1
|
Syphers JL, Wright JA, Liu S, Gee YS, Gao F, Mudududdla R, Che DQ, Chang A, Sloan EK, Narasimhan V, Heriot A, Ramsay RG, de Nys R, Silva TN, Vrbanac L, Sammour T, Lawrence MJ, Tin T, Maddern GJ, Fenix K, Kaur H, Barratt K, Kelter G, Maier A, Posch M, Lu H, Wang X, Zhavoronkov A, Wei H, Huang F, Worthley DL, Priebbenow DL, Mukherjee S, Woods SL, Baell JB. Discovery of WEE1 Kinase Inhibitors with Potent Activity against Patient-Derived, Metastatic Colorectal Cancer Organoids. J Med Chem 2025; 68:8065-8090. [PMID: 40207690 DOI: 10.1021/acs.jmedchem.4c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A library of potent WEE1 kinase inhibitors was synthesized based on the discontinued frontrunner clinical candidate AZD1775 (1), many of which were more selective for WEE1 over an undesirable off-target of 1, the kinase PLK1. When tested against patient-derived organoids (PDOs) grown from TP53-mutated colorectal cancer (CRC) peritoneal metastases, 34 (IC50 value of 62 nM) exhibited stronger efficacy than 1 (IC50 value of 120 nM) and the best-in-class clinical candidate ZN-c3 (IC50 value of 127 nM). Against primary CRC PDOs with TP53-WT, 34 significantly enhanced DNA damage, replication stress and apoptosis compared to 1, as well as demonstrated high selectivity over patient-matched normal healthy colon PDOs, highlighting a potential therapeutic window for cancer treatment. Overall, this investigation provides critical insight into several potent WEE1 inhibitors that exhibited exceptional efficacy against CRC PDOs and is the first to utilize a PDO platform to assess their effect on healthy and malignant cell viability.
Collapse
Affiliation(s)
- Joel L Syphers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Josephine A Wright
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Shen Liu
- Hangzhou Baikai Biopharmaceutical Co., Ltd., Suite A1708-09, Building 2, No. 452, Sixth Avenue, Baiyang Street, Qiantang New Zone, Hangzhou, Zhejiang 310000, China
| | - Yi Sing Gee
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fan Gao
- Lyterian Therapeutics, South San Francisco, California 94080, United States
| | - Ramesh Mudududdla
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Da Qing Che
- Zhejiang Jiuzhou Pharmaceutical Co., Ltd., 99 Waisha Road, Taizhou, Zhejiang 318002, China
| | - Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vignesh Narasimhan
- Department of Colorectal Surgery, Monash Health, Melbourne, Victoria 3800, Australia
| | - Alexander Heriot
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallumDepartment of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallumDepartment of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Rebekah de Nys
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Tharindie N Silva
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Tarik Sammour
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Matthew J Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Teresa Tin
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia 5011, Australia
| | - Guy J Maddern
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia 5011, Australia
| | - Kevin Fenix
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia 5011, Australia
| | - Harleen Kaur
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Kate Barratt
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Gerhard Kelter
- Charles River Laboratories Germany GmbH, Am Flughafen 12-14, 79108 Freiburg, Germany
| | - Armin Maier
- Charles River Laboratories Germany GmbH, Am Flughafen 12-14, 79108 Freiburg, Germany
| | - Markus Posch
- Charles River Laboratories Germany GmbH, Am Flughafen 12-14, 79108 Freiburg, Germany
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaomin Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Heping Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Daniel L Worthley
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
- Colonoscopy Clinic, Spring Hill, Queensland 4000, Australia
| | - Daniel L Priebbenow
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Siddhartha Mukherjee
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, United States
| | - Susan L Woods
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Kundu M, Dey A, Dasgupta S. Replication stress response and radioresistance in lung cancer: Mechanistic insights and advanced therapeutic approaches. Curr Probl Cancer 2025; 56:101206. [PMID: 40267631 DOI: 10.1016/j.currproblcancer.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Lung cancer, the leading cause of cancer mortality globally, comprises mainly non-small cell lung cancer and small cell lung cancer. Its pathogenesis involves genetic mutations, environmental exposures, chronic inflammation, and tumor microenvironment interactions. Critical genes like TP53, RB1, KRAS, and EGFR often mutate, driving uncontrolled cell growth. Radiation therapy, a primary treatment, faces challenges with radioresistance due to DNA repair mechanisms and replication stress responses. Emerging therapeutic strategies target DNA repair pathways, cell cycle checkpoints, and immune responses to enhance radiosensitivity and counteract resistance. Promising approaches include PARP inhibitors, CDK inhibitors, EGFR blockers, and immunotherapies combined with radiation. Advances in understanding these mechanisms are crucial for developing targeted therapies to improve lung cancer patient outcomes. The present review focuses on elucidating the intricate mechanisms of lung cancer pathogenesis and radioresistance, while highlighting novel therapeutic strategies designed to overcome these challenges and improve treatment efficacy.
Collapse
Affiliation(s)
- Moumita Kundu
- Center of Multidisciplinary Research and Innovations, Brainware University, Kolkata, West Bengal, India; Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sanjukta Dasgupta
- Center of Multidisciplinary Research and Innovations, Brainware University, Kolkata, West Bengal, India; Department of Biotechnology, Brainware University, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Singh SK, Kauffman N, Lynch IM, Kunt ZM, Zinn KR, Agnew D, Fan J. 212Bi-Macroaggregated Albumin Inhibited Mouse Melanoma Growth by Regulating Cell Cycle Checkpoint Markers Without Promoting Living Cell Repopulation. J Nucl Med 2025:jnumed.124.269190. [PMID: 40180566 DOI: 10.2967/jnumed.124.269190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Radiotherapy using an α-particle emitting radionuclide has emerged as a promising candidate for cancer treatment; however, the efficacy of 212Bi for mouse melanoma treatment has not yet been studied. Here, we evaluated the efficacy of 212Bi-labeled macroaggregated albumin (MAA) in delivering radiation to mouse melanoma cells in vitro and in vivo. Methods: The efficacy of 212Bi efficacy in killing melanoma cells was assessed by in vitro clonogenic and cell survival assays. Immunoblot assays were used to investigate downstream pathways, radioresistance, and epithelial-to-mesenchymal markers. We assessed melanoma cells' repopulation using a conditioned medium (CM; 50%) from 212Bi-MAA-irradiated B16F10 cells. 212Bi-MAA was intratumorally injected in B16F10 melanoma-bearing C57BL/6 mice to study the efficacy, stability, and internal organ toxicity of 212Bi-MAA. Results: 212Bi-MAA effectively killed and inhibited the clonogenic capacity of B16F10 cells. Furthermore, 212Bi-MAA induced the expression of DNA damage (γH2AX) and cell death (cleaved caspase-3) markers, which was at maximum at a dose of 3.7 MBq. Cell cycle checkpoint markers (ATR, Chk1, and Wee1) were also elevated after 212Bi treatment; however, these were reduced at 3.7 MBq compared with 0.93- and 1.85-MBq doses. Minimal to no upregulation of radioresistance (Trex1 and STAT1), cancer stemness (Nanog), and epithelial-mesenchymal transition (E-cadherin, N-cadherin, and Vimentin) markers was found after 212Bi-MAA treatment. CM from 212Bi-MAA-irradiated B16F10 cells did not alter the cell proliferation, colony-forming, and migration capacity of living B16F10 cells. CM did not change epithelial-mesenchymal transition and cell proliferation marker expression. Studies in mice showed that 212Bi-MAA was retained in B16F10 tumors and effectively reduced tumor growth in vivo without causing toxicity. Conclusion: These findings suggested that 212Bi-MAA was an effective therapy for mouse melanoma and did not induce factors that aid melanoma repopulation.
