1
|
Wang XY, Wu SH, Ren J, Zeng Y, Guo LL. Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas. J Thorac Imaging 2025; 40:e0817. [PMID: 39319553 PMCID: PMC12005866 DOI: 10.1097/rti.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
PURPOSE This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. MATERIALS AND METHODS A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. RESULTS We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR - and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 - and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. CONCLUSION Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
Collapse
Affiliation(s)
- Xiao-yan Wang
- Department of Radiology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian
| | - Shao-hong Wu
- Department of Radiology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian
| | - Jiao Ren
- Department of Radiology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian
| | - Yan Zeng
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Li-li Guo
- Department of Radiology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian
| |
Collapse
|
2
|
AlOsaimi HM, Alshilash AM, Al-Saif LK, Bosbait JM, Albeladi RS, Almutairi DR, Alhazzaa AA, Alluqmani TA, Al Qahtani SM, Almohammadi SA, Alamri RA, Alkurdi AA, Aljohani WK, Alraddadi RH, Alshammari MK. AI models for the identification of prognostic and predictive biomarkers in lung cancer: a systematic review and meta-analysis. Front Oncol 2025; 15:1424647. [PMID: 40078179 PMCID: PMC11896857 DOI: 10.3389/fonc.2025.1424647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction This systematic review and meta-analysis aim to evaluate the efficacy of artificial intelligence (AI) models in identifying prognostic and predictive biomarkers in lung cancer. With the increasing complexity of lung cancer subtypes and the need for personalized treatment strategies, AI-driven approaches offer a promising avenue for biomarker discovery and clinical decision-making. Methods A comprehensive literature search was conducted in multiple electronic databases to identify relevant studies published up to date. Studies investigating AI models for the identification of prognostic and predictive biomarkers in lung cancer were included. Data extraction, quality assessment, and meta-analysis were performed according to PRISMA guidelines. Results A total of 34 studies met the inclusion criteria, encompassing diverse AI methodologies and biomarker targets. AI models, particularly deep learning and machine learning algorithms demonstrated high accuracy in predicting biomarker status. Most of the studies developed models for the prediction of EGFR, followed by PD-L1 and ALK biomarkers in lung cancer. Internal and external validation techniques confirmed the robustness and generalizability of AI-driven predictions across heterogeneous patient cohorts. According to our results, the pooled sensitivity and pooled specificity of AI models for the prediction of biomarkers of lung cancer were 0.77 (95% CI: 0.72 - 0.82) and 0.79 (95% CI: 0.78 - 0.84). Conclusion The findings of this systematic review and meta-analysis highlight the significant potential of AI models in facilitating non-invasive assessment of prognostic and predictive biomarkers in lung cancer. By enhancing diagnostic accuracy and guiding treatment selection, AI-driven approaches have the potential to revolutionize personalized oncology and improve patient outcomes in lung cancer management. Further research is warranted to validate and optimize the clinical utility of AI-driven biomarkers in large-scale prospective studies.
Collapse
Affiliation(s)
- Hind M. AlOsaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Aseel M. Alshilash
- Department of Medicine, Royal College of Surgeons Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Layan K. Al-Saif
- Department of Medicine, Majmaah University, Almajmaah, Saudi Arabia
| | - Jannat M. Bosbait
- Department of Medicine, King Faisal University, Alahsa, Saudi Arabia
| | - Roaa S. Albeladi
- Department of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | | | - Alwaleed A. Alhazzaa
- Department of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tariq A. Alluqmani
- Department of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | | | | | - Abdullah A. Alkurdi
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Waleed K. Aljohani
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Raghad H. Alraddadi
- Department of Medicine, Al Rayan National College of Medicine, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | |
Collapse
|
3
|
Wu L, Wei D, Chen W, Wu C, Lu Z, Li S, Liu W. Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis. J Comput Assist Tomogr 2025; 49:101-112. [PMID: 39143665 DOI: 10.1097/rct.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) based on systematic review and meta-analysis. METHODS AI studies based on PET/CT, CT, PET, and immunohistochemistry (IHC)-whole-slide image (WSI) were included to predict PD-L1 expression or EGFR mutations in LC. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality. A comprehensive meta-analysis was conducted to analyze the overall area under the curve (AUC). The Cochrane diagnostic test and I2 statistics were used to assess the heterogeneity of the meta-analysis. RESULTS A total of 45 AI studies were included, of which 10 were used to predict PD-L1 expression and 35 were used to predict EGFR mutations. Based on the analysis using the QUADAS-2 tool, 37 studies achieved a high-quality score of 7. In the meta-analysis of PD-L1 expression levels, the overall AUCs for PET/CT, CT, and IHC-WSI were 0.80 (95% confidence interval [CI], 0.77-0.84), 0.74 (95% CI, 0.69-0.77), and 0.95 (95% CI, 0.93-0.97), respectively. For EGFR mutation status, the overall AUCs for PET/CT, CT, and PET were 0.85 (95% CI, 0.81-0.88), 0.83 (95% CI, 0.80-0.86), and 0.75 (95% CI, 0.71-0.79), respectively. The Cochrane Diagnostic Test revealed an I2 value exceeding 50%, indicating substantial heterogeneity in the PD-L1 and EGFR meta-analyses. When AI was combined with clinicopathological features, the enhancement in predicting PD-L1 expression was not substantial, whereas the prediction of EGFR mutations showed improvement compared to the CT and PET models, albeit not significantly so compared to the PET/CT models. CONCLUSIONS The overall performance of AI in predicting PD-L1 expression and EGFR mutations in LC has promising clinical implications.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Dayou Wei
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wubiao Chen
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Chaojun Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Zhendong Lu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Songhua Li
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wenci Liu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| |
Collapse
|
4
|
Benfares A, Mourabiti AY, Alami B, Boukansa S, El Bouardi N, Lamrani MYA, El Fatimi H, Amara B, Serraj M, Mohammed S, Abdeljabbar C, Anass EA, Qjidaa M, Maaroufi M, Mohammed OJ, Hassan Q. Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer. Eur J Radiol Open 2024; 13:100601. [PMID: 39351523 PMCID: PMC11440319 DOI: 10.1016/j.ejro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for patients with untreated adenocarcinoma Non-Small Cell Lung Cancer. Materials and methods Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: human errors made during the annotation of the database and the low precision of the output decision of the model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene mutation and 98 cases with wild-type EGFR. Results The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The performance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC. Conclusion An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will facilitate rapid decision-making when applying a TKI as an initial treatment.
