1
|
Alcázar-Fabra M, Østergaard E, Fernández-Ayala DJ, Desbats MA, Morbidoni V, Tomás-Gallado L, García-Corzo L, Blanquer-Roselló MDM, Bartlett AK, Sánchez-Cuesta A, Sena L, Cortés-Rodríguez A, Cascajo-Almenara MV, Pagliarini DJ, Trevisson E, Gronborg SW, Brea-Calvo G. Identification of a new COQ4 spliceogenic variant causing severe primary coenzyme Q deficiency. Mol Genet Metab Rep 2025; 42:101176. [PMID: 39759098 PMCID: PMC11699292 DOI: 10.1016/j.ymgmr.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Background and aims Primary Coenzyme Q (CoQ) deficiency caused by COQ4 defects is a clinically heterogeneous mitochondrial condition characterized by reduced levels of CoQ10 in tissues. Next-generation sequencing has lately boosted the genetic diagnosis of an increasing number of patients. Still, functional validation of new variants of uncertain significance is essential for an adequate diagnosis, proper clinical management, treatment, and genetic counseling. Materials and methods Both fibroblasts from a proband with COQ4 deficiency and a COQ4 knockout cell model have been characterized by a combination of biochemical and genetic analysis (HPLC lipid analysis, Oxygen consumption, minigene analysis, RNAseq, among others). Results Here, we report the case of a subject harboring a new variant of the COQ4 gene in compound heterozygosis, which shows severe clinical manifestations. We present the molecular characterization of this new pathogenic variant affecting the splicing of COQ4. Conclusion Our results highlight the importance of expanding the genetic analysis beyond the coding sequence to reduce the misdiagnosis of primary CoQ deficiency patients.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J.M. Fernández-Ayala
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - María Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Valeria Morbidoni
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Laura Tomás-Gallado
- Proteomics and Biochemistry Platform, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University, 41013 Seville, Spain
| | - Laura García-Corzo
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - María del Mar Blanquer-Roselló
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Abigail K. Bartlett
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Sánchez-Cuesta
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lucía Sena
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Ana Cortés-Rodríguez
- Bioenergetics and Cell Physiology Service (U729), Central Services of Research, University Pablo de Olavide, 41013 Seville, Spain
| | - María Victoria Cascajo-Almenara
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David J. Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Sabine W. Gronborg
- Center for Inherited Metabolic Diseases, Department of Pediatrics and Adolescent Medicine and Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Gloria Brea-Calvo
- Andalusian Center of Developmental Biology (CABD), Universidad Pablo de Olavide-CSIC-JA, 41013 Seville, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology, Anatomy and Cell Biology Department, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
2
|
Sorrentino U, Baschiera E, Desbats MA, Zuffardi O, Salviati L, Cassina M. Characterization of Two Novel PNKP Splice-Site Variants in a Proband With Microcephaly, Intellectual Disability, and Multiple Malformations. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33013. [PMID: 39417375 DOI: 10.1002/ajmg.b.33013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Polynucleotide kinase phosphatase (PNKP), encoded by the PNKP gene, is a DNA processing enzyme involved in double-strand break and single-strand break repair pathways, which are essential for genome stability and for the correct development and maintenance of human nervous system. PNKP biallelic loss-of-function variants have been associated with a broad spectrum of neurological anomalies, ranging from congenital microcephaly with intellectual disability and seizures (MCSZ), to later onset forms of ataxia-oculomotor apraxia (AOA4) or peripheral neuropathy (CMT2B2). We report the atypical clinical manifestations of a patient with severe microcephaly, short stature, developmental delay, conductive hearing loss, and tracheoesophageal malformation, in the absence of seizures. Whole exome sequencing analysis identified two novel, compound heterozygous splice-site variants in the PNKP gene (NM_007254.4): c.1448+1G > A and c.199-8_199-5del. To demonstrate the effect of both variants on the splicing process and prove their pathogenicity, we performed a hybrid minigene assay, which successfully highlighted a deleterious impact on the transcript, particularly regarding the c.199-8_199-5del variant. The uncommon clinical features of the proband and the identification of two newly associated pathogenic variants add further evidence to the allelic and phenotypic heterogeneity of the PNKP locus.