Collapse
Affiliation(s)
- Satyendra Kumar Singh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Nathan Kauffman
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan
| | - Isabelle Maria Lynch
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan
| | - Zeynep Meral Kunt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kurt R Zinn
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Dalen Agnew
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan; and
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan;
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Cereda V, D’Andrea MR. Pancreatic cancer: failures and hopes-a review of new promising treatment approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002299. [PMID: 40124650 PMCID: PMC11926728 DOI: 10.37349/etat.2025.1002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic cancer is a challenging disease with limited treatment options and a high mortality rate. Just few therapy advances have been made in recent years. Tumor microenvironment, immunosuppressive features and mutational status represent important obstacles in the improvement of survival outcomes. Up to now, first-line therapy did achieve a median overall survival of less than 12 months and this discouraging data lead clinicians all over the world to focus their efforts on various fields of investigation: 1) sequential cycling of different systemic therapy in order to overcome mechanisms of resistance; 2) discovery of new predictive bio-markers, in order to target specific patient population; 3) combination treatment, in order to modulate the tumor microenvironment of pancreatic cancer; 4) new modalities of the delivery of drugs in order to pass the physical barrier of desmoplasia and tumor stroma. This review shows future directions of treatment strategies in advanced pancreatic cancer through a deep analysis of these recent macro areas of research.
Collapse
Affiliation(s)
- Vittore Cereda
- Asl Roma 4, Hospital S. Paolo Civitavecchia, 00053 Civitavecchia, Italy
| | | |
Collapse
|
5
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Coquel F, Ho SZ, Tsai KC, Yang CY, Aze A, Devin J, Chang TH, Kong-Hap M, Bioteau A, Moreaux J, Maiorano D, Pourquier P, Yang WC, Lin YL, Pasero P. Synergistic effect of inhibiting CHK2 and DNA replication on cancer cell growth. eLife 2025; 13:RP104718. [PMID: 39887032 PMCID: PMC11785374 DOI: 10.7554/elife.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.
Collapse
Affiliation(s)
- Flavie Coquel
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Sing-Zong Ho
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Keng-Chang Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- National Research Institute of Chinese Medicine, Ministry of Health and WelfareTaipeiTaiwan
| | - Chun-Yen Yang
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
| | - Antoine Aze
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Julie Devin
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Ting-Hsiang Chang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Marie Kong-Hap
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Audrey Bioteau
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jerome Moreaux
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
- Institut Universitaire de FranceParisFrance
- Department of Biological Hematology, CHU MontpellierMontpellierFrance
| | - Domenico Maiorano
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Life Sciences, National Chung-Hsing UniversityTaichungTaiwan
| | - Yea-Lih Lin
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Philippe Pasero
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
7
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
8
|
Chang TY, Yan Y, Yu ZY, Rathore M, Lee NZ, Tseng HJ, Cheng LH, Huang WJ, Zhang W, Chan ER, Qing Y, Kang ML, Wang R, Tsai KK, Pink JJ, Harte WE, Gerson SL, Lee SB. Combined HDAC8 and checkpoint kinase inhibition induces tumor-selective synthetic lethality in preclinical models. J Clin Invest 2024; 134:e165448. [PMID: 39436709 PMCID: PMC11601943 DOI: 10.1172/jci165448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The elevated level of replication stress is an intrinsic characteristic of cancer cells. Targeting the mechanisms that maintain genome stability to further increase replication stress and thus induce severe genome instability has become a promising approach for cancer treatment. Here, we identify histone deacetylase 8 (HDAC8) as a drug target whose inactivation synergizes with the inhibition of checkpoint kinases to elicit substantial replication stress and compromise genome integrity selectively in cancer cells. We showed that simultaneous inhibition of HDAC8 and checkpoint kinases led to extensive replication fork collapse, irreversible cell-cycle arrest, and synergistic vulnerability in various cancer cells. The efficacy of the combination treatment was further validated in patient tumor-derived organoid (PDO) and xenograft mouse (PDX) models, providing important insights into patient-specific drug responses. Our data revealed that HDAC8 activity was essential for reducing the acetylation level of structural maintenance of chromosomes protein 3 (SMC3) ahead of replication forks and preventing R loop formation. HDAC8 inactivation resulted in slowed fork progression and checkpoint kinase activation. Our findings indicate that HDAC8 guards the integrity of the replicating genome, and the cancer-specific synthetic lethality between HDAC8 and checkpoint kinases provides a promising replication stress-targeting strategy for treating a broad range of cancers.
Collapse
Affiliation(s)
- Ting-Yu Chang
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yan Yan
- Case Comprehensive Cancer Center and
| | - Zih-Yao Yu
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Moeez Rathore
- Case Comprehensive Cancer Center and
- Department of Surgery, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Nian-Zhe Lee
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine
- Core Laboratory of Organoids Technology, Office of R&D
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei Zhang
- Case Comprehensive Cancer Center and
- Department of Surgery, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Ernest R. Chan
- Institute for Computational Biology, CWRU School of Medicine, Cleveland, Ohio, USA
| | | | - Ming-Lun Kang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui Wang
- Case Comprehensive Cancer Center and
- Department of Surgery, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine
- Core Laboratory of Organoids Technology, Office of R&D
| | | | | | - Stanton L. Gerson
- Case Comprehensive Cancer Center and
- Department of Medicine, CWRU School of Medicine, Cleveland, Ohio, USA
| | - Sung-Bau Lee
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Dias MH, Friskes A, Wang S, Fernandes Neto JM, van Gemert F, Mourragui S, Papagianni C, Kuiken HJ, Mainardi S, Alvarez-Villanueva D, Lieftink C, Morris B, Dekker A, van Dijk E, Wilms LH, da Silva MS, Jansen RA, Mulero-Sánchez A, Malzer E, Vidal A, Santos C, Salazar R, Wailemann RA, Torres TE, De Conti G, Raaijmakers JA, Snaebjornsson P, Yuan S, Qin W, Kovach JS, Armelin HA, te Riele H, van Oudenaarden A, Jin H, Beijersbergen RL, Villanueva A, Medema RH, Bernards R. Paradoxical Activation of Oncogenic Signaling as a Cancer Treatment Strategy. Cancer Discov 2024; 14:1276-1301. [PMID: 38533987 PMCID: PMC11215412 DOI: 10.1158/2159-8290.cd-23-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress response programs that counteract the inherent toxicity of such aberrant signaling. Although inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of protein phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor-suppressive resistance. Significance: A therapy consisting of deliberate hyperactivation of oncogenic signaling combined with perturbation of the stress responses that result from this is very effective in animal models of colon cancer. Resistance to this therapy is associated with loss of oncogenic signaling and reduced oncogenic capacity, indicative of tumor-suppressive drug resistance.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Joao M. Fernandes Neto
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Frank van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Soufiane Mourragui
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Chrysa Papagianni
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Hendrik J. Kuiken
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Daniel Alvarez-Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ben Morris
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Anna Dekker
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Lieke H.S. Wilms
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marcelo S. da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Antonio Mulero-Sánchez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elke Malzer
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | - Ramón Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain.
| | | | - Thompson E.P. Torres
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Giulia De Conti
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jonne A. Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland.
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., Pasadena, California.
| | - Hugo A. Armelin
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, Brazil.
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands.
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Molecular Carcinogenesis, NKI Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain.
- Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain.
| | - Rene H. Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Wang Y, Xu C, Jiang Y, Tu Z, Yan J, Guo L, Dong C, Liu J, Yang X, Wang Z, Lu T, Feng J, Chen Y. Advanced Design, Synthesis, and Evaluation of Highly Selective Wee1 Inhibitors: Enhancing Pharmacokinetics and Antitumor Efficacy. J Med Chem 2024; 67:9927-9949. [PMID: 38847373 DOI: 10.1021/acs.jmedchem.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Wee1 is a kinase that regulates cell cycle arrest in response to DNA damage. Wee1 inhibition is a potential strategy to suppress the growth of tumors with defective p53 or DNA repair pathways. However, the development of Wee1 inhibitors faces some challenges. AZD1775, the first-in-class Wee1 inhibitor, has poor kinase selectivity and dose-limiting toxicity. Here, we report the discovery of 12h, a highly selective and potent Wee1 inhibitor with a favorable pharmacokinetic profile. 12h showed strong antiproliferative effects against Lovo cells, a colorectal cancer cell line, both in vitro and in vivo. Moreover, 12h showed a clean kinase profile and effectively induced cell apoptosis. Our results suggest that 12h is a promising drug candidate for further development as a novel anticancer agent.