Collapse
Affiliation(s)
- Anass Benfares
- Laboratory of Computer, Signals, Automation and Cognitivism, Dhar El Mehraz Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelali yahya Mourabiti
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Badreddine Alami
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Sara Boukansa
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Center Hassan II, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Nizar El Bouardi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Moulay Youssef Alaoui Lamrani
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Hind El Fatimi
- Anatomopathological Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Pneumology Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Smahi Mohammed
- Thoracic Surgery Department, University Hospital Center Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cherkaoui Abdeljabbar
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | | | - Mamoun Qjidaa
- Laboratoire de Technologies Innovantes, Abdelmalek Essaidi University, Tanger, Morocco
| | - Mustapha Maaroufi
- Radiology Department of University Hospital Center Hassan II Fez, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Ouazzani Jamil Mohammed
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| | - Qjidaa Hassan
- Laboratory of Intelligent Systems, Energy and Sustainable Development Faculty of Engineering Sciences, Private University of Fez, Fez, Morocco
| |
Collapse
|
5
|
Kohan A, Hinzpeter R, Kulanthaivelu R, Mirshahvalad SA, Avery L, Tsao M, Li Q, Ortega C, Metser U, Hope A, Veit-Haibach P. Contrast Enhanced CT Radiogenomics in a Retrospective NSCLC Cohort: Models, Attempted Validation of a Published Model and the Relevance of the Clinical Context. Acad Radiol 2024; 31:2953-2961. [PMID: 38383258 DOI: 10.1016/j.acra.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
RATIONALE AND OBJECTIVE To develop a radiogenomic predictive model for non-small cell lung cancer (NSCLC) patients studied through contrast enhanced chest computed tomography (CE-CT) targeting the most frequent gene alterations. M&M: A retrospective study of patients with NSCLC imaged with CE-CT before treatment and had their tumor genomics sequenced at our institution was performed. Data was gathered from their imaging studies, their electronic medical records and a web-based database search (cBioPortal.ca). All of the patient data was tabulated for analysis. Two predictive models (M1 & M2) were created using different approaches and a third model was extracted from the literature to also be tested in our population. RESULTS Out of 157 patients, eighty were male (51%) and 124 (79%) had a history of smoking. The three most prevalent genes were KRAS, TP53 and EGFR. The M1 radiomics-only model median AUC were 0.61 (TP53), 0.53 (KRAS) and 0.64 (EGFR) and for M1 radiomics + clinical were 0.61 (TP53), 0.61 (KRAS) and 0.80 (EGFR). The M2 radiomics-only model median AUC were 0.63 (TP53), 0.60 (KRAS) and 0.65 (EGFR) and for M2 radiomics + clinical were 0.64 (TP53), 0.62 (KRAS) and 0.81 (EGFR). The external EGFR radiomic model showed an AUC of 0.69 and 0.86 for the radiomics-only and combined radiomics + clinical respectively. CONCLUSION Our study was able to provide robust predictive radiomics model evaluation for the detection of TP53, KRAS and EGFR. We also compared our performance with an already published model and observed how impactful clinical variables can be on models' performance. CLINICAL RELEVANCE STATEMENT Identifying tumor mutations in patients that can't undergo biopsy is critical for their outcomes. KEYPOINTS • Tumor genomic profiling is critical for treatment selection • CE-CT radiomics produce robust predictive models comparable to those already published • Clinical variables should be considered/included in predictive models.
Collapse
Affiliation(s)
- A Kohan
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada.
| | - R Hinzpeter
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - R Kulanthaivelu
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - S A Mirshahvalad
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - L Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - M Tsao
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Q Li
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - C Ortega
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - U Metser
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - A Hope
- Department of Radiation Oncology, University Health Network, University of Toronto, ON, Canada
| | - P Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
6
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
7
|
Lv X, Li Y, Wang B, Wang Y, Xu Z, Hou D. Multisequence MRI-based radiomics signature as potential biomarkers for differentiating KRAS mutations in non-small cell lung cancer with brain metastases. Eur J Radiol Open 2024; 12:100548. [PMID: 38298532 PMCID: PMC10827674 DOI: 10.1016/j.ejro.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background Kirsten rat sarcoma virus (KRAS) has evolved from a genotype with predictive value to a therapeutic target recently. The study aimed to establish non-invasive radiomics models based on MRI to discriminate KRAS from epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations in lung cancer patients with brain metastases (BM), then further explore the optimal sequence for prediction. Methods This retrospective study involved 317 patients (218 patients in training cohort and 99 patients in testing cohort) who had confirmed of KRAS, EGFR or ALK mutations. Radiomics features were separately extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences. The maximal information coefficient and recursive feature elimination method were used to select informative features. Then we built four radiomics models for differentiating KRAS from EGFR or ALK using random forest classifier. ROC curves were used to validate the capability of the models. Results The four radiomics models for discriminating KRAS from EGFR all worked well, especially DWI and T2WI models (AUCs: 0.942, 0.942 in training cohort, 0.949, 0.954 in testing cohort). When KRAS compared to ALK, DWI and T2-FLAIR models showed excellent performance in two cohorts (AUCs: 0.947, 0.917 in training cohort, 0.850, 0.824 in testing cohort). Conclusions Radiomics classifiers integrating MRI have potential to discriminate KRAS from EGFR or ALK, which are helpful to guide treatment and facilitate the discovery of new approaches capable of achieving this long-sought goal of cure in lung cancer patients with KRAS.