Collapse
Affiliation(s)
- Ugo Sorrentino
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Baschiera
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica-IRP, Fondazione Città della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica-IRP, Fondazione Città della Speranza, Padova, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Leonardo Salviati
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica-IRP, Fondazione Città della Speranza, Padova, Italy
| | - Matteo Cassina
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Xu H, Pu J, Wu Z, Guo S, Li X. Case report: Successful PGT-M based on the identification of a spliceogenic variant in the RPGRIP1L gene through Minigene assay. Front Genet 2024; 15:1456293. [PMID: 39479399 PMCID: PMC11521898 DOI: 10.3389/fgene.2024.1456293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
With the development of high-throughput sequencing, the genetic etiology of many diseases has been revealed. However, this has also led to the categorization of many variants as variants of uncertain significance (VUSs), presenting a major challenge in genetic counseling. A couple with a history of adverse pregnancies sought assisted reproductive technology. Trio-WES revealed that they individually carried the following variants in the RPGRIP1L gene: a c.1581G>A (p.Gln527=) (VUS) and a c.135-11A>G (likely pathogenic variant, LP). Further investigation using the Minigene assay showed that the variant c.1581G>A (p.Gln527=) disrupts the normal splicing pattern of the mRNA, leading to two abnormal splicing modes: 1) retention of 26 bp in intron 13; 2) exon 13 skipping transcript. Consequently, the VUS was reclassified as likely pathogenic. We then performed preimplantation genetic testing (PGT) for the couple, which included direct detection of the RPGRIP1L locus, SNP haplotype analysis, and chromosome copy number detection. Through these precise detection procedures, an unaffected embryo was selected for transfer, and the prenatal genetic diagnosis of the fetus was normal. Our study indicates that the Minigene assay is a valuable tool for splicing functional analysis of variants in vitro. This approach is particularly useful for genetic counseling involving VUS that may affect pre-mRNA splicing, as well as for the subsequent clinical management of the related family.
Collapse
Affiliation(s)
- Huiling Xu
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Jiajie Pu
- Department of Bioinformatics, 01Life Institute, Shenzhen, Guangdong, China
| | - Zhengzhong Wu
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Shuhan Guo
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Xuemei Li
- Department of Reproductive Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Diallo M, Courdier C, Mercier E, Sequeira A, Defay-Stinat A, Plaisant C, Mesdaghi S, Rigden D, Javerzat S, Lasseaux E, Bourgeade L, Audebert-Bellanger S, Dollfus H, Hadj-Rabia S, Morice-Picard F, Philibert M, Sidibé MK, Smirnov V, Sylla O, Michaud V, Arveiler B. Functional Characterization of Splice Variants in the Diagnosis of Albinism. Int J Mol Sci 2024; 25:8657. [PMID: 39201349 PMCID: PMC11355033 DOI: 10.3390/ijms25168657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Albinism is a genetically heterogeneous disease in which 21 genes are known so far. Its inheritance mode is autosomal recessive except for one X-linked form. The molecular analysis of exonic sequences of these genes allows for about a 70% diagnostic rate. About half (15%) of the unsolved cases are heterozygous for one pathogenic or probably pathogenic variant. Assuming that the missing variant may be located in non-coding regions, we performed sequencing for 122 such heterozygous patients of either the whole genome (27 patients) or our NGS panel (95 patients) that includes, in addition to all exons of the 21 genes, the introns and flanking sequences of five genes, TYR, OCA2, SLC45A2, GPR143 and HPS1. Rare variants (MAF < 0.01) in trans to the first variant were tested by RT-PCR and/or minigene assay. Of the 14 variants tested, nine caused either exon skipping or the inclusion of a pseudoexon, allowing for the diagnosis of 11 patients. This represents 9.8% (12/122) supplementary diagnosis for formerly unsolved patients and 75% (12/16) of those in whom the candidate variant was in trans to the first variant. Of note, one missense variant was demonstrated to cause skipping of the exon in which it is located, thus shedding new light on its pathogenic mechanism. Searching for non-coding variants and testing them for an effect on RNA splicing is warranted in order to increase the diagnostic rate.
Collapse
Affiliation(s)
- Modibo Diallo
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Cécile Courdier
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Elina Mercier
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Angèle Sequeira
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Alicia Defay-Stinat
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Claudio Plaisant
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Shahram Mesdaghi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (S.M.); (D.R.)
- Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Daniel Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (S.M.); (D.R.)
| | - Sophie Javerzat
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
| | - Eulalie Lasseaux
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Laetitia Bourgeade
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | | | - Hélène Dollfus
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Strasbourg, 67091 Strasbourg, France;
| | - Smail Hadj-Rabia
- Service de Dermatologie, Hôpital Necker-Enfants Malades, 75015 Paris, France;
| | - Fanny Morice-Picard
- Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France;
| | | | | | - Vasily Smirnov
- Service d’Exploration Fonctionnelle de la Vision et de Neuro-Ophtalmologie, Centre Hospitalier Universitaire de Lille, 59037 Lille, France;
| | - Ousmane Sylla
- Infirmerie Hôpital Militaire, Bamako BP 236, Mali; (M.K.S.); (O.S.)
| | - Vincent Michaud
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| | - Benoit Arveiler
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux University, INSERM U1211, 33076 Bordeaux, France; (M.D.); (C.C.); (E.M.); (A.S.); (A.D.-S.); (S.J.); (V.M.)
