Russia
| | - Mark A. Kurtser
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
| | - Victor E. Radzinsky
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Mekan R. Orazov
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu 515721, Andhra Pradesh, India
- Department of Studies in Molecular Biology, University of Mysore, Mysore 570006, Karnataka, India
| | - Lyudmila M. Mikhaleva
- Scientific Research Institute of Human Morphology Named After Academician A.P. Avtsyn of the Federal State Budgetary Scientific Institution “Russian Scientific Center of Surgery Named After Academician B.V. Petrovsky”, 125315 Moscow, Russia
| |
Collapse
|
3
|
Eckhart L, Rau S, Eckstein M, Stahl PR, Ayoubian H, Heinzelbecker J, Zohari F, Hartmann A, Stöckle M, Lenhof H, Junker K. Machine Learning Accurately Predicts Muscle Invasion of Bladder Cancer Based on Three miRNAs. J Cell Mol Med 2025; 29:e70361. [PMID: 39929768 PMCID: PMC11810526 DOI: 10.1111/jcmm.70361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025] Open
Abstract
The aim of this study was to validate the diagnostic potential of four previously identified miRNAs in two independent cohorts and to develop accurate classification models to predict invasiveness of bladder cancer. Furthermore, molecular subtypes were investigated. The miRNAs were isolated from pTa low-grade (lg) (n = 113), pT1 high-grade (hg) (n = 133) and muscle-invasive bladder cancer (MIBC) (n = 136) tumour tissue samples (FFPE) after either transurethral resection of a bladder tumour (TURB) or cystectomy (CYS). In both cohorts, the expression of miR-138-5p and miR-200a-3p was significantly lower, and the expression of miR-146b-5p and miR-155-5p was significantly higher in MIBC compared to pTa lg. A k-nearest neighbours (KNN) classifier trained to distinguish pTa lg from MIBC based on three miRNAs achieved an accuracy of 0.94. The accuracy remained at 0.91 when the classifier was applied exclusively to the TURB samples. To guarantee reliable predictions, a conformal prediction approach was applied to the KNN model, which eliminated all misclassifications on the test cohort. pT1 hg samples were classified as MIBC in 32% of cases using the KNN model. miR-146b-5p, miR-155-5p and miR-200a-3p expressions are significantly associated with particular molecular subtypes. In conclusion, we confirmed that the four miRNAs significantly distinguish MIBC from NMIBC. A classification model based on three miRNAs was able to accurately classify the phenotype of invasive tumors. This could potentially support the histopathological diagnosis in bladder cancer and therefore, the clinical decision between performing a radical cystectomy and pursuing bladder-conserving strategies, especially in pT1 hg tumors.
Collapse
Affiliation(s)
- Lea Eckhart
- Center for Bioinformatics, Saarland Informatics CampusSaarland UniversitySaarbrückenGermany
| | - Sabrina Rau
- Department of Urology and Pediatric UrologySaarland University Medical Center and Saarland UniversityHomburgGermany
| | - Markus Eckstein
- Institute of PathologyUniversity Hospital ErlangenErlangenGermany
| | - Phillip R. Stahl
- Institute of PathologySaarland University Medical Center and Saarland UniversityHomburgGermany
- Department of MedicineMSB Medical SchoolBerlinGermany
| | - Hiresh Ayoubian
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | - Julia Heinzelbecker
- Department of Urology and Pediatric UrologySaarland University Medical Center and Saarland UniversityHomburgGermany
| | - Farzaneh Zohari
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital ErlangenErlangenGermany
| | - Michael Stöckle
- Department of Urology and Pediatric UrologySaarland University Medical Center and Saarland UniversityHomburgGermany
| | - Hans‐Peter Lenhof
- Center for Bioinformatics, Saarland Informatics CampusSaarland UniversitySaarbrückenGermany
| | - Kerstin Junker
- Department of Urology and Pediatric UrologySaarland University Medical Center and Saarland UniversityHomburgGermany
| |
Collapse
|
4
|
Wang P, Wei X, Qu X, Zhu Y. Potential clinical application of microRNAs in bladder cancer. J Biomed Res 2024; 38:289-306. [PMID: 38808545 PMCID: PMC11300522 DOI: 10.7555/jbr.37.20230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 05/30/2024] Open
Abstract
Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20-25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
5
|
Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra F, Ortiz-Lazareno PC. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int J Mol Sci 2024; 25:2178. [PMID: 38396855 PMCID: PMC10889402 DOI: 10.3390/ijms25042178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common types of cancer worldwide, with significant differences in survival depending on the degree of muscle and surrounding tissue invasion. For this reason, the timely detection and monitoring of the disease are important. Surveillance cystoscopy is an invasive, costly, and uncomfortable procedure to monitor BC, raising the need for new, less invasive alternatives. In this scenario, microRNAs (miRNAs) represent attractive prognostic tools given their role as gene regulators in different biological processes, tissue expression, and their ease of evaluation in liquid samples. In cancer, miRNA expression is dynamically modified depending on the tumor type and cancer staging, making them potential biomarkers. This review describes the most recent studies in the last five years exploring the utility of miRNA-based strategies to monitor progression, stratify, and predict relevant clinical outcomes of bladder cancer. Several studies have shown that multimarker miRNA models can better predict overall survival, recurrence, and progression in BC patients than traditional strategies, especially when combining miRNA expression with clinicopathological variables. Future studies should focus on validating their use in different cohorts and liquid samples.