Collapse
Affiliation(s)
- Yong Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Chunyue Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Yiqing Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Zhenlin Tu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Jingxue Yan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Leyi Guo
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Chao Dong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Jiaqi Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Xiulong Yang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Ziyi Wang
- Schcool of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P.R. China
| | - Jie Feng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P.R. China
| |
Collapse
|
12
|
Qian J, Peng M, Li Y, Liu W, Zou X, Chen H, Zhou S, Xiao S, Zhou J. Case report: A germline CHEK1 c.613 + 2T>C leads to a splicing error in a family with multiple cancer patients. Front Oncol 2024; 14:1380093. [PMID: 38686193 PMCID: PMC11056527 DOI: 10.3389/fonc.2024.1380093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Background Genome instability plays a crucial role in promoting tumor development. Germline mutations in genes responsible for DNA repair are often associated with familial cancer syndromes. A noticeable exception is the CHEK1 gene. Despite its well-established role in homologous recombination, germline mutations in CHEK1 are rarely reported. Case presentation In this report, we present a patient diagnosed with ovarian clear cell carcinoma who has a family history of cancer. Her relatives include a grandfather with esophageal cancer, a father with gastric cancer, and an uncle with a brain tumor. The patient carried a typical genomic profile of clear cell carcinoma including mutations in KRAS, PPP2R1A, and PIK3R1. Importantly, her paired peripheral blood cells harbored a germline CHEK1 mutation, CHEK1 exon 6 c.613 + 2T>C, which was also found in her father. Unfortunately, the CHEK1 status of her grandfather and uncle remains unknown due to the unavailability of their specimens. Further evaluation via RT-PCR confirmed a splicing error in the CHEK1 gene, resulting in truncation at the kinase domain region, indicative of a loss-of-function mutation. Conclusion This case highlights a rare germline CHEK1 mutation within a family with a history of cancer. The confirmed splicing error at the mRNA level underscores the functional consequences of this mutation. Documenting such cases is vital for future evaluation of inheritance patterns, clinical penetrance of the mutation, and its association with specific cancer types.
Collapse
Affiliation(s)
- Jun Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Peng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanan Li
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Wei Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinwei Zou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huafei Chen
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sujuan Zhou
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jinhua Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
14
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
15
|
Chao Y, Chen Y, Zheng W, Demanelis K, Liu Y, Connelly JA, Wang H, Li S, Wang QJ. Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer. Oncogene 2024; 43:789-803. [PMID: 38273024 PMCID: PMC11556418 DOI: 10.1038/s41388-024-02939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
WEE1 and CHEK1 (CHK1) kinases are critical regulators of the G2/M cell cycle checkpoint and DNA damage response pathways. The WEE1 inhibitor AZD1775 and the CHK1 inhibitor SRA737 are in clinical trials for various cancers, but have not been thoroughly examined in prostate cancer, particularly castration-resistant (CRPC) and neuroendocrine prostate cancers (NEPC). Our data demonstrated elevated WEE1 and CHK1 expressions in CRPC and NEPC cell lines and patient samples. AZD1775 resulted in rapid and potent cell killing with comparable IC50s across different prostate cancer cell lines, while SRA737 displayed time-dependent progressive cell killing with 10- to 20-fold differences in IC50s. Notably, their combination synergistically reduced the viability of all CRPC cell lines and tumor spheroids in a concentration- and time-dependent manner. Importantly, in a transgenic mouse model of NEPC, both agents alone or in combination suppressed tumor growth, improved overall survival, and reduced the incidence of distant metastases, with SRA737 exhibiting remarkable single agent anticancer activity. Mechanistically, SRA737 synergized with AZD1775 by blocking AZD1775-induced feedback activation of CHK1 in prostate cancer cells, resulting in increased mitotic entry and accumulation of DNA damage. In summary, this preclinical study shows that CHK1 inhibitor SRA737 alone and its combination with AZD1775 offer potential effective treatments for CRPC and NEPC.
Collapse
Affiliation(s)
- Yapeng Chao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuzhou Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wenxiao Zheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn Demanelis
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yu Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jaclyn A Connelly
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Cornejo KM, Hutchinson L, O'Donnell P, Meng X, Tomaszewicz K, Shalin SC, Cassarino DS, Chan MP, Quinn TR, Googe PB, Nazarian RM. Molecular Profiling of Syringocystadenocarcinoma Papilliferum Reveals RAS-Activating Mutations. Arch Pathol Lab Med 2024; 148:215-222. [PMID: 37074845 DOI: 10.5858/arpa.2022-0474-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT.— Syringocystadenocarcinoma papilliferum (SCACP) is a rare adnexal carcinoma and the malignant counterpart of syringocystadenoma papilliferum (SCAP), which is commonly located on the head and neck and may arise in association with a nevus sebaceus. RAS mutations have been identified in both SCAP and nevus sebaceus. OBJECTIVE.— To evaluate the clinicopathologic and molecular features of SCACPs, which have not been previously explored. DESIGN.— We obtained 11 SCACPs from 6 institutions and reviewed the clinicopathologic features. We also performed molecular profiling using next-generation sequencing. RESULTS.— The cohort comprised 6 women and 5 men with ages ranging from 29 to 96 years (mean, 73.6 years). The neoplasms occurred on the head and neck (n = 8; 73%) and extremities (n = 3; 27%). Three tumors possibly arose in a nevus sebaceus. A total of 4 cases showed at least carcinoma in situ (adenocarcinoma, n = 3; squamous cell carcinoma [SCC], n = 1), and 7 cases were invasive (SCC, n = 5; mixed adenocarcinoma + SCC, n = 2). A total of 8 of 11 cases (73%) had hot spot mutations consisting of HRAS (n = 4), KRAS (n = 1), BRAF (n = 1), TP53 (n = 4), ATM (n = 2), FLT3 (n = 1), CDKN2A (n = 1), and PTEN (n = 1). All 4 cases with HRAS mutations occurred on the head and neck, whereas the KRAS mutation occurred on the extremity. CONCLUSIONS.— RAS-activating mutations were detected in 50% of the cases, of which most (80%) involved HRAS and occurred on the head and neck, which shows overlapping features with SCAP, supporting that a subset may arise as a result of malignant transformation and likely an early oncogenic event.
Collapse
Affiliation(s)
- Kristine M Cornejo
- From the Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (Cornejo, Nazarian)
| | - Lloyd Hutchinson
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Patrick O'Donnell
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Xiuling Meng
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Keith Tomaszewicz
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts (Hutchinson, O'Donnell, Meng, Tomaszewicz)
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (Shalin)
| | - David S Cassarino
- Southern California Permanente Medical Group, Sunset Medical Center, Department of Pathology, Los Angeles, California (Cassarino)
| | - May P Chan
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan (Chan)
| | - Timothy R Quinn
- Massachusetts General Physicians Organization Dermatopathology Associates, Newton, Massachusetts (Quinn)
| | - Paul B Googe
- the Department of Dermatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (Googe)
| | - Rosalynn M Nazarian
- From the Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (Cornejo, Nazarian)
| |
Collapse
|
17
|
Dragoi CM, Kaur E, Barr AR, Tyson JJ, Novák B. The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. J Cell Sci 2024; 137:jcs261364. [PMID: 38206091 PMCID: PMC10911285 DOI: 10.1242/jcs.261364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ekjot Kaur
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
18
|
Tran HL, Lai KH, Chang HS, Chen YS, Wang HC, Yang SS, Chang HW, Hsu CM, Yen CH, Hsiao HH. Indigofera suffruticosa aerial parts extract induce G2/M arrest and ATR/CHK1 pathway in Jurkat cells. BMC Complement Med Ther 2024; 24:28. [PMID: 38195460 PMCID: PMC10775588 DOI: 10.1186/s12906-023-04325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, 80708, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shuen-Shin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chin-Mu Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Hui-Hua Hsiao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
19
|
Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, Requirand G, Cartron G, Vincent L, Herbaux C, Lutzmann M, Bret C, Pasero P, Moreaux J, Ovejero S. Combined inhibition of Wee1 and Chk1 as a therapeutic strategy in multiple myeloma. Front Oncol 2023; 13:1271847. [PMID: 38125947 PMCID: PMC10730928 DOI: 10.3389/fonc.2023.1271847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.