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (C.P.); (E.L.); (L.B.)
| |
Collapse
|
5
|
Chen S, Cheng H, Zhao G. The genetic spectrum of NF1 variants in 10 unrelated Chinese families with neurofibromatosis type 1. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:177-183. [PMID: 38981629 PMCID: PMC11305348 DOI: 10.17712/nsj.2024.3.20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVES To investigate the clinical and genetic features in a cohort of Chinese families with neurofibromatosis type 1 (NF1). METHODS The clinical information of 21 patients with NF1 in 10 families was retrospectively analyzed. To broaden the genetic spectrum of NF1, multiplex ligation-dependent probe amplification analysis was performed first, followed by the whole-exome sequencing, in order to identify pathogenic or potentially pathogenic variants of NF1 gene in 10 unrelated Chinese families. RESULTS Nine different NF1 variants were identified in all 10 families. Of these, 7 were known pathogenic variants and included the exon 1 deletion, exons 1-58 deletion, c.5401C>T (p.Q1801*), c.2291-2A>C, c.484C>T (p.Q162*), c.4922G>A (p.W1641*) and c.1019_1020del (p.S340Cfs*25). The 2 novel variants were c.5197T>C (p.S1733P) and c.783_797delinsC (p.K261Nfs*25). The p.S1733P variant was classified as a variant of uncertain significance, while p.K261Nfs*25 was classified as pathogenic. Hence, the positive detection rate of NF1 variants was 100% (10/10). While the truncating variants were responsible for 60.0% (6/10) of the cases, the splicing variant was responsible for 10% (1/10) of the cases. CONCLUSION We identified 2 novel heterozygous variants (c.5197T>C and c.783_797delinsC) in the NF1 gene, which broadens the genetic spectrum of the NF1 gene.
Collapse
Affiliation(s)
- Shanshan Chen
- From Nursing Department (Chen), International Health Center, The First Affiliated Hospital, Zhejiang University School of Medicine; and from Department of Neurology (Cheng, Zhao), The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Hongrong Cheng
- From Nursing Department (Chen), International Health Center, The First Affiliated Hospital, Zhejiang University School of Medicine; and from Department of Neurology (Cheng, Zhao), The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Guohua Zhao
- From Nursing Department (Chen), International Health Center, The First Affiliated Hospital, Zhejiang University School of Medicine; and from Department of Neurology (Cheng, Zhao), The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
6
|
Yang J, Ni L, Li A, Li M, Ruan S, Xiang D, Zhu Z, Ye L. A novel homozygous splice-site mutation of JK gene leads to Jk(a-b-) phenotype. Transfus Med 2024; 34:39-45. [PMID: 37950522 DOI: 10.1111/tme.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES This study aimed to investigate the molecular mechanism of the Jk(a-b-) phenotype in a Chinese transfusion patient. BACKGROUND Many different mutation types relating to Jk(a-b-) phenotype have been reported. However, the splice-site mutation is relatively rare and the related functional verification is lacking. MATERIALS AND METHODS In this study, the blood sample was collected from a transfusion patient with the Jk(a-b-) phenotype. Serotyping was performed using routine serological methods. The exons sequences and coding regions of the JK gene were amplified using polymerase chain reaction and directly sequenced. To perform a minigene splicing assay, the intronic mutation sequences were cloned into a pSPL3 splice reporting vector. The splicing reporter minigene assay was performed in HEK 293T cells. RESULTS The Jk(a-b-) phenotype of the blood sample was identified through serological testing. Sequencing results revealed that the sample had a novel homozygous splice-site mutation JK*02N (NM_015865.7: c.663+3A>C). Further analysis, including cDNA sequencing and minigene splicing assay, confirmed that the novel splice-site mutation resulted in exon skipping. Interestingly, different numbers of exons being skipped were obtained by the two methods. CONCLUSION This study revealed a novel homozygous splicing-site mutation associated with the Jk(a-b-) phenotype in Chinese population. Our results emphasise the importance of the in vitro functional method minigene splicing assay, while also acknowledging its potential limitations when compared to cDNA sequencing.