Collapse
Affiliation(s)
| | - Jorge Raul Vazquez-Urrutia
- Department of Medicine, The Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fabiola Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Estancias Posdoctorales por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONACYT), México City 03940, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
6
|
Yu L, Yan R, Yang D, Xia C, Zhang Z. Comparative efficacy of radical prostatectomy and radiotherapy in the treatment of high-risk prostate cancer. Technol Health Care 2024; 32:4671-4679. [PMID: 39093097 PMCID: PMC11612986 DOI: 10.3233/thc-240910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/02/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Both radical prostatectomy and radiation therapy are effective in controlling the condition of patients with hormone-resistant prostate cancer (HRPCa). However, there is limited research on the prognosis and quality of life of HRPCa patients after different treatment modalities. OBJECTIVE To explore the efficacy of radical prostatectomy (RP) and radiotherapy (RT), when treating high-risk prostate cancer (HRPCa). METHODS Overall 103 HRPCa patients were included and were divided into RP group and RT group according to different treatment methods. The propensity score matching method (PSM) was used to balance the baseline data of the two groups and match 34 patients in each group. The prognosis, quality of life, and basic efficacy of patients were compared. RESULTS After intervention, the disease-free survival rate of the RT group was higher than that of the RP group (79.41% vs. 55.88%, p= 0.038). Quality of life scores between the two treatment methods had no difference before intervention (p> 0.05), but higher in RT group than that of the RP group after intervention (p< 0.05). After treatment, there was no statistically significant difference in total effective rate of treatment between two groups (44.12% vs. 58.82%, p> 0.05), but the disease control rate was significantly higher in RT group (94.12% vs. 76.47%, p= 0.040). CONCLUSION Radical radiotherapy is effective in the clinical treatment of HRPCa patients, with a higher disease-free survival rate and improved quality of life after treatment, and is worth promoting.
Collapse
Affiliation(s)
- Lu Yu
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruping Yan
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deling Yang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengxing Xia
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhixian Zhang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Wan P, Chen Z, Huang M, Jiang H, Wu H, Zhong K, Ding G, Wang B. miR-200a-3p facilitates bladder cancer cell proliferation by targeting the A20 gene. Transl Androl Urol 2022; 10:4262-4274. [PMID: 34984191 PMCID: PMC8661264 DOI: 10.21037/tau-21-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRs) are endogenous, single-stranded, noncoding RNAs that are involved in various physiological processes, and the development and the progression of various types of cancer. Specifically, the role of miR-200a-3p has been implicated in various types of cancer in contributing to a diverse array of cancer types has been previously reported. The present study aimed to investigate the expression levels of miR-200a-3p in human bladder cancer, as well as its potential role in disease pathogenesis. Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of has-mir-200a-3p and tumor necrosis factor α (TNF-α) induced protein 3 (A20) in tumor tissues and cell lines. Dual-luciferase reporter assay and combination with the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cell lines to clarify the binding relationship between hsa-mir-200a-3p and A20.After the expression intervention of hsa-mir-200a-3p and A20 in bladder cancer cells, the changes of cell proliferation, cell apoptosis, cell cycle, wound-healing ability and migration ability were detected by CCK8, flow cytometry, wound-healing and Transwell methods. Xenograft transplantation model was performed subcutaneously in nude mice by implantation of J82 and T24 cells, and then the bladder cancer growth curve was calculated from mice exposed to has-mir-200a-3p minic or minic-NC. Results Bladder cancer tissues demonstrated significantly upregulated miR-200a-3p expression levels. Moreover, increased miR-200a-3p expression was significantly associated with distant metastasis and advanced stage. In addition, compared with the miR-control (Ctr) group, miR-200a-3p overexpression promoted bladder cancer cell proliferation, migration, invasion, cell cycle, and release of inflammatory cytokines, but inhibited cell apoptosis. Mechanistically, A20 was identified as a target gene of miR-200a-3p in bladder cancer cell lines. Moreover, compared with the miR-Ctr group, the miR-200a-3p overexpression group exhibited significantly promoted tumor growth in vivo, and A20 overexpression blocked the promoting effect of miR-200a-3p on bladder cancer. Conclusions The results of the present study indicated that miR-200a-3p might serve act as an oncogene in human bladder cancer by targeting a novel the gene A20 gene; therefore, miR-200a-3p and A20 might serve could serve as novel therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Pei Wan
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhilin Chen
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Minzhi Huang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Huajun Wu