Collapse
Affiliation(s)
| | - Laure Dutrieux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | | | - Thibaut Martin
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Djamila Chemlal
- Diag2Tec, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Charles Herbaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Malik Lutzmann
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sara Ovejero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| |
Collapse
|
20
|
Zhao S, Yu N, Wang H, Wan Z, Diao C, Chen Y, Liu T, Yang Y, Gao F, Bai C, Cao K, Cai J. Long non-coding RNA PANDAR promoted radiation and cisplatin-induced DNA damage repair through ATR/CHK1 in NSCLC. J Gene Med 2023; 25:e3565. [PMID: 37460393 DOI: 10.1002/jgm.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND DNA-damaging agents, including radiation and platinum-based chemotherapy, are indispensable treatments for non-small cell lung cancer (NSCLC) patients. However, cancer cells tend to be resistant to both radiation and chemotherapy, thus resulting in treatment failure or recurrence. The purpose of this study was to explore the effect and mechanism of long non-coding RNA (lncRNA) PANDAR (promoter of CDKN1A antisense DNA damage-activated RNA) on NSCLC sensitivity to radiation and chemotherapy. METHODS Cell counting kit (CCK-8), colony formation and flow cytometry were respectively performed to determine the cell cycle and apoptosis of NSCLC cells treated with γ-ray radiation and cisplatin. The extent of DNA damage was evaluated using a comet assay and immunofluorescence staining against γH2AX. In addition, we explored the role of PANDAR in DNA damage response pathways through western blot analysis. Finally, a nude mouse subcutaneous xenograft model was established to assess the sensitivity to radiation and chemotherapy in vivo. RESULTS In cell experiments, PANDAR knockdown can increase the sensitivity of NSCLC cells to radiation and cisplatin. The CCK-8 results showed that cell viability was significantly increased in the overexpression group after radiation and cisplatin treatments. The overexpression group also showed more colonies, less apoptosis and DNA damage, and G2/M phase arrest was aggravated to provide the time necessary for DNA repair. Contrary to PANDAR overexpression, the trends were reversed in the PANDAR knockdown group. Furthermore, PANDAR knockdown inhibited radiation and cisplatin-activated phosphorylation levels of ATR and CHK1 in NSCLC cells. Finally, our in vivo model showed that targeting PANDAR significantly sensitized NSCLC to radiation and cisplatin. CONCLUSION Our study showed that PANDAR knockdown promoted sensitivity to radiation and cisplatin in NSCLC by regulating the ATR/CHK1 pathway, thus providing a novel understanding as well as a therapeutic target for NSCLC treatment. In NSCLC cells, lncRNA PANDAR negatively regulates sensitivity to radiation and cisplatin. PANDAR can promote the repair of radiation and cisplatin-induced DNA damage and activation of the G2/M checkpoint through the ATR/CHK1 pathway. PANDAR knockdown results in defects in DNA damage repair accompanied by more cell apoptosis.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The Second Naval Hospital of Southern Theater Command, Sanya, China
| | - Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chaoyue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Das D, Duncton MAJ, Georgiadis TM, Pellicena P, Clark J, Sobol RW, Georgiadis MM, King-Underwood J, Jobes DV, Chang C, Gao Y, Deacon AM, Wilson DM. A New Drug Discovery Platform: Application to DNA Polymerase Eta and Apurinic/Apyrimidinic Endonuclease 1. Int J Mol Sci 2023; 24:16637. [PMID: 38068959 PMCID: PMC10706420 DOI: 10.3390/ijms242316637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.
Collapse
Affiliation(s)
- Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | | | | | | | - Jennifer Clark
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute and Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology & Laboratory Medicine, Warrant Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Millie M. Georgiadis
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - David V. Jobes
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Mid-Atlantic BioTherapeutics, Inc., Doylestown, PA 18902, USA
| | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashley M. Deacon
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Accelero Biostructures, Inc., San Carlos, CA 94070, USA
| | - David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA 94070, USA
- Biomedical Research Institute, Hasselt University, 3500 Diepenbeek, Belgium
- Belgium & Boost Scientific, 3550 Heusden-Zolder, Belgium
| |
Collapse
|
22
|
Deng M, Tan J, Fan Z, Pham LV, Zhu F, Fang X, Zhao H, Young K, Xu B. The synergy of the XPO1 inhibitors combined with the BET inhibitor INCB057643 in high-grade B-cell lymphoma via downregulation of MYC expression. Sci Rep 2023; 13:18554. [PMID: 37899423 PMCID: PMC10613613 DOI: 10.1038/s41598-023-45721-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
High grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-DH) represents an uncommon B-cell lymphoma (BCL) with aggressive clinical courses and poor prognosis. Despite revolutionary therapeutic advances in BCL, there has been limited treatment progress in HGBCL-DH, thus necessitating additional therapeutic strategies for HGBCL-DH. This study demonstrated that the BET antagonist INCB057643 synergized with the XPO1 inhibitors (selinexor and eltanexor) to decrease cell viability and increase cell apoptosis in HGBCL-DH cells with or without TP53 mutations. As anticipated, the combined treatment of INCB057643 with selinexor slowed tumor growth and reduced the tumor burden in TP53-mutated HGBCL-DH xenografts. Mechanistically, MYC functional inhibition was a potential molecular mechanism underlying the synergy of the combined INCB057643 and selinexor treatment in HGBCL-DH cells independent of TP53 mutation status. In TP53 mutated HGBCL-DH cells, inducing DNA damage and impairing the DNA damage response (DDR) were involved in the therapeutic interaction of the combined regimen. In TP53 wild-type cells, the molecular mechanism was linked with upregulation of p53 levels and activation of its targeted pathways, rather than dysregulation of the DDR. Collectively, we might provide a potential promising combination therapy regimen for the management of HGBCL-DH. Clinical evaluations are warranted to confirm this conclusion.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Ziying Fan
- Department of Hematology, Dongguan People's Hospital, Dongguan, 523000, China
| | - Lan V Pham
- Phamacyclics, an Abbvie Company, San Francisco, CA, USA
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Kenh Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
23
|
Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Future Med Chem 2023; 15:1807-1818. [PMID: 37877252 DOI: 10.4155/fmc-2023-0164] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Molecular profiling has contributed to a new classification of lung cancer, driving advancements in research and therapy. The ataxia telangiectasia and rad3/checkpoint kinase 1 (ATR/CHK1) pathway plays a crucial role in maintaining genomic stability, and its activation has been linked to the development of lung cancer, drug resistance and poor prognosis. Clinical and preclinical studies have demonstrated promising results in targeting this pathway. ATR and CHK1 are proteins that collaborate to repair DNA damage caused by radiation or chemotherapy. ATR/CHK1 inhibitors are currently under investigation in preclinical and clinical trials. This article explores the ATR/CHK1 pathway and its potential for treating lung cancer.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P., India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University Dehradun, 248007, India
| |
Collapse
|
24
|
Petroni M, La Monica V, Fabretti F, Augusto M, Battaglini D, Polonara F, Di Giulio S, Giannini G. The Multiple Faces of the MRN Complex: Roles in Medulloblastoma and Beyond. Cancers (Basel) 2023; 15:3599. [PMID: 37509263 PMCID: PMC10377613 DOI: 10.3390/cancers15143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Veronica La Monica
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Mariaconcetta Augusto
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Damiana Battaglini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Polonara
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
25
|
Richardson DL, Eskander RN, O'Malley DM. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance: A Narrative Review. JAMA Oncol 2023; 9:851-859. [PMID: 37079311 DOI: 10.1001/jamaoncol.2023.0197] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Importance Platinum-based chemotherapy has been the standard of care for ovarian cancer for the past 3 decades. Although most patients respond to platinum-based treatment, emergence of platinum resistance in recurrent ovarian cancer is inevitable during the disease course. Outcomes for patients with platinum-resistant ovarian cancer are poor, and options remain limited, highlighting a substantial unmet need for new treatment options. Observations This review summarizes the current and evolving treatment landscape for platinum-resistant ovarian cancer with a focus on the development of novel compounds. Biologic and targeted therapies such as bevacizumab and poly (ADP-ribose) polymerase (PARP) inhibitors-originally approved in the platinum-resistant setting but since withdrawn-are now used in the up-front or platinum-sensitive setting, prolonging the duration of platinum sensitivity and delaying the use of nonplatinum options. The greater use of maintenance therapy and the emphasis on using platinum beyond first-line treatment has most likely been associated with a greater number of lines of platinum therapy before a patient is designated as having platinum-resistant ovarian cancer. In this contemporary setting, recent trials in platinum-resistant ovarian cancer have mostly had negative outcomes, with none having a clinically significant effect on progression-free or overall survival since the approval of bevacizumab in combination with chemotherapy. Nonetheless, a multitude of new therapies are under evaluation; preliminary results are encouraging. A focus on biomarker-directed treatment and patient selection may provide greater success in identifying novel therapies for treating platinum-resistant ovarian cancer. Conclusions and Relevance Although many clinical trials in platinum-resistant ovarian cancer have had negative outcomes, these failures provide insights into how clinical trial design, biomarker-directed therapy, and patient selection could facilitate future successes in platinum-resistant ovarian cancer treatment.
