1
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
2
|
Karna B, Pellegata NS, Mohr H. Animal and Cell Culture Models of PPGLs - Achievements and Limitations. Horm Metab Res 2024; 56:51-64. [PMID: 38171372 DOI: 10.1055/a-2204-4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on rare tumors heavily relies on suitable models for basic and translational research. Paragangliomas (PPGL) are rare neuroendocrine tumors (NET), developing from adrenal (pheochromocytoma, PCC) or extra-adrenal (PGL) chromaffin cells, with an annual incidence of 2-8 cases per million. While most PPGL cases exhibit slow growth and are primarily treated with surgery, limited systemic treatment options are available for unresectable or metastatic tumors. Scarcity of appropriate models has hindered PPGL research, preventing the translation of omics knowledge into drug and therapy development. Human PPGL cell lines are not available, and few animal models accurately replicate the disease's genetic and phenotypic characteristics. This review provides an overview of laboratory models for PPGLs, spanning cellular, tissue, organ, and organism levels. We discuss their features, advantages, and potential contributions to diagnostics and therapeutics. Interestingly, it appears that in the PPGL field, disease models already successfully implemented in other cancers have not been fully explored.
Collapse
Affiliation(s)
- Bhargavi Karna
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
3
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
5
|
Takács-Vellai K, Farkas Z, Ősz F, Stewart GW. Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer Metastasis Rev 2021; 40:1177-1201. [PMID: 34957538 PMCID: PMC8825606 DOI: 10.1007/s10555-021-10009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.
Collapse
Affiliation(s)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Gordon W Stewart
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Geppert J, Walth AA, Expósito RT, Kaltenecker D, Morigny P, Machado J, Becker M, Simoes E, Lima JDCC, Daniel C, Berriel Diaz M, Herzig S, Seelaender M, Rohm M. Aging Aggravates Cachexia in Tumor-Bearing Mice. Cancers (Basel) 2021; 14:cancers14010090. [PMID: 35008253 PMCID: PMC8750471 DOI: 10.3390/cancers14010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cachexia is a deadly disease that accompanies many different types of cancers. Animal studies on cachexia have so far mostly been conducted using young mice, while cancer in humans is a disease of high age. Mouse models used to date may therefore not be suitable to study cachexia with relevance to patients. By comparing young and old mice of three different strains and two different tumor types, we here show that the age of mice has a substantial effect on cachexia progression (specifically body weight, tissue weight, fiber size, molecular markers) that is dependent on the mouse strain studied. This is independent of glucose tolerance. The cachexia markers IL6 and GDF15 differ between ages in both mice and patients. Future studies on cachexia should consider the age and strain of mice. Abstract Background: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models. Methods: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26). Tumor size, body and organ weights, fiber cross-sectional area, circulating cachexia biomarkers, and molecular markers of muscle atrophy and adipose tissue wasting are shown. We correlate inflammatory markers and body weight dependent on age in patients with cancer. Results: We note fundamental differences between mouse strains. Aging aggravates weight loss in LLC-injected C57BL/6J mice, drives it in C57BL/6N mice, and does not influence weight loss in C26-injected BALB/c mice. Glucose tolerance is unchanged in cachectic young and old mice. The stress marker GDF15 is elevated in cachectic BALB/c mice independent of age and increased in old C57BL/6N and J mice. Inflammatory markers correlate significantly with weight loss only in young mice and patients. Conclusions: Aging affects cachexia development and progression in mice in a strain-dependent manner and influences the inflammatory profile in both mice and patients. Age is an important factor to consider for future cachexia studies.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Alina A. Walth
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Raúl Terrón Expósito
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Doris Kaltenecker
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Pauline Morigny
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Juliano Machado
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Maike Becker
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Estefania Simoes
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
- Department of Surgery and LIM 26, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (J.D.C.C.L.); (M.S.)
| | - Joanna D. C. C. Lima
- Department of Surgery and LIM 26, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (J.D.C.C.L.); (M.S.)
| | - Carolin Daniel
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
- Chair Molecular Metabolic Control, TUM School of Medicine, Faculty of Medicine, Technical University Munich, 80333 Munich, Germany
| | - Marilia Seelaender
- Department of Surgery and LIM 26, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (J.D.C.C.L.); (M.S.)
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; (J.G.); (A.A.W.); (R.T.E.); (D.K.); (P.M.); (J.M.); (E.S.); (M.B.D.); (S.H.)
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.B.); (C.D.)