Collapse
Affiliation(s)
- Xinna Lv
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ye Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yichuan Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zexuan Xu
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Dailun Hou
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
8
|
Tárnoki ÁD, Tárnoki DL, Dąbrowska M, Knetki-Wróblewska M, Frille A, Stubbs H, Blyth KG, Juul AD. New developments in the imaging of lung cancer. Breathe (Sheff) 2024; 20:230176. [PMID: 38595936 PMCID: PMC11003524 DOI: 10.1183/20734735.0176-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024] Open
Abstract
Radiological and nuclear medicine methods play a fundamental role in the diagnosis and staging of patients with lung cancer. Imaging is essential in the detection, characterisation, staging and follow-up of lung cancer. Due to the increasing evidence, low-dose chest computed tomography (CT) screening for the early detection of lung cancer is being introduced to the clinical routine in several countries. Radiomics and radiogenomics are emerging fields reliant on artificial intelligence to improve diagnosis and personalised risk stratification. Ultrasound- and CT-guided interventions are minimally invasive methods for the diagnosis and treatment of pulmonary malignancies. In this review, we put more emphasis on the new developments in the imaging of lung cancer.
Collapse
Affiliation(s)
- Ádám Domonkos Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- National Tumour Biology Laboratory, Oncologic Imaging and Invasive Diagnostic Centre, National Institute of Oncology, Budapest, Hungary
| | - Dávid László Tárnoki
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
- National Tumour Biology Laboratory, Oncologic Imaging and Invasive Diagnostic Centre, National Institute of Oncology, Budapest, Hungary
| | - Marta Dąbrowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | | | - Armin Frille
- Department of Respiratory Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Harrison Stubbs
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin G. Blyth
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
9
|
Chen Z, Gao S, Ding C, Luo T, Xu J, Xu S, Li S. CT-based non-invasive identification of the most common gene mutation status in patients with non-small cell lung cancer. Med Phys 2024; 51:1872-1882. [PMID: 37706584 DOI: 10.1002/mp.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) are mutually exclusive, and they are two important genes that are most prone to mutation in patients with non-small cell lung cancer. PURPOSE This retrospective study investigated the ability of radiomics to predict the mutation status of EGFR and KRAS in patients with non-small cell lung cancer (NSCLC) and guide precision medicine. METHODS Computed tomography images of 1045 NSCLC patients from five different institutions were collected, and 1204 imaging features were extracted. In the training set (EGFR: 678, KRAS: 246), Max-Relevance and Min-Redundancy and least absolute shrinkage and selection operator logistic regression were used to screen radiomics features. The combination of selected radiomics features and clinical factors was used to establish the combined models in identifying EGFR and KRAS mutation status, respectively, through stepwise logistic regression. Then, on two independent external validation sets (EGFR: 203/164, KRAS: 123/95), the performance of each model was evaluated separately, and then the overall performance of predicting the two mutation states was calculated. RESULTS In the EGFR and KRAS groups, radiomics signatures comprised 14 and 10 radiomics features, respectively. They were mutually exclusive between the tumors with positive EGFR mutation and those with positive KRAS mutation in imaging phenotype. For the EGFR group, the area under the curve (AUC) of the combined model in the two validation sets was 0.871 (95% CI: 0.821-0.926) and 0.861 (95% CI: 0.802-0.911), respectively, whereas the AUC of the combined model in the two validation sets was 0.798 (95% CI: 0.739-0.850) and 0.778 (95% CI: 0.735-0.821), respectively, for the KRAS group. Considering both EGFR and KRAS, the overall precision, recall, and F1-score of the combined model in the two validation sets were 0.704, 0.844, and 0.768, as well as 0.754, 0.693, and 0.722, respectively. CONCLUSIONS Our study demonstrates the potential of radiomics in the non-invasive identification of EGFR and KRAS mutation status, which may guide patients with non-small cell lung cancer to choose the most appropriate personalized treatment. This method can be used when biopsy will bring unacceptable risk to patients with NSCLC.
Collapse
Affiliation(s)
- Zongjian Chen
- School of Health Management, China Medical University, Shenyang, Liaoning, China
| | - Si Gao
- Department of Radiology, The First Affiliated Hospital of China Medical University Liaoning, Shenyang, China
| | - Changwei Ding
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ting Luo
- Department of Radiology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Jiaqi Xu
- School of Health Management, China Medical University, Shenyang, Liaoning, China
| | - Shuang Xu
- Library of China Medical University, Shenyang, Liaoning, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Nguyen HS, Ho DKN, Nguyen NN, Tran HM, Tam KW, Le NQK. Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:660-683. [PMID: 37120403 DOI: 10.1016/j.acra.2023.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
RATIONALE AND OBJECTIVES Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non-small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. MATERIALS AND METHODS We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. RESULTS Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. CONCLUSION DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
Collapse
Affiliation(s)
- Hung Song Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.); Department of Pediatrics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam (H.S.N.); Intensive Care Unit Department, Children's Hospital 1, Ho Chi Minh City, Viet Nam (H.S.N.)
| | - Dang Khanh Ngan Ho
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan (D.K.N.H.)
| | - Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.)