Collapse
Affiliation(s)
- Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, UC San Diego Health, La Jolla
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, Columbus
| |
Collapse
|
26
|
Svobodova B, Pulkrabkova L, Panek D, Misiachna A, Kolcheva M, Andrys R, Handl J, Capek J, Nyvltova P, Rousar T, Prchal L, Hepnarova V, Hrabinova M, Muckova L, Tosnerova D, Karabanovich G, Finger V, Soukup O, Horak M, Korabecny J. Structure-Guided Design of N-Methylpropargylamino-Quinazoline Derivatives as Multipotent Agents for the Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119124. [PMID: 37298087 DOI: 10.3390/ijms24119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.
Collapse
Affiliation(s)
- Barbora Svobodova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Pulkrabkova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Dawid Panek
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Misiachna
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague, Czech Republic
| | - Marharyta Kolcheva
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniela Tosnerova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Galina Karabanovich
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vladimir Finger
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
28
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
29
|
Yuan S, Zuo W, Liu T, Fu H. The Therapeutic Synergy of Selinexor and Venetoclax in Mantle Cell Lymphoma Through Induction of DNA Damage and Perturbation of the DNA Damage Response. Technol Cancer Res Treat 2023; 22:15330338231208608. [PMID: 37880950 PMCID: PMC10605683 DOI: 10.1177/15330338231208608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Introduction: Mantle cell lymphoma (MCL) can be stratified into blastoid and classical subtypes based on morphological features, with the former subtype having a poorer prognosis. Despite recent advances in targeted approaches, including multiple bruton tyrosine kinase inhibitors which yield impressive clinical responses and improve prognoses, MCL remains an incurable disease with frequent relapses. Additional therapeutic interventions are therefore unmet medical needs for the management of patients with MCL. Methods: Cell viability and apoptosis assays were employed to analyze the therapeutic interaction of venetoclax combined with selinexor in MCL cells. Western blot was used to investigate the potential mechanism of action for the synergy of venetoclax in combination with selinexor in MCL cells. Results: In this study, we revealed that both blastoid and classical MCL cells were vulnerable to the cytotoxic effects of selinexor, a well-established XPO1 inhibitor, manifested by loss of cell viability and induction of cell apoptosis. Moreover, our data indicated that the addition of venetoclax to selinexor showed synergistically decreased cell viabilities and increased cell deaths in blastoid and classical MCL cells compared to each single drug treatment. Either selinexor or venetoclax treatment alone decreased MCL1 expressions and increased BAX levels in MCL cells, and these effects were further enhanced by their combined regimen. Mechanistically, our findings demonstrated that induction of DNA damage and inactivation of DNA damage response were involved in the synergistic interaction of the drug combination regimen. Conclusion: Collectively, this study might provide a potential attractive therapy option for the treatment of MCL. However, the conclusion needs additional experimental validation in in vivo models and clinical evaluations are mandatory.
Collapse
Affiliation(s)
- Sheng Yuan
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wei Zuo
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Huan Fu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Low-molecular-weight cyclin E deregulates DNA replication and damage repair to promote genomic instability in breast cancer. Oncogene 2022; 41:5331-5346. [PMID: 36344674 PMCID: PMC9742291 DOI: 10.1038/s41388-022-02527-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight cyclin E (LMW-E) is an N-terminus deleted (40 amino acid) form of cyclin E detected in breast cancer, but not in normal cells or tissues. LMW-E overexpression predicts poor survival in breast cancer patients independent of tumor proliferation rate, but the oncogenic mechanism of LMW-E and its unique function(s) independent of full-length cyclin E (FL-cycE) remain unclear. In the current study, we found LMW-E was associated with genomic instability in early-stage breast tumors (n = 725) and promoted genomic instability in human mammary epithelial cells (hMECs). Mechanistically, FL-cycE overexpression inhibited the proliferation of hMECs by replication stress and DNA damage accumulation, but LMW-E facilitated replication stress tolerance by upregulating DNA replication and damage repair. Specifically, LMW-E interacted with chromatin and upregulated the loading of minichromosome maintenance complex proteins (MCMs) in a CDC6 dependent manner and promoted DNA repair in a RAD51- and C17orf53-dependent manner. Targeting the ATR-CHK1-RAD51 pathway with ATR inhibitor (ceralasertib), CHK1 inhibitor (rabusertib), or RAD51 inhibitor (B02) significantly decreased the viability of LMW-E-overexpressing hMECs and breast cancer cells. Collectively, our findings delineate a novel role for LMW-E in tumorigenesis mediated by replication stress tolerance and genomic instability, providing novel therapeutic strategies for LMW-E-overexpressing breast cancers.
Collapse
|
31
|
Ahmed S, Alam W, Aschner M, Alsharif KF, Albrakati A, Saso L, Khan H. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomed Pharmacother 2022; 155:113797. [PMID: 36271573 PMCID: PMC9590097 DOI: 10.1016/j.biopha.2022.113797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer is one of the most severe medical conditions in the world, causing millions of deaths each year. Chemotherapy and radiotherapy are critical for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer requires novel efficacious treatment modalities. Natural remedies offer feasible alternative options against malignancy in contrast to available synthetic medication. Selective killing of cancer cells is privileged mainstream in cancer treatment, and targeted therapy represents the new tool with the potential to pursue this aim. The discovery of innovative therapies targeting essential components of DNA damage signaling and repair pathways such as ataxia telangiectasia mutated and Rad3 related Checkpoint kinase 1 (ATR-CHK1)has offered a possibility of significant therapeutic improvement in oncology. The activation and inhibition of this pathway account for chemopreventive and chemotherapeutic activity, respectively. Targeting this pathway can also aid to overcome the resistance of conventional chemo- or radiotherapy. This review enlightens the anticancer role of natural products by ATR-CHK1 activation and inhibition. Additionally, these compounds have been shown to have chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Ideally, this review will trigger interest in natural products targeting ATR-CHK1 and their potential efficacy and safety as cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, Rome 00185, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
32
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
33
|
Hamidi M, Eriz A, Mitxelena J, Fernandez-Ares L, Aurrekoetxea I, Aspichueta P, Iglesias-Ara A, Zubiaga AM. Targeting E2F Sensitizes Prostate Cancer Cells to Drug-Induced Replication Stress by Promoting Unscheduled CDK1 Activity. Cancers (Basel) 2022; 14:cancers14194952. [PMID: 36230876 PMCID: PMC9564059 DOI: 10.3390/cancers14194952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary E2F1 and E2F2 are highly expressed in many cancer types, but their contribution to malignancy is not well understood. Here we aimed to define the impact of E2F1/E2F2 deregulation in prostate cancer. We show that inhibition of E2F sensitizes prostate cancer cells to drug-induced replication stress and cell death. We found that E2F target genes involved in nucleotide biosynthesis contribute to maintaining genome stability in prostate cancer cells, but their enzymatic activity is insufficient to prevent replication stress after E2F1/E2F2 depletion. Instead, E2F1/E2F2 hinder premature CDK1 activation during S phase, which is key to ensure genome stability and viability of prostate cancer cells. From a therapeutic perspective, inhibiting E2F activity provokes catastrophic levels of replication stress and blunts xenograft growth in combination with drugs targeting nucleotide biosynthesis or DNA repair. Our results highlight the suitability of targeting E2F for the treatment of prostate cancer. Abstract E2F1/E2F2 expression correlates with malignancy in prostate cancer (PCa), but its functional significance remains unresolved. To define the mechanisms governed by E2F in PCa, we analyzed the contribution of E2F target genes to the control of genome integrity, and the impact of modulating E2F activity on PCa progression. We show that silencing or inhibiting E2F1/E2F2 induces DNA damage during S phase and potentiates 5-FU-induced replication stress and cellular toxicity. Inhibition of E2F downregulates the expression of E2F targets involved in nucleotide biosynthesis (TK1, DCK, TYMS), whose expression is upregulated by 5-FU. However, their enzymatic products failed to rescue DNA damage of E2F1/E2F2 knockdown cells, suggesting additional mechanisms for E2F function. Interestingly, targeting E2F1/E2F2 in PCa cells reduced WEE1 expression and resulted in premature CDK1 activation during S phase. Inhibition of CDK1/CDK2 prevented DNA damage induced by E2F loss, suggesting that E2F1/E2F2 safeguard genome integrity by restraining CDK1/CDK2 activity. Importantly, combined inhibition of E2F and ATR boosted replication stress and dramatically reduced tumorigenic capacity of PCa cells in xenografts. Collectively, inhibition of E2F in combination with drugs targeting nucleotide biosynthesis or DNA repair is a promising strategy to provoke catastrophic levels of replication stress that could be applied to PCa treatment.