Collapse
Affiliation(s)
- Jiaxuan Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Lina Ni
- Department of Blood Transfusion, Weihai Central Hospital, Weihai, China
| | - Aijing Li
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Minghao Li
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Shulin Ruan
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Dong Xiang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Ziyan Zhu
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Luyi Ye
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| |
Collapse
|
7
|
Systematic analysis of CNGA3 splice variants identifies different mechanisms of aberrant splicing. Sci Rep 2023; 13:2896. [PMID: 36801918 PMCID: PMC9938885 DOI: 10.1038/s41598-023-29452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Achromatopsia is an autosomal recessive cone photoreceptor disease that is frequently caused by pathogenic variants in the CNGA3 gene. Here, we present a systematic functional analysis of 20 CNGA3 splice site variants detected in our large cohort of achromatopsia patients and/or listed in common variant databases. All variants were analyzed by functional splice assays based on the pSPL3 exon trapping vector. We demonstrated that ten variants, both at canonical and non-canonical splice sites, induced aberrant splicing, including intronic nucleotide retention, exonic nucleotide deletion and exon skipping, resulting in 21 different aberrant transcripts. Of these, eleven were predicted to introduce a premature termination codon. The pathogenicity of all variants was assessed based on established guidelines for variant classification. Incorporation of the results of our functional analyses enabled re-classification of 75% of variants previously classified as variants of uncertain significance into either likely benign or likely pathogenic. Our study is the first in which a systematic characterization of putative CNGA3 splice variants has been performed. We demonstrated the utility of pSPL3 based minigene assays in the effective assessment of putative splice variants. Our findings improve the diagnosis of achromatopsia patients, who may thus benefit from future gene-based therapeutic strategies.
Collapse
|
8
|
Sorrentino U, Bellonzi S, Mozzato C, Brasson V, Toldo I, Parrozzani R, Clementi M, Cassina M, Trevisson E. Epilepsy in NF1: Epidemiologic, Genetic, and Clinical Features. A Monocentric Retrospective Study in a Cohort of 784 Patients. Cancers (Basel) 2021; 13:cancers13246336. [PMID: 34944956 PMCID: PMC8699608 DOI: 10.3390/cancers13246336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
An increased lifetime risk of epilepsy has been reported in neurofibromatosis type 1 (NF1) patients, ranging between 4% and 14%. To further analyze the correlation between NF1 and epilepsy, we retrospectively reviewed the epidemiologic, clinical, radiological, and molecular data of 784 unselected patients diagnosed with NF1 and referred to the neurofibromatosis outpatient clinics at the University Hospital of Padua. A crude prevalence of epilepsy of 4.7% was observed. In about 70% of cases, seizures arose in the context of neuroradiological findings, with the main predisposing factors being cerebral vasculopathies and hydrocephalus. In the absence of structural abnormalities, the prevalence of epilepsy was found to be 1.27%, which is approximately equal to the total prevalence in the general population. NF1 patients with seizures exhibit a higher incidence of intellectual disability and/or developmental delay, as well as of isolated learning disabilities. The comparison of causative NF1 mutations between the two groups did not reveal a specific genotype-phenotype correlation. Our data refine the current knowledge on epileptological manifestations in NF1 patients, arguing against the hypothesis that specific mechanisms, inherent to neurofibromin cellular function, might determine an increased risk of epilepsy in this condition.
Collapse
Affiliation(s)
- Ugo Sorrentino
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
- Correspondence: (U.S.); (E.T.); Tel.: +39-049-8215444 (U.S.); +39-049-8211402 (E.T.)
| | - Silvia Bellonzi
- Pediatrics Complex Care Unit, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Chiara Mozzato
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
| | - Irene Toldo
- Pediatric Neurology Unit, Department of Women’s and Children’s Health, University Hospital of Padua, 35128 Padua, Italy;
| | - Raffaele Parrozzani
- Department of Neuroscience-Ophthalmology, University of Padova, 35128 Padua, Italy;
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy; (C.M.); (V.B.); (M.C.); (M.C.)
- Institute of Pediatric Research IRP, “Fondazione Città della Speranza”, 35127 Padua, Italy
- Correspondence: (U.S.); (E.T.); Tel.: +39-049-8215444 (U.S.); +39-049-8211402 (E.T.)