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam (H.M.T.)
| | - Ka-Wai Tam
- Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Cochrane Taiwan, Taipei Medical University, Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (K.-W.T.)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan (N.Q.K.L.).
| |
Collapse
|
11
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
12
|
Lv X, Li Y, Xu X, Zheng Z, Li F, Fang K, Wang Y, Wang B, Hou D. Multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in patients with non-small cell lung cancer brain metastases. Eur J Radiol Open 2023; 11:100521. [PMID: 37692549 PMCID: PMC10485591 DOI: 10.1016/j.ejro.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Background Osimertinib resistance is a major problem in the course of targeted therapy for non-small cell lung cancer (NSCLC) patients. To develop and validate a multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in NSCLC with brain metastases (BM). Methods Pretreatment brain MRI of 251 NSCLC patients proven with BM were retrospectively enrolled from two centers (training cohort: 196 patients; testing cohort: 55 patients). According to the gene test result of osimertinib resistance, patients were labeled as resistance and non-resistance groups (training cohort: 65 versus 131 patients; testing cohort: 25 versus 30 patients). Radiomics features were extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences separately and radiomics score (rad-score) were built from the four sequences. Then a multisequence MRI-based nomogram was developed and the predictive ability was evaluated by ROC curves and calibration curves. Results The rad-scores of the four sequences has significant differences between resistance and non-resistance groups in both training and testing cohorts. The nomogram achieved the highest predictive ability with area under the curve (AUC) of 0.989 (95 % confidence interval, 0.976-1.000) and 0.923 (95 % confidence interval, 0.851-0.995) in the training and testing cohort respectively. The calibration curves showed excellent concordance between the predicted and actual probability of osimertinib resistance using the radiomics nomogram. Conclusions The multisequence MRI-based radiomics nomogram can be used as a noninvasive auxiliary tool to identify candidates who were resistant to osimertinib, which could guide clinical therapy for NSCLC patients with BM.
Collapse
Affiliation(s)
- Xinna Lv
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ye Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xiaoyue Xu
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ziwei Zheng
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Li
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kun Fang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Wang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
13
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Shao J, Feng J, Li J, Liang S, Li W, Wang C. Novel tools for early diagnosis and precision treatment based on artificial intelligence. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:148-160. [PMID: 39171128 PMCID: PMC11332840 DOI: 10.1016/j.pccm.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer has the highest mortality rate among all cancers in the world. Hence, early diagnosis and personalized treatment plans are crucial to improving its 5-year survival rate. Chest computed tomography (CT) serves as an essential tool for lung cancer screening, and pathology images are the gold standard for lung cancer diagnosis. However, medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis, and physician heterogeneity. The rapid development of artificial intelligence (AI) has brought a whole novel opportunity for medical task processing, demonstrating the potential for clinical application in lung cancer diagnosis and treatment. AI technologies, including machine learning and deep learning, have been deployed extensively for lung nodule detection, benign and malignant classification, and subtype identification based on CT images. Furthermore, AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide the optimal treatment regimen, and applies to the assessment of therapeutic efficacy and prognosis of lung cancer patients, enabling precision medicine to become a reality. Meanwhile, histology-based AI models assist pathologists in typing, molecular characterization, and prognosis prediction to enhance the efficiency of diagnosis and treatment. However, the leap to extensive clinical application still faces various challenges, such as data sharing, standardized label acquisition, clinical application regulation, and multimodal integration. Nevertheless, AI holds promising potential in the field of lung cancer to improve cancer care.
Collapse
Affiliation(s)
- Jun Shao
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaming Feng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Zhang X, Zhang G, Qiu X, Yin J, Tan W, Yin X, Yang H, Liao L, Wang H, Zhang Y. Radiomics under 2D regions, 3D regions, and peritumoral regions reveal tumor heterogeneity in non-small cell lung cancer: a multicenter study. LA RADIOLOGIA MEDICA 2023; 128:1079-1092. [PMID: 37486526 DOI: 10.1007/s11547-023-01676-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE Lung cancer has significant genetic and phenotypic heterogeneity, leading to poor prognosis. Radiomic features have emerged as promising predictors of the tumor phenotype. However, the role of underlying information surrounding the cancer remains unclear. MATERIALS AND METHODS We conducted a retrospective study of 508 patients with NSCLC from three institutions. Radiomics models were built using features from six tumor regions and seven classifiers to predict three prognostically significant tumor phenotypes. The models were evaluated and interpreted by the mean area under the receiver operating characteristic curve (AUC) under nested cross-validation and Shapley values. The best-performing predictive models corresponding to six tumor regions and three tumor phenotypes were identified for further comparative analysis. In addition, we designed five experiments with different voxel spacing to assess the sensitivity of the experimental results to the spatial resolution of the voxels. RESULTS Our results demonstrated that models based on 2D, 3D, and peritumoral region features yielded mean AUCs and 95% confidence intervals of 0.759 and [0.747-0.771] for lymphovascular invasion, 0.889 and [0.882-0.896] for pleural invasion, and 0.839 and [0.829-0.849] for T-staging in the testing cohort, which was significantly higher than all other models. Similar results were obtained for the model combining the three regional features at five voxel spacings. CONCLUSION Our study revealed the predictive role of the developed methods with multi-regional features for the preoperative assessment of prognostic factors in NSCLC. The analysis of different voxel spacing and model interpretability strengthens the experimental findings and contributes to understanding the biological significance of the radiological phenotype.
Collapse
Affiliation(s)
- Xingping Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Guijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jiao Yin
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110189, China
| | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hua Wang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia.
| | - Yanchun Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China.
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia.
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000, China.