Collapse
Affiliation(s)
- Mohaddase Hamidi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Ainhoa Eriz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Larraitz Fernandez-Ares
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48080 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (A.I.-A.); (A.M.Z.); Tel.: +34-94-601-5799 (A.I.-A.); +34-94-601-2603 (A.M.Z.); Fax: +34-94-601-3143 (A.M.Z.)
| |
Collapse
|
34
|
Carlsen L, El-Deiry WS. Anti-cancer immune responses to DNA damage response inhibitors: Molecular mechanisms and progress toward clinical translation. Front Oncol 2022; 12:998388. [PMID: 36276148 PMCID: PMC9583871 DOI: 10.3389/fonc.2022.998388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage response inhibitors are widely used anti-cancer agents that have potent activity against tumor cells with deficiencies in various DNA damage response proteins such as BRCA1/2. Inhibition of other proteins in this pathway including PARP, DNA-PK, WEE1, CHK1/2, ATR, or ATM can sensitize cancer cells to radiotherapy and chemotherapy, and such combinations are currently being tested in clinical trials for treatment of many malignancies including breast, ovarian, rectal, and lung cancer. Unrepaired DNA damage induced by DNA damage response inhibitors alone or in combination with radio- or chemotherapy has a direct cytotoxic effect on cancer cells and can also engage anti-cancer innate and adaptive immune responses. DNA damage-induced immune stimulation occurs by a variety of mechanisms including by the cGAS/STING pathway, STAT1 and downstream TRAIL pathway activation, and direct immune cell activation. Whether or not the relative contribution of these mechanisms varies after treatment with different DNA damage response inhibitors or across cancers with different genetic aberrations in DNA damage response enzymes is not well-characterized, limiting the design of optimal combinations with radio- and chemotherapy. Here, we review how the inhibition of key DNA damage response enzymes including PARP, DNA-PK, WEE1, CHK1/2, ATR, and ATM induces innate and adaptive immune responses alone or in combination with radiotherapy, chemotherapy, and/or immunotherapy. We also discuss current progress in the clinical translation of immunostimulatory DNA-damaging treatment regimens and necessary future directions to optimize the immune-sensitizing potential of DNA damage response inhibitors.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry,
| |
Collapse
|
35
|
7-Azaindole, 2,7-diazaindole, and 1H-pyrazole as core structures for novel anticancer agents with potential chemosensitizing properties. Eur J Med Chem 2022; 240:114580. [DOI: 10.1016/j.ejmech.2022.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
|
36
|
Multi-Level Control of the ATM/ATR-CHK1 Axis by the Transcription Factor E4F1 in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23169217. [PMID: 36012478 PMCID: PMC9409040 DOI: 10.3390/ijms23169217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
E4F1 is essential for early embryonic mouse development and for controlling the balance between proliferation and survival of actively dividing cells. We previously reported that E4F1 is essential for the survival of murine p53-deficient cancer cells by controlling the expression of genes involved in mitochondria functions and metabolism, and in cell-cycle checkpoints, including CHEK1, a major component of the DNA damage and replication stress responses. Here, combining ChIP-Seq and RNA-Seq approaches, we identified the transcriptional program directly controlled by E4F1 in Human Triple-Negative Breast Cancer cells (TNBC). E4F1 binds and regulates a limited list of direct target genes (57 genes) in these cells, including the human CHEK1 gene and, surprisingly, also two other genes encoding post-transcriptional regulators of the ATM/ATR-CHK1 axis, namely, the TTT complex component TTI2 and the phosphatase PPP5C, that are essential for the folding and stability, and the signaling of ATM/ATR kinases, respectively. Importantly, E4F1 also binds the promoter of these genes in vivo in Primary Derived Xenograft (PDX) of human TNBC. Consequently, the protein levels and signaling of CHK1 but also of ATM/ATR kinases are strongly downregulated in E4F1-depleted TNBC cells resulting in a deficiency of the DNA damage and replicative stress response in these cells. The E4F1-depleted cells fail to arrest into S-phase upon treatment with the replication-stalling agent Gemcitabine, and are highly sensitized to this drug, as well as to other DNA-damaging agents, such as Cisplatin. Altogether, our data indicate that in breast cancer cells the ATM/ATR-CHK1 signaling pathway and DNA damage-stress response are tightly controlled at the transcriptional and post-transcriptional level by E4F1.
Collapse
|
37
|
Martin JC, Sims JR, Gupta A, Bakin AV, Ohm JE. WEE1 inhibition augments CDC7 (DDK) inhibitor-induced cell death in Ewing sarcoma by forcing premature mitotic entry and mitotic catastrophe. CANCER RESEARCH COMMUNICATIONS 2022; 2:471-482. [PMID: 36338546 PMCID: PMC9635308 DOI: 10.1158/2767-9764.crc-22-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Ewing sarcoma is an aggressive childhood cancer for which treatment options remain limited and toxic. There is an urgent need for the identification of novel therapeutic strategies. Our group has recently shown that Ewing cells rely on the S-phase kinase CDC7 (DDK) to maintain replication rates and cell viability and that DDK inhibition causes an increase in the phosphorylation of CDK1 and a significant delay in mitotic entry. Here, we expand on our previous findings and show that DDK inhibitor-induced mitotic entry delay is dependent upon WEE1 kinase. Specifically, WEE1 phosphorylates CDK1 and prevents mitotic entry upon DDK inhibition due to the presence of under-replicated DNA, potentially limiting the cytotoxic effects of DDK inhibition. To overcome this, we combined the inhibition of DDK with the inhibition of WEE1 and found that this results in elevated levels of premature mitotic entry, mitotic catastrophe, and apoptosis. Importantly, we have found that DDK and WEE1 inhibitors display a synergistic relationship with regards to reducing cell viability of Ewing sarcoma cells. Interestingly, the cytotoxic nature of this combination can be suppressed by the inhibition of CDK1 or microtubule polymerization, indicating that mitotic progression is required to elicit the cytotoxic effects. This is the first study to display the potential of utilizing the combined inhibition of DDK and WEE1 for the treatment of cancer. We believe this will offer a potential therapeutic strategy for the treatment of Ewing sarcoma as well as other tumor types that display sensitivity to DDK inhibitors.