| |
Collapse
|
9
|
Lin JH, Wu H, Zou WB, Masson E, Fichou Y, Le Gac G, Cooper DN, Férec C, Liao Z, Chen JM. Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Front Genet 2021; 12:701652. [PMID: 34422003 PMCID: PMC8375439 DOI: 10.3389/fgene.2021.701652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Combining data derived from a meta-analysis of human disease-associated 5' splice site GT>GC (i.e., +2T>C) variants and a cell culture-based full-length gene splicing assay (FLGSA) of forward engineered +2T>C substitutions, we recently estimated that ∼15-18% of +2T>C variants can generate up to 84% wild-type transcripts relative to their wild-type counterparts. Herein, we analyzed the splicing outcomes of 20 +2T>C variants that generate some wild-type transcripts in two minigene assays. We found a high discordance rate in terms of the generation of wild-type transcripts, not only between FLGSA and the minigene assays but also between the different minigene assays. In the pET01 context, all 20 wild-type minigene constructs generated the expected wild-type transcripts; of the 20 corresponding variant minigene constructs, 14 (70%) generated wild-type transcripts. In the pSPL3 context, only 18 of the 20 wild-type minigene constructs generated the expected wild-type transcripts whereas 8 of the 18 (44%) corresponding variant minigene constructs generated wild-type transcripts. Thus, in the context of a particular type of variant, we raise awareness of the limitations of minigene splicing assays and emphasize the importance of sequence context in regulating splicing. Whether or not our findings apply to other types of splice-altering variant remains to be investigated.
Collapse
Affiliation(s)
- Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Gerald Le Gac
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
10
|
Tan D, Ge L, Fan Y, Chang X, Wang S, Wei C, Ding J, Liu A, Wang S, Li X, Gao K, Yang H, Que C, Huang Z, Li C, Zhu Y, Mao B, Jin B, Hua Y, Zhang X, Zhang B, Zhu W, Zhang C, Wang Y, Yuan Y, Jiang Y, Rutkowski A, Bönnemann CG, Wu X, Xiong H. Natural history and genetic study of LAMA2-related muscular dystrophy in a large Chinese cohort. Orphanet J Rare Dis 2021; 16:319. [PMID: 34281576 PMCID: PMC8287797 DOI: 10.1186/s13023-021-01950-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background LAMA2-related muscular dystrophy including LAMA2-related congenital muscular dystrophy (LAMA2-CMD) and autosomal recessive limb-girdle muscular dystrophy-23 (LGMDR23) is caused by LAMA2 pathogenic variants. We aimed to describe the natural history and establish genotype–phenotype correlations in a large cohort of Chinese patients with LAMA2-related muscular dystrophy. Methods Clinical and genetic data of LAMA2-related muscular dystrophy patients enrolled from ten research centers between January 2003 and March 2021 were collected and analyzed. Results One hundred and thirty patients (116 LAMA2-CMD and 14 LGMDR23) were included. LAMA2-CMD group had earlier onset than LGMDR23 group. Head control, independent sitting and ambulation were achieved in 76.3%, 92.6% and 18.4% of LAMA2-CMD patients at median ages of 6.0 months (range 2.0–36.0 months), 11.0 months (range 6.0–36.0 months), and 27.0 months (range 18.0–84.0 months), respectively. All LGMDR23 patients achieved independent ambulation at median age of 18.0 months (range 13.0–20.0 months). Motor regression in LAMA2-CMD mainly occurred concurrently with rapid progression of contractures during 6–9 years old. Twenty-four LAMA2-related muscular dystrophy patients died, mostly due to severe pneumonia. Seizures occurred in 35.7% of LGMDR23 and 9.5% of LAMA2-CMD patients. Forty-six novel and 97 known LAMA2 disease-causing variants were identified. The top three high-frequency disease-causing variants in Han Chinese patients were c.7147C > T (p.R2383*), exon 4 deletion, and c.5156_5159del (p.K1719Rfs*5). In LAMA2-CMD, splicing variants tended to be associated with a relatively mild phenotype. Nonsense variants were more frequent in LAMA2-CMD (56.9%, 66/116) than in LGMDR23 (21.4%, 3/14), while missense disease-causing variants were more frequent in LGMDR23 (71.4%, 10/14) than in LAMA2-CMD (12.9%, 15/116). Copy number variations were identified in 26.4% of survivors and 50.0% of nonsurvivors, suggesting that copy number variations were associated with lower rate of survival (p = 0.029). Conclusions This study provides better understandings of natural history and genotype–phenotype correlations in LAMA2-related muscular dystrophy, and supports therapeutic targets for future researches. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01950-x.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Juan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Shuo Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xueying Li
- Department of Statistics, Peking University First Hospital, Beijing, 100034, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chengli Que
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Chunde Li
- Department of Orthopedic/Spine Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital, Wuhan, 430015, Hubei Province, China
| | - Bo Jin
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China
| | - Ying Hua
- Department of Pediatrics, Wuxi Children's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Yanjuan Wang
- Department of Neurology, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 610091, Sichuan Province, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | | | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
11
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|