| |
Collapse
|
16
|
Zhang R, Shi K, Hohenforst-Schmidt W, Steppert C, Sziklavari Z, Schmidkonz C, Atzinger A, Hartmann A, Vieth M, Förster S. Ability of 18F-FDG Positron Emission Tomography Radiomics and Machine Learning in Predicting KRAS Mutation Status in Therapy-Naive Lung Adenocarcinoma. Cancers (Basel) 2023; 15:3684. [PMID: 37509345 PMCID: PMC10377773 DOI: 10.3390/cancers15143684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Considering the essential role of KRAS mutation in NSCLC and the limited experience of PET radiomic features in KRAS mutation, a prediction model was built in our current analysis. Our model aims to evaluate the status of KRAS mutants in lung adenocarcinoma by combining PET radiomics and machine learning. METHOD Patients were retrospectively selected from our database and screened from the NSCLC radiogenomic dataset from TCIA. The dataset was randomly divided into three subgroups. Two open-source software programs, 3D Slicer and Python, were used to segment lung tumours and extract radiomic features from 18F-FDG-PET images. Feature selection was performed by the Mann-Whitney U test, Spearman's rank correlation coefficient, and RFE. Logistic regression was used to build the prediction models. AUCs from ROCs were used to compare the predictive abilities of the models. Calibration plots were obtained to examine the agreements of observed and predictive values in the validation and testing groups. DCA curves were performed to check the clinical impact of the best model. Finally, a nomogram was obtained to present the selected model. RESULTS One hundred and nineteen patients with lung adenocarcinoma were included in our study. The whole group was divided into three datasets: a training set (n = 96), a validation set (n = 11), and a testing set (n = 12). In total, 1781 radiomic features were extracted from PET images. One hundred sixty-three predictive models were established according to each original feature group and their combinations. After model comparison and selection, one model, including wHLH_fo_IR, wHLH_glrlm_SRHGLE, wHLH_glszm_SAHGLE, and smoking habits, was validated with the highest predictive value. The model obtained AUCs of 0.731 (95% CI: 0.619~0.843), 0.750 (95% CI: 0.248~1.000), and 0.750 (95% CI: 0.448~1.000) in the training set, the validation set and the testing set, respectively. Results from calibration plots in validation and testing groups indicated that there was no departure between observed and predictive values in the two datasets (p = 0.377 and 0.861, respectively). CONCLUSIONS Our model combining 18F-FDG-PET radiomics and machine learning indicated a good predictive ability of KRAS status in lung adenocarcinoma. It may be a helpful non-invasive method to screen the KRAS mutation status of heterogenous lung adenocarcinoma before selected biopsy sampling.
Collapse
Affiliation(s)
- Ruiyun Zhang
- Institute of Pathology, Medizincampus Oberfranken, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, 95445 Bayreuth, Germany
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital Bern, 3010 Bern, Switzerland
| | | | - Claus Steppert
- Department of Pneumology, REGIOMED Klinikum Coburg, 96450 Coburg, Germany
| | - Zsolt Sziklavari
- Department of Thoracic Surgery, Klinikum Coburg, 96450 Coburg, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Medizincampus Oberfranken, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, 95445 Bayreuth, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum Bayreuth, 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Universitätsklinikum Erlangen, 95445 Bayreuth, Germany
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universitaet Muenchen, 81675 München, Germany
| |
Collapse
|
17
|
Sun K, Zhu H, Chai W, Yan F. Multimodality MRI radiomics analysis of TP53 mutations in triple negative breast cancer. Front Oncol 2023; 13:1153261. [PMID: 37064157 PMCID: PMC10090452 DOI: 10.3389/fonc.2023.1153261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
ObjectivesTo explore the value of T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) radiomics features reflecting TP53 mutations in patients with triple negative breast cancer (TNBC).Study designThis retrospective study enrolled 91 patients with TNBC with TP53 testing (64 patients in the training cohort and 27 patients in the validation cohort). A total of 2832 radiomics features were extracted from the first phase of dynamic contrast-enhanced T1WI, T2WI and ADC maps. Analysis of variance (ANOVA) and the Kruskal-Wallis-test were used for feature selection. Then, linear discriminant analysis (LDA), multilayer perceptron (MLP), logistic regression (LR), LR with LASSO, decision tree (DT), naïve Bayes (NB), random forest (RF), and support vector machine (SVM) models were used for classification.ResultsThe validation AUCs of the eight classifiers ranged from 0.74 (NB) to 0.85 (SVM). SVM attained the highest AUC (0.85) and diagnostic accuracy (0.82) of all tested models. The top 3 ranking features in the SVM model were T1-square-first order-skewness (coefficient: 1.735), T2-wavelet-LHH-GLCM-joint energy, and T2-wavelet-LHH-GLCM-inverse difference moment (coefficient: -0.654, -0.634).ConclusionsRadiomics-based analysis with the SVM model is recommended for the detection of TP53 mutations in TNBC. Furthermore, T1WI- and T2WI-related features could be used as noninvasive biomarkers for predicting TP53 mutations.
Collapse
|
18
|
Fischer S, Spath N, Hamed M. Data-Driven Radiogenomic Approach for Deciphering Molecular Mechanisms Underlying Imaging Phenotypes in Lung Adenocarcinoma: A Pilot Study. Int J Mol Sci 2023; 24:4947. [PMID: 36902378 PMCID: PMC10003564 DOI: 10.3390/ijms24054947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The heterogeneity of lung tumor nodules is reflected in their phenotypic characteristics in radiological images. The radiogenomics field employs quantitative image features combined with transcriptome expression levels to understand tumor heterogeneity molecularly. Due to the different data acquisition techniques for imaging traits and genomic data, establishing meaningful connections poses a challenge. We analyzed 86 image features describing tumor characteristics (such as shape and texture) with the underlying transcriptome and post-transcriptome profiles of 22 lung cancer patients (median age 67.5 years, from 42 to 80 years) to unravel the molecular mechanisms behind tumor phenotypes. As a result, we were able to construct a radiogenomic association map (RAM) linking tumor morphology, shape, texture, and size with gene and miRNA signatures, as well as biological correlates of GO terms and pathways. These indicated possible dependencies between gene and miRNA expression and the evaluated image phenotypes. In particular, the gene ontology processes "regulation of signaling" and "cellular response to organic substance" were shown to be reflected in CT image phenotypes, exhibiting a distinct radiomic signature. Moreover, the gene regulatory networks involving the TFs TAL1, EZH2, and TGFBR2 could reflect how the texture of lung tumors is potentially formed. The combined visualization of transcriptomic and image features suggests that radiogenomic approaches could identify potential image biomarkers for underlying genetic variation, allowing a broader view of the heterogeneity of the tumors. Finally, the proposed methodology could also be adapted to other cancer types to expand our knowledge of the mechanistic interpretability of tumor phenotypes.