Collapse
Affiliation(s)
- Jeffrey C. Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jennie R. Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
38
|
Yang M, Wang C, Zhou M, Bao L, Wang Y, Kumar A, Xing C, Luo W, Wang Y. KDM6B promotes PARthanatos via suppression of O6-methylguanine DNA methyltransferase repair and sustained checkpoint response. Nucleic Acids Res 2022; 50:6313-6331. [PMID: 35648484 PMCID: PMC9226499 DOI: 10.1093/nar/gkac471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chenliang Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Bao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Peter O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
40
|
Massey AJ. Chk1 inhibitor-induced DNA damage increases BFL1 and decreases BIM but does not protect human cancer cell lines from Chk1 inhibitor-induced apoptosis. Am J Cancer Res 2022; 12:2293-2309. [PMID: 35693081 PMCID: PMC9185625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
V158411 is a potent, selective Chk1 inhibitor currently in pre-clinical development. We utilised RNA-sequencing to evaluate the gene responses to V158411 treatment. BCL2A1 was highly upregulated in U2OS cells in response to V158411 treatment with BCL2A1 mRNA increased > 400-fold in U2OS but not HT29 cells. Inhibitors of Chk1, Wee1 and topoisomerases but not other DNA damaging agents or inhibitors of ATR, ATM or DNA-PKcs increased BFL1 and decreased BIM protein. Increased BFL1 appeared limited to a subset of approximately 35% of U2OS cells. Out of 24 cell lines studied, U2OS cells were unique in being the only cell line with low basal BFL1 levels to be increased in response to DNA damage. Induction of BFL1 in U2OS cells appeared dependent on PI3K/AKT/mTOR/MEK pathway signalling but independent of NF-κB transcription factors. Inhibitors of MEK, mTOR and PI3K effectively blocked the increase in BFL1 following V15841 treatment. Increased BFL1 expression did not block apoptosis in U2OS cells in response to V158411 treatment and cells with high basal expression of BFL1 readily underwent caspase-dependent apoptosis following Chk1 inhibitor therapy. BFL1 induction in response to Chk1 inhibition appeared to be a rare event that was dependent on MEK/PI3K/AKT/mTOR signalling.
Collapse
|
41
|
Maresca L, Stecca B, Carrassa L. Novel Therapeutic Approaches with DNA Damage Response Inhibitors for Melanoma Treatment. Cells 2022; 11:1466. [PMID: 35563772 PMCID: PMC9099918 DOI: 10.3390/cells11091466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies against components of the mitogen-activated protein kinase (MAPK) pathway and immunotherapies, which block immune checkpoints, have shown important clinical benefits in melanoma patients. However, most patients develop resistance, with consequent disease relapse. Therefore, there is a need to identify novel therapeutic approaches for patients who are resistant or do not respond to the current targeted and immune therapies. Melanoma is characterized by homologous recombination (HR) and DNA damage response (DDR) gene mutations and by high replicative stress, which increase the endogenous DNA damage, leading to the activation of DDR. In this review, we will discuss the current experimental evidence on how DDR can be exploited therapeutically in melanoma. Specifically, we will focus on PARP, ATM, CHK1, WEE1 and ATR inhibitors, for which preclinical data as single agents, taking advantage of synthetic lethal interactions, and in combination with chemo-targeted-immunotherapy, have been growing in melanoma, encouraging the ongoing clinical trials. The overviewed data are suggestive of considering DDR inhibitors as a valid therapeutic approach, which may positively impact the future of melanoma treatment.
Collapse
Affiliation(s)
- Luisa Maresca
- Tumor Cell Biology Unit, Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), Viale Gaetano Pieraccini 6, 50139 Florence, Italy;
| | - Barbara Stecca
- Tumor Cell Biology Unit, Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), Viale Gaetano Pieraccini 6, 50139 Florence, Italy;
| | - Laura Carrassa
- Fondazione Cesalpino, Arezzo Hospital, USL Toscana Sud-Est, Via Pietro Nenni 20, 52100 Arezzo, Italy
| |
Collapse
|
42
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
43
|
Gupta N, Huang TT, Horibata S, Lee JM. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Pharmacol Res 2022; 178:106162. [PMID: 35259479 PMCID: PMC9026671 DOI: 10.1016/j.phrs.2022.106162] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have become a mainstay of therapy in ovarian cancer and other malignancies, including BRCA-mutant breast, prostate, and pancreatic cancers. However, a growing number of patients develop resistance to PARPis, highlighting the need to further understand the mechanisms of PARPi resistance and develop effective treatment strategies. Targeting cell cycle checkpoint protein kinases, e.g., ATR, CHK1, and WEE1, which are upregulated in response to replication stress, represents one such therapeutic approach for PARPi-resistant cancers. Mechanistically, activated cell cycle checkpoints promote cell cycle arrest, replication fork stabilization, and DNA repair, demonstrating the interplay of DNA repair proteins with replication stress in the development of PARPi resistance. Inhibitors of these cell cycle checkpoints are under investigation in PARPi-resistant ovarian and other cancers. In this review, we discuss the cell cycle checkpoints and their roles beyond mere cell cycle regulation as part of the arsenal to overcome PARPi-resistant cancers. We also address the current status and recent advancements as well as limitations of cell cycle checkpoint inhibitors in clinical trials.
Collapse
Affiliation(s)
- Nitasha Gupta
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Pokhrel N, Genin O, Sela-Donenfeld D, Cinnamon Y. HREM, RNAseq and Cell Cycle Analyses Reveal the Role of the G2/M-Regulatory Protein, WEE1, on the Survivability of Chicken Embryos during Diapause. Biomedicines 2022; 10:779. [PMID: 35453529 PMCID: PMC9033001 DOI: 10.3390/biomedicines10040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Avian blastoderm can enter into diapause when kept at low temperatures and successfully resume development (SRD) when re-incubated in body temperature. These abilities, which are largely affected by the temperature and duration of the diapause, are poorly understood at the cellular and molecular level. To determine how temperature affects embryonic morphology during diapause, high-resolution episcopic microscopy (HREM) analysis was utilized. While blastoderms diapausing at 12 °C for 28 days presented typical cytoarchitecture, similar to non-diapaused embryos, at 18 °C, much thicker blastoderms with higher cell number were observed. RNAseq was conducted to discover the genes underlying these phenotypes, revealing differentially expressed cell cycle regulatory genes. Among them, WEE1, a negative regulator of G2/M transition, was highly expressed at 12 °C compared to 18 °C. This finding suggested that cells at 12 °C are arrested at the G2/M phase, as supported by bromodeoxyuridine incorporation (BrdU) assay and phospho-histone H3 (pH 3) immunostaining. Inhibition of WEE1 during diapause at 12 °C resulted in cell cycle progression beyond the G2/M and augmented tissue volume, resembling the morphology of 18 °C-diapaused embryos. These findings suggest that diapause at low temperatures leads to WEE1 upregulation, which arrests the cell cycle at the G2/M phase, promoting the perseverance of embryonic cytoarchitecture and future SRD. In contrast, WEE1 is not upregulated during diapause at higher temperature, leading to continuous proliferation and maladaptive morphology associated with poor survivability. Combining HREM-based analysis with RNAseq and molecular manipulations, we present a novel mechanism that regulates the ability of diapaused avian embryos to maintain their cytoarchitecture via cell cycle arrest, which enables their SRD.
