1
|
Kurhaluk N, Tkaczenko H. Recent Issues in the Development and Application of Targeted Therapies with Respect to Individual Animal Variability. Animals (Basel) 2025; 15:444. [PMID: 39943214 PMCID: PMC11815764 DOI: 10.3390/ani15030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This literature review explores the impact of molecular, genetic, and environmental factors on the efficacy of targeted therapies in veterinary medicine. Relevant studies were identified through systematic searches of PubMed, Web of Science, Scopus, and ScienceDirect using keywords such as "species-specific treatment strategies", "signalling pathways", "epigenetic and paragenetic influences", "targeted therapies", "veterinary medicine", "genetic variation", and "free radicals and oxidative stress". Inclusion criteria included studies focusing on species-specific therapeutic responses, genetic influences, and oxidative stress. To ensure that only the most recent and relevant evidence was included, only peer-reviewed publications from the last two decades were considered. Each study selected for analysis was critically appraised, with a particular emphasis on methodological quality, experimental design, and scientific contribution to the understanding of how environmental and biological factors influence therapeutic outcomes. A special emphasis was placed on studies that used a comparative, cross-species approach to assess variability in therapeutic responses and potential adverse effects. The review synthesises evidence on the role of epigenetic and paragenetic factors and highlights the importance of cross-species studies to understand how environmental and biological factors influence treatment outcomes. By highlighting genetic variation, oxidative stress, and individual species differences, the review argues for personalised and species-specific therapeutic approaches. The review emphasises that such an approach would improve veterinary care and inform future research aimed at optimising targeted therapies, ultimately leading to better animal health and treatment efficacy. A key contribution of the review is its emphasis on the need for more personalised treatment protocols that take into account individual genetic profiles and environmental factors; it also calls for a greater integration of cross-species studies.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
2
|
Rodrigues-Jesus J, Canadas-Sousa A, Santos M, Oliveira P, Figueira AC, Marrinhas C, Petrucci GN, Gregório H, Tinoco F, Goulart A, Felga H, Vilhena H, Dias-Pereira P. Level of Necrosis in Feline Mammary Tumors: How to Quantify, Why and for What Purpose? Animals (Basel) 2024; 14:3280. [PMID: 39595332 PMCID: PMC11591325 DOI: 10.3390/ani14223280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Necrosis is a common finding in human and animal neoplasms. The percentage of tumor necrosis is included in tumor grading schemes in veterinary oncology; however, evaluation methods are often overlooked. Different studies have assessed the prognostic value of tumor necrosis in feline mammary tumors with contradictory results, which could be related to methodologic variability. In this study, a comprehensive evaluation of tumor necrosis in feline mammary tumors (FMTs) was conducted, by applying a semi-quantitative and a quantitative methodology for assessing necrosis. The interobserver agreement, the relationship with clinicopathological characteristics and the prognostic value of necrosis were analyzed in 154 FMT cases. Although subjectivity in the assessment of necrosis existed, an almost perfect agreement (weighted quadratic k = 0.851) between two observers was obtained. Furthermore, there was