Collapse
Affiliation(s)
- Sarah Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstr. 69, 18057 Rostock, Germany
| | - Nicolas Spath
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig-Holstein, Arnold-Hellerstr. 3, 24105 Kiel, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemannstr. 8, 18057 Rostock, Germany
| |
Collapse
|
19
|
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Semin Cancer Biol 2023; 91:1-15. [PMID: 36801447 DOI: 10.1016/j.semcancer.2023.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
Collapse
|
20
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Zhao K, Jiang B, Zhang S, Zhang L, Zhang L, Feng Y, Li J, Zhang Y, Xie X. Measurement Accuracy and Repeatability of RECIST-Defined Pulmonary Lesions and Lymph Nodes in Ultra-Low-Dose CT Based on Deep Learning Image Reconstruction. Cancers (Basel) 2022; 14:5016. [PMID: 36291800 PMCID: PMC9599467 DOI: 10.3390/cancers14205016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Deep learning image reconstruction (DLIR) improves image quality. We aimed to compare the measured diameter of pulmonary lesions and lymph nodes between DLIR-based ultra-low-dose CT (ULDCT) and contrast-enhanced CT. METHODS The consecutive adult patients with noncontrast chest ULDCT (0.07-0.14 mSv) and contrast-enhanced CT (2.38 mSv) were prospectively enrolled. Patients with poor image quality and body mass index ≥ 30 kg/m2 were excluded. The diameter of pulmonary target lesions and lymph nodes defined by Response Evaluation Criteria in Solid Tumors (RECIST) was measured. The measurement variability between ULDCT and enhanced CT was evaluated by Bland-Altman analysis. RESULTS The 141 enrolled patients (62 ± 12 years) had 89 RECIST-defined measurable pulmonary target lesions (including 30 malignant lesions, mainly adenocarcinomas) and 45 measurable mediastinal lymph nodes (12 malignant). The measurement variation of pulmonary lesions between high-strength DLIR (DLIR-H) images of ULDCT and contrast-enhanced CT was 2.2% (95% CI: 1.7% to 2.6%) and the variation of lymph nodes was 1.4% (1.0% to 1.9%). CONCLUSIONS The measured diameters of pulmonary lesions and lymph nodes in DLIR-H images of ULDCT are highly close to those of contrast-enhanced CT. DLIR-based ULDCT may facilitate evaluating target lesions with greatly reduced radiation exposure in tumor evaluation and lung cancer screening.
Collapse
Affiliation(s)
- Keke Zhao
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Beibei Jiang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Shuai Zhang
- CT Imaging Research Center, GE Healthcare China, Shanghai 201203, China
| | - Lu Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Lin Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Yan Feng
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Jianying Li
- CT Imaging Research Center, GE Healthcare China, Shanghai 201203, China
| | - Yaping Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Xueqian Xie
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| |
Collapse
|
22
|
Radiogenomic System for Non-Invasive Identification of Multiple Actionable Mutations and PD-L1 Expression in Non-Small Cell Lung Cancer Based on CT Images. Cancers (Basel) 2022; 14:cancers14194823. [PMID: 36230746 PMCID: PMC9563625 DOI: 10.3390/cancers14194823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Personalized treatments such as targeted therapy and immunotherapy have revolutionized the predominantly therapeutic paradigm for non-small cell lung cancer (NSCLC). However, these treatment decisions require the determination of targetable genomic and molecular alterations through invasive genetic or immunohistochemistry (IHC) tests. Numerous previous studies have demonstrated that artificial intelligence can accurately predict the single-gene status of tumors based on radiologic imaging, but few studies have achieved the simultaneous evaluation of multiple genes to reflect more realistic clinical scenarios. METHODS We proposed a multi-label multi-task deep learning (MMDL) system for non-invasively predicting actionable NSCLC mutations and PD-L1 expression utilizing routinely acquired computed tomography (CT) images. This radiogenomic system integrated transformer-based deep learning features and radiomic features of CT volumes from 1096 NSCLC patients based on next-generation sequencing (NGS) and IHC tests. RESULTS For each task cohort, we randomly split the corresponding dataset into training (80%), validation (10%), and testing (10%) subsets. The area under the receiver operating characteristic curves (AUCs) of the MMDL system achieved 0.862 (95% confidence interval (CI), 0.758-0.969) for discrimination of a panel of 8 mutated genes, including EGFR, ALK, ERBB2, BRAF, MET, ROS1, RET and KRAS, 0.856 (95% CI, 0.663-0.948) for identification of a 10-molecular status panel (previous 8 genes plus TP53 and PD-L1); and 0.868 (95% CI, 0.641-0.972) for classifying EGFR / PD-L1 subtype, respectively. CONCLUSIONS To the best of our knowledge, this study is the first deep learning system to simultaneously analyze 10 molecular expressions, which might be utilized as an assistive tool in conjunction with or in lieu of ancillary testing to support precision treatment options.