- Department of Urology, Shangrao Municipal Hospital, Shangrao, China
| | - Kaihua Zhong
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Guodong Ding
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Bing Wang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| |
Collapse
|
8
|
Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:23-73. [DOI: 10.1007/978-3-031-08356-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Li R, Chen X, Li X, Huang G, Lu C, Wen Z, Chen Z, Lai Y. A four-miRNA signature in serum as a biomarker for bladder cancer diagnosis. Am J Transl Res 2022; 14:4606-4616. [PMID: 35958461 PMCID: PMC9360833 DOI: pmid/35958461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Urinary bladder cancer (BCa) is globally the 10th most frequent cancer. As a novel diagnostic tool, miRNA in serum screening is non-invasive. This project aimed to determine particular serum miRNAs as novel biomarkers for diagnosing urinary BCa. METHODS We designed a three-phase study with 122 healthy controls (HCs) and 132 BCa patients. The 30 miRNAs' expressions in serum from HCs and BCa patients were detected during the screening phase. The miRNAs with the most dysregulation were tested in the training (HCs vs. BCa, 30 each) and validation (80 HCs vs. 82 BCa) phase further. The diagnostic ability of these candidate miRNAs was estimated by the receiver operating characteristic (ROC) curves as well as the area under the ROC curve (AUC). The miRNAs' target genes and their annotations to functions were predicted utilizing bioinformatic assays. RESULTS Six serum miRNAs (miR-124-3p, miR-182-5p, miR-1-3p, miR-196a-5p, miR-23b-3p and miR-34a-5p) had significantly different expression between BCa patients and HCs in the training and validation phase. The four-microRNA panel improved the diagnostic value, with AUC =0.985. The result of bioinformatic analysis showed that these miRNAs' target genes in the panel may be related to the MAPK signaling pathway in bladder cancer. CONCLUSIONS Our study identified a four-miRNA panel that is a non-invasive new biomarker for diagnosing BCa.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
10
|
Correa R, Alonso-Pupo N, Hernández Rodríguez EW. Multi-omics data integration approaches for precision oncology. Mol Omics 2022; 18:469-479. [DOI: 10.1039/d1mo00411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Next-generation sequencing (NGS) has been pivotal to enhance the molecular characterization of human malignancies, allowing multiple omics data types to be available for cancer researchers and practitioners. In this context,...
Collapse
|
11
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
12
|
The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021; 11:biom11040594. [PMID: 33919565 PMCID: PMC8072960 DOI: 10.3390/biom11040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathology mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment.
Collapse
|
13
|
Sharova E, Maruzzo M, Del Bianco P, Cavallari I, Pierantoni F, Basso U, Ciminale V, Zagonel V. Prognostic Stratification of Metastatic Prostate Cancer Patients Treated With Abiraterone and Enzalutamide Through an Integrated Analysis of Circulating Free microRNAs and Clinical Parameters. Front Oncol 2021; 11:626104. [PMID: 33796462 PMCID: PMC8009625 DOI: 10.3389/fonc.2021.626104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Androgen Receptor-Targeted Agents (ARTA) have dramatically changed the therapeutic landscape of metastatic Castration-Resistant Prostate Cancer (mCRPC), but 20–40% of these patients progress early after start of ARTA treatment. The present study investigated the potential utility of plasma cell-free microRNAs (cfmiRNAs) as prognostic markers by analyzing a prospective cohort of 31 mCRCP patients treated with abiraterone (N = 10) or enzalutamide (N = 21). Additional potential prognostic factors were extracted from clinical records and outcome was evaluated as overall survival (OS) and progression-free survival (PFS). cfmiRNAs were measured in plasma samples using quantitative real-time RT-PCR. Linear correlation among clinical factors and cfmiRNAs was assessed using the Spearman's rank correlation coefficient. The association with survival was studied using univariate and multivariate Cox proportional hazards models. Continuous variables were dichotomized with the cut points corresponding to the most significant relation with the outcome. Univariate analysis indicated that plasma levels of miR-21-5p, miR-141-3p and miR-223-3p, time to development of castration-resistance (tCRPC), and blood hemoglobin (Hb) levels strongly correlated with both PFS and OS. Multivariate analysis revealed that low plasma levels of miR-21, shorter tCRPC, and lower Hb values were independent factors predicting reduced PFS and OS. These findings suggest that the integrated analysis of cfmiRNAs, tCRPC, and Hb may provide a promising, non-invasive tool for the prognostic stratification of mCRPC patients treated with ARTA.
Collapse
Affiliation(s)
- Evgeniya Sharova
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Marco Maruzzo
- Oncology 1 Unit, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Francesco Pierantoni
- Oncology 1 Unit, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Umberto Basso
- Oncology 1 Unit, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vincenzo Ciminale
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
14
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|