- Correspondence:
| |
Collapse
|
7
|
Mohr H, Foscarini A, Steiger K, Ballke S, Rischpler C, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals: preclinical models to improve diagnosis and treatment. EJNMMI Res 2021; 11:121. [PMID: 34894301 PMCID: PMC8665914 DOI: 10.1186/s13550-021-00855-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs), together referred to as PPGLs, are rare chromaffin cell-derived tumors. They require timely diagnosis as this is the only way to achieve a cure through surgery and because of the potentially serious cardiovascular complications and sometimes life-threatening comorbidities that can occur if left untreated. The biochemical diagnosis of PPGLs has improved over the last decades, and the knowledge of the underlying genetics has dramatically increased. In addition to conventional anatomical imaging by CT and MRI for PPGL detection, new functional imaging modalities have emerged as very useful for patient surveillance and stratification for therapy. The availability of validated and predictive animal models of cancer is essential for translating molecular, imaging and therapy response findings from the bench to the bedside. This is especially true for rare tumors, such as PPGLs, for which access to large cohorts of patients is limited. There are few animal models of PPGLs that have been instrumental in refining imaging modalities for early tumor detection, as well as in identifying and evaluating novel imaging tracers holding promise for the detection and/or treatment of human PPGLs. The in vivo PPGL models mainly include xenografts/allografts generated by engrafting rat or mouse cell lines, as no representative human cell line is available. In addition, there is a model of endogenous PCCs (i.e., MENX rats) that was characterized in our laboratory. In this review, we will summarize the contribution that various representative models of PPGL have given to the visualization of these tumors in vivo and we present an example of a tracer first evaluated in MENX rats, and then translated to the detection of these tumors in human patients. In addition, we will illustrate briefly the potential of ex vivo biological imaging of intact adrenal glands in MENX rats.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessia Foscarini
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany. .,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Ballke S, Heid I, Mogler C, Braren R, Schwaiger M, Weichert W, Steiger K. Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted. EJNMMI Res 2021; 11:83. [PMID: 34453623 PMCID: PMC8401369 DOI: 10.1186/s13550-021-00826-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
Correlation of in vivo imaging to histomorphological pathology in animal models requires comparative interdisciplinary expertise of different fields of medicine. From the morphological point of view, there is an urgent need to improve histopathological evaluation in animal model-based research to expedite translation into clinical applications. While different other fields of translational science were standardized over the last years, little was done to improve the pipeline of experimental pathology to ensure reproducibility based on pathological expertise in experimental animal models with respect to defined guidelines and classifications. Additionally, longitudinal analyses of preclinical models often use a variety of imaging methods and much more attention should be drawn to enable for proper co-registration of in vivo imaging methods with the ex vivo morphological read-outs. Here we present the development of the Comparative Experimental Pathology (CEP) unit embedded in the Institute of Pathology of the Technical University of Munich during the Collaborative Research Center 824 (CRC824) funding period together with selected approaches of histomorphological techniques for correlation of in vivo imaging to morphomolecular pathology.
Collapse
Affiliation(s)
- Simone Ballke
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Irina Heid
- School of Medicine, Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Mogler
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rickmer Braren
- School of Medicine, Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Schwaiger
- School of Medicine, Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Mao Y, Ma W, Zhuo R, Ye L, Xu D, Wang W, Ning G, Sun F. COX4I2 is a novel biomarker of blood supply in adrenal tumors. Transl Androl Urol 2021; 10:2899-2909. [PMID: 34430392 PMCID: PMC8350245 DOI: 10.21037/tau-21-229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous study has been reported that COX4I2 expression level demonstrated a positive correlation with microvessel density in pheochromocytomas (PCC) samples, suggesting that the expression of COX4I2 maybe related to blood supply level in other adrenal tumors as well. The aim of this study is to clarify the correlation of COX4I2 expression and blood supply in adrenal tumors. Methods A total of 84 patients were recruited, among which 46 was diagnosed as adrenocortical adenoma (ACA) and 38 was diagnosed as PCC. Contrast-enhanced CT values were used to evaluate the blood supply levels in those patients. The expression of mRNA was examined by quantitative real-time polymerase chain reaction (qPCR) and protein was detected by immunohistochemistry (IHC). Results The COX4I2 expression level in PCC group is significantly higher than that in ACA group (P<0.01). The expression of angiogenesis-related genes EPAS1, VEGFA and KDR mRNA in PCC group is higher than that of ACA group (P<0.05). Correlation analysis shows COX4I2 expression level is correlated with CT values (P<0.001), intraoperative blood loss (P<0.05) and operation time (P<0.05), and the expression of COX4I2 mRNA is correlated with EPAS1, VEGFA and KDR mRNA (P<0.01). Conclusions The results displayed a distinct expression level of COX4I2 between ACA and PCC, suggesting that COX4I2 is a novel biomarker of blood supply in adrenal tumors. This research also opens the possibility for further research on COX4I2 as a novel target for anti-tumor angiogenesis.
Collapse
Affiliation(s)
- Yongxin Mao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenming Ma
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhuo
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|