Collapse
|
23
|
Gu J, Li B, Shu H, Zhu J, Qiu Q, Bai T. Development and verification of radiomics framework for computed tomography image segmentation. Med Phys 2022; 49:6527-6537. [PMID: 35917213 PMCID: PMC9805121 DOI: 10.1002/mp.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Radiomics has been considered an imaging marker for capturing quantitative image information (QII). The introduction of radiomics to image segmentation is desirable but challenging. PURPOSE This study aims to develop and validate a radiomics-based framework for image segmentation (RFIS). METHODS RFIS is designed using features extracted from volume (svfeatures) created by sliding window (swvolume). The 53 svfeatures are extracted from 11 phantom series. Outliers in the svfeature datasets are detected by isolation forest (iForest) and specified as the mean value. The percentage coefficient of variation (%COV) is calculated to evaluate the reproducibility of svfeatures. RFIS is constructed and applied to the gross target volume (GTV) segmentation from the peritumoral region (GTV with a 10 mm margin) to assess its feasibility. The 127 lung cancer images are enrolled. The test-retest method, correlation matrix, and Mann-Whitney U test (p < 0.05) are used to select non-redundant svfeatures of statistical significance from the reproducible svfeatures. The synthetic minority over-sampling technique is utilized to balance the minority group in the training sets. The support vector machine is employed for RFIS construction, which is tuned in the training set using 10-fold stratified cross-validation and then evaluated in the test sets. The swvolumes with the consistent classification results are grouped and merged. Mode filtering is performed to remove very small subvolumes and create relatively large regions of completely uniform character. In addition, RFIS performance is evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, and Dice similarity coefficient (DSC). RESULTS 30249 phantom and 145008 patient image swvolumes were analyzed. Forty-nine (92.45% of 53) svfeatures represented excellent reproducibility(%COV<15). Forty-five features (91.84% of 49) included five categories that passed test-retest analysis. Thirteen svfeatures (28.89% of 45) svfeatures were selected for RFIS construction. RFIS showed an average (95% confidence interval) sensitivity of 0.848 (95% CI:0.844-0.883), a specificity of 0.821 (95% CI: 0.818-0.825), an accuracy of 83.48% (95% CI: 83.27%-83.70%), and an AUC of 0.906 (95% CI: 0.904-0.908) with cross-validation. The sensitivity, specificity, accuracy, and AUC were equal to 0.762 (95% CI: 0.754-0.770), 0.840 (95% CI: 0.837-0.844), 82.29% (95% CI: 81.90%-82.60%), and 0.877 (95% CI: 0.873-0.881) in the test set, respectively. GTV was segmented by grouping and merging swvolume with identical classification results. The mean DSC after mode filtering was 0.707 ± 0.093 in the training sets and 0.688 ± 0.072 in the test sets. CONCLUSION Reproducible svfeatures can capture the differences in QII among swvolumes. RFIS can be applied to swvolume classification, which achieves image segmentation by grouping and merging the swvolume with similar QII.
Collapse
Affiliation(s)
- Jiabing Gu
- Southeast UniversityLaboratory of Image Science and TechnologyJiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingCentre de Recherche en Information Biomédicale Sino‐français (CRIBs)NanjingP. R. China,Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Baosheng Li
- Southeast UniversityLaboratory of Image Science and TechnologyJiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingCentre de Recherche en Information Biomédicale Sino‐français (CRIBs)NanjingP. R. China,Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Huazhong Shu
- Southeast UniversityLaboratory of Image Science and TechnologyJiangsu Provincial Joint International Research Laboratory of Medical Information ProcessingCentre de Recherche en Information Biomédicale Sino‐français (CRIBs)NanjingP. R. China
| | - Jian Zhu
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina,Shandong Key Laboratory of Digital Medicine and Computer Assisted SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoP. R. China
| | - Qingtao Qiu
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Tong Bai
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
24
|
Wang L, Zhang L, Jiang B, Zhao K, Zhang Y, Xie X. Clinical application of deep learning and radiomics in hepatic disease imaging: a systematic scoping review. Br J Radiol 2022; 95:20211136. [PMID: 35816550 PMCID: PMC10162062 DOI: 10.1259/bjr.20211136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Artificial intelligence (AI) has begun to play a pivotal role in hepatic imaging. This systematic scoping review summarizes the latest progress of AI in evaluating hepatic diseases based on computed tomography (CT) and magnetic resonance (MR) imaging. METHODS We searched PubMed and Web of Science for publications, using terms related to deep learning, radiomics, imaging methods (CT or MR), and the liver. Two reviewers independently selected articles and extracted data from each eligible article. The Quality Assessment of Diagnostic Accuracy Studies-AI (QUADAS-AI) tool was used to assess the risk of bias and concerns regarding applicability. RESULTS The screening identified 45 high-quality publications from 235 candidates, including 8 on diffuse liver diseases and 37 on focal liver lesions. Nine studies used deep learning and 36 studies used radiomics. All 45 studies were rated as low risk of bias in patient selection and workflow, but 36 (80%) were rated as high risk of bias in the index test because they lacked external validation. In terms of concerns regarding applicability, all 45 studies were rated as low concerns. These studies demonstrated that deep learning and radiomics can evaluate liver fibrosis, cirrhosis, portal hypertension, and a series of complications caused by cirrhosis, predict the prognosis of malignant hepatic tumors, and differentiate focal hepatic lesions. CONCLUSIONS The latest studies have shown that deep learning and radiomics based on hepatic CT and MR imaging have potential application value in the diagnosis, treatment evaluation, and prognosis prediction of common liver diseases. The AI methods may become useful tools to support clinical decision-making in the future. ADVANCES IN KNOWLEDGE Deep learning and radiomics have shown their potential in the diagnosis, treatment evaluation, and prognosis prediction of a series of common diffuse liver diseases and focal liver lesions.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keke Zhao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:2056837. [PMID: 35578691 PMCID: PMC9107363 DOI: 10.1155/2022/2056837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Identifying an epidermal growth factor receptor (EGFR) mutation is important because EGFR tyrosine kinase inhibitors are the first-line treatment of choice for patients with EGFR mutation-positive lung adenocarcinomas (LUAC). This study is aimed at developing and validating a radiomics-based machine learning (ML) approach to identify EGFR mutations in patients with LUAC. We retrospectively collected data from 201 patients with positive EGFR mutation LUAC (140 in the training cohort and 61 in the validation cohort). We extracted 1316 radiomics features from preprocessed CT images and selected 14 radiomics features and 1 clinical feature which were most relevant to mutations through filter method. Subsequently, we built models using 7 ML approaches and established the receiver operating characteristic (ROC) curve to assess the discriminating performance of these models. In terms of predicting EGFR mutation, the model derived from radiomics features and combined models (radiomics features and relevant clinical factors) had an AUC of 0.79 (95% confidence interval (CI): 0.77-0.82), 0.86 (0.87-0.88), respectively. Our study offers a radiomics-based ML model using filter methods to detect the EGFR mutation in patients with LUAC. This convenient and low-cost method may be of help to noninvasively identify patients before obtaining tumor sample for molecule testing.
Collapse
|
26
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing Molecular and Histology Subtypes with a Data-Driven Analysis. Diagnostics (Basel) 2021; 11:diagnostics11122383. [PMID: 34943617 PMCID: PMC8700168 DOI: 10.3390/diagnostics11122383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Radiogenomic and radiotranscriptomic studies have the potential to pave the way for a holistic decision support system built on genomics, transcriptomics, radiomics, deep features and clinical parameters to assess treatment evaluation and care planning. The integration of invasive and routine imaging data into a common feature space has the potential to yield robust models for inferring the drivers of underlying biological mechanisms. In this non-small cell lung carcinoma study, a multi-omics representation comprised deep features and transcriptomics was evaluated to further explore the synergetic and complementary properties of these diverse multi-view data sources by utilizing data-driven machine learning models. The proposed deep radiotranscriptomic analysis is a feature-based fusion that significantly enhances sensitivity by up to 0.174 and AUC by up to 0.22, compared to the baseline single source models, across all experiments on the unseen testing set. Additionally, a radiomics-based fusion was also explored as an alternative methodology yielding radiomic signatures that are comparable to several previous publications in the field of radiogenomics. Furthermore, the machine learning multi-omics analysis based on deep features and transcriptomics achieved an AUC performance of up to 0.831 ± 0.09/0.925 ± 0.04 for the examined molecular and histology subtypes analysis, respectively. The clinical impact of such high-performing models can add prognostic value and lead to optimal treatment assessment by targeting specific oncogenes, namely the response of tyrosine kinase inhibitors of EGFR mutated or predicting the chemotherapy resistance of KRAS mutated tumors.
Collapse
|
28
|
Liu L, Xiao C, Sun Q. MiRNA-375 inhibits retinoblastoma progression through targeting ERBB2 and inhibiting MAPK1/MAPK3 signalling pathway. Cutan Ocul Toxicol 2021; 41:1-10. [PMID: 34711123 DOI: 10.1080/15569527.2021.1994587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Increasing evidence has shown that the dysregulation of miRNAs is involved in the pathogenesis of retinoblastoma (RB). This present study was aimed to investigate the significance of miR-375 in RB progression, and the underlying mechanism. MATERIALS AND METHODS The miR-375 expression was detected by RT-PCR. CCK-8 assay and transwell assays were used to measure RB cell viability, migration, and invasion. The downstream gene of miR-375 was verified by luciferase reporter assay. Western blot was applied to detect the related proteins of MAPK1/MAPK3 signalling pathway. RESULTS MiR-375 was decreased significantly in RB tissues, and its down-regulation was associated with the poor prognosis of RB patients. Over-expression of miR-375 inhibited RB cell proliferation, migration, and invasion. More importantly, miR-375 modulated ERBB2 expression negatively, and ERBB2 was confirmed as the target of miR-375. Moreover, ERBB2 overturned the inhibitory effect of miR-375 mimic on the progression of RB. MiR-375 mimic suppressed RB progression via inhibiting the activation of MAPK1/MAPK3 signalling pathway. CONCLUSIONS MiR-375 inhibited RB progression through targeting ERBB2 and suppressing MAPK1/MAPK3 signalling pathway, which might be a new target for the clinical treatment strategy.
Collapse
Affiliation(s)
- Lei Liu
- Department of Fundus Disease, Aier Eye Hospital Chongqing Children's, Chongqing City, China
| | - Chunlin Xiao
- Department of Ocular Surface and Cornea, Chongqing Aier Eye Hospital, Chongqing City, China
| | - Qiuyun Sun
- Department of Oculoplasty & Lacrimal System, Chongqing Aier Eye Hospital, Chongqing City, China
| |
Collapse
|
29
|
Zarogoulidis P, Matthaios D, Kosmidis C, Hohenforst-Schmidt W, Tsakiridis K, Mpaka S, Boukovinas I, Drougas D, Theofilatou V, Zaric B, Courcoutsakis N, Nikolaidis G, Huang H, Bai C. Effective early diagnosis for NSCLC: an algorithm. Expert Rev Respir Med 2021; 15:1437-1445. [PMID: 34403620 DOI: 10.1080/17476348.2021.1969916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Lung cancer still remains undiagnosed for most patients until the disease is inoperable. AREAS COVERED We performed search on PubMed with the keywords: EBUS, radial-EBUS, bronchoscopy, lung cancer, electromagnetic navigation, ct-biopsy, transthoracic biopsy. We present diagnostic equipment and imaging techniques such as positron emission tomography, endoscopical navigation systems, endobronchial ultrasound, radial-endobronchial ultrasound, transthoracic ultrasound biopsy, and computed tomography guided biopsies. EXPERT OPINION However, lack of early disease symptoms remains the most important issue and therefore we should direct our efforts to screening and early disease diagnosis. An algorithm is proposed for biopsy upon initial disease diagnosis.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- 3rd Department of Surgery, ``ahepa`` University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece.,Pulmonary Oncology Department, ``Bioclinic`` Private Hospital, Thessaloniki, Greece
| | | | | | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology/Pulmonology/Intensive Care/Nephrology, "Hof" Clinics, University of Erlangen, Hof, Germany
| | - Kosmas Tsakiridis
- Thoracic Oncology Department, ``Interbalkan`` European Medical Center, Thessaloniki, Greece
| | - Sofia Mpaka
- Oncology Department, ``Interbalkan`` European Medical Center, Thessaloniki, Greece
| | - Ioannis Boukovinas
- Oncology Department, ``Bioclinic`` Private Hospital, Thessaloniki, Greece
| | - Dimitris Drougas
- Nuclear Medicine Department, ``Bioiatriki`` Private PET-CT Laboratory, Thessaloniki, Greece
| | - Vasiliki Theofilatou
- Nuclear Medicine Department, ``Bioiatriki`` Private PET-CT Laboratory, Thessaloniki, Greece
| | - Bojan Zaric
- Faculty of Medicine, University of Novi Sad, Institute for Pulmonary Diseases of Vojvodina, Novi Sad, Serbia
| | - Nikolaos Courcoutsakis
- Radiology Department, Democritus University of Thrace, General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - George Nikolaidis
- Surgery Department, ``General Clinic`` Euromedica, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|