Collapse
Affiliation(s)
- Narayan Pokhrel
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Olga Genin
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
| | - Dalit Sela-Donenfeld
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
| |
Collapse
|
45
|
Su J, Huang Y, Wang Y, Li R, Deng W, Zhang H, Xiong H. CPNE1 is a potential prognostic biomarker, associated with immune infiltrates and promotes progression of hepatocellular carcinoma. Cancer Cell Int 2022; 22:67. [PMID: 35139863 PMCID: PMC8826718 DOI: 10.1186/s12935-022-02485-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Copine1 (CPNE1), the first discovered CPNE1 family member, participates in the process of carcinogenesis and development of diverse tumors. Our study aimed to investigate the expression and prognostic value of CPNE1 gene in hepatocellular carcinoma (HCC), to explore its functional network in HCC and its effects on biological behaviors. METHODS HCCDB, CCLE, HPA and LinkedOmics online databases were used to explore the expression of CPNE1 gene and analyze the co-expression network of CPNE1 in hepatocellular carcinoma. Gene set enrichment analysis (GSEA) was used for GO functional annotation, KEGG pathway enrichment analysis and regulators of CPNE1 networks in LIHC. HepG2 and MHCC-97H cells were selected to construct CPNE1 knockdown cell lines by transfection with siRNA, and Hep3B cell was selected to construct CPNE1 overexpression cell line by transfection with plasmid. The effect of CPNE1 on the proliferation of hepatocellular carcinoma cells was examined by CCK8 assay and clone formation assay; the effect of CPNE1 on the migration ability of hepatocellular carcinoma cells was assessed by cell scratch assay and Transwell cell migration assay; finally, the expression of related signaling pathway proteins was examined by Western Blot. The correlation of CPNE1 expression with immune infiltration and immune checkpoint molecules in HCC tissues was analyzed using TIMER online database and GSEA. RESULTS CPNE1 was highly expressed in HCC tissues and significantly correlated with sex, age, cancer stage and tumor grade. Overall survival (OS) was significantly lower in patients with high CPNE1 expression than in patients with low CPNE1 expression, and CPNE1 could be used as an independent prognostic indicator for HCC. Knockdown of CPNE1 gene inhibited the AKT/P53 pathway, resulting in decreased proliferation, migration and invasion of HCC cells. Overexpression of CPNE1 gene showed the opposite results. The level of CPNE1 expression in HCC was significantly and positively correlated with the level of infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (P < 0.001). GSEA results also showed that CPNE1 of LIHC was involved in some immune response regulating signaling pathways. CONCLUSIONS Our study firstly found the expression of CPNE1 was significantly higher in LIHC tissues than in normal liver tissues, and high CPNE1 expression was associated with poor prognosis. In addition, we identified the possible mechanism by which CPNE1 functioned in LIHC. CPNE1 influenced AKT/P53 pathway activation and LIHC cell proliferation and migration. There was a significant correlation between CPNE1 expression and tumor immune infiltration in LIHC.
Collapse
Affiliation(s)
- Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjun Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Hayashi R, Inomata M. Small cell lung cancer; recent advances of its biology and therapeutic perspective. Respir Investig 2021; 60:197-204. [PMID: 34896039 DOI: 10.1016/j.resinv.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022]
Abstract
Lung cancer is historically divided into two major categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). While the therapeutic efficacy of NSCLC has improved due to the development of molecular targeted therapy and immune checkpoint inhibitors (ICIs) treatment, there has been very slow progress in the therapeutic advances of SCLC. Since SCLC is a deadly disease with rapid progression and early metastasis and comprises approximately 10% of lung cancer cases, more attention should be given to the therapeutic strategy for SCLC. Most SCLC cases respond to cytotoxic drugs, cisplatin, and etoposide. The objective response rate to the standard regimen is reported to be approximately 70% that is sufficient as standard therapy. However, almost all tumors recur and become refractory to chemotherapy which is the most important problem of this deadly disease. Recently, for the first time in several decades, ICIs have changed the standard therapy for SCLC. It must be emphasized that although ICIs paved the new way for SCLC therapy, more precise and effective therapy for SCLC is desired. Unfortunately, precise molecular mechanisms of SCLC are yet to be understood. Recent elaborate studies on the cell biology of SCLC uncovered several important aspects of molecular mechanisms. Gene profiling of cancer cells can be done using modern technology like next-generation sequencing (NGS). In this minireview, we describe the advances of modern technology in SCLC research and consider future therapeutic strategies based on the molecular mechanisms of SCLC.
Collapse
Affiliation(s)
- Ryuji Hayashi
- Clinical Oncology, Toyama University Hospital, Sugitani 2630, Toyama, 930-0194, Japan.
| | - Minehiko Inomata
- 1(st) Department of Internal Medicine, Toyama University Hospital, Sugitani 2630, Toyama, 930-0194, Japan
| |
Collapse
|
47
|
Parsels LA, Zhang Q, Karnak D, Parsels JD, Lam K, Willers H, Green MD, Rehemtulla A, Lawrence TS, Morgan MA. Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. Int J Radiat Oncol Biol Phys 2021; 111:e38-e53. [PMID: 34348175 PMCID: PMC8602768 DOI: 10.1016/j.ijrobp.2021.07.1708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Combination therapies with agents targeting the DNA damage response (DDR) offer an opportunity to selectively enhance the therapeutic index of chemoradiation or eliminate use of chemotherapy altogether. The successful translation of DDR inhibitors to clinical use requires investigating both their direct actions as (chemo)radiosensitizers and their potential to stimulate tumor immunogenicity. Beginning with high-throughput screening using both viability and DNA damage-reporter assays, followed by validation in gold-standard radiation colony-forming assays and in vitro assessment of mechanistic effects on the DDR, we describe proven strategies and methods leading to the clinical development of DDR inhibitors both with radiation alone and in combination with chemoradiation. Beyond these in vitro studies, we discuss the impact of key features of human xenograft and syngeneic mouse models on the relevance of in vivo tumor efficacy studies, particularly with regard to the immunogenic effects of combined therapy with radiation and DDR inhibitors. Finally, we describe recent technological advances in radiation delivery (using the small animal radiation research platform) that allow for conformal, clinically relevant radiation therapy in mouse models. This overall approach is critical to the successful clinical development and ultimate Food and Drug Administration approval of DDR inhibitors as (chemo)radiation sensitizers.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Kwok Lam
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
48
|
Wilson DM, Duncton MAJ, Chang C, Lee Luo C, Georgiadis TM, Pellicena P, Deacon AM, Gao Y, Das D. Early Drug Discovery and Development of Novel Cancer Therapeutics Targeting DNA Polymerase Eta (POLH). Front Oncol 2021; 11:778925. [PMID: 34900730 PMCID: PMC8653755 DOI: 10.3389/fonc.2021.778925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polymerase eta (or Pol η or POLH) is a specialized DNA polymerase that is able to bypass certain blocking lesions, such as those generated by ultraviolet radiation (UVR) or cisplatin, and is deployed to replication foci for translesion synthesis as part of the DNA damage response (DDR). Inherited defects in the gene encoding POLH (a.k.a., XPV) are associated with the rare, sun-sensitive, cancer-prone disorder, xeroderma pigmentosum, owing to the enzyme's ability to accurately bypass UVR-induced thymine dimers. In standard-of-care cancer therapies involving platinum-based clinical agents, e.g., cisplatin or oxaliplatin, POLH can bypass platinum-DNA adducts, negating benefits of the treatment and enabling drug resistance. POLH inhibition can sensitize cells to platinum-based chemotherapies, and the polymerase has also been implicated in resistance to nucleoside analogs, such as gemcitabine. POLH overexpression has been linked to the development of chemoresistance in several cancers, including lung, ovarian, and bladder. Co-inhibition of POLH and the ATR serine/threonine kinase, another DDR protein, causes synthetic lethality in a range of cancers, reinforcing that POLH is an emerging target for the development of novel oncology therapeutics. Using a fragment-based drug discovery approach in combination with an optimized crystallization screen, we have solved the first X-ray crystal structures of small novel drug-like compounds, i.e., fragments, bound to POLH, as starting points for the design of POLH inhibitors. The intrinsic molecular resolution afforded by the method can be quickly exploited in fragment growth and elaboration as well as analog scoping and scaffold hopping using medicinal and computational chemistry to advance hits to lead. An initial small round of medicinal chemistry has resulted in inhibitors with a range of functional activity in an in vitro biochemical assay, leading to the rapid identification of an inhibitor to advance to subsequent rounds of chemistry to generate a lead compound. Importantly, our chemical matter is different from the traditional nucleoside analog-based approaches for targeting DNA polymerases.
Collapse
Affiliation(s)
- David M. Wilson
- XPose Therapeutics, Inc., San Carlos, CA, United States
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium & Boost Scientific, Heusden-Zolder, Belgium
| | | | - Caleb Chang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Christie Lee Luo
- Department of BioSciences, Rice University, Houston, TX, United States
| | | | | | | | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Debanu Das
- XPose Therapeutics, Inc., San Carlos, CA, United States
| |
Collapse
|
49
|
Singh DD, Parveen A, Yadav DK. Role of PARP in TNBC: Mechanism of Inhibition, Clinical Applications, and Resistance. Biomedicines 2021; 9:biomedicines9111512. [PMID: 34829741 PMCID: PMC8614648 DOI: 10.3390/biomedicines9111512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer. This review covers the current results of clinical trials testing and future directions for the field of PARP inhibitor development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Amna Parveen
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (A.P.); (D.K.Y.); Tel.: +82-32-820-4948 (D.K.Y.)
| |
Collapse
|
50
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021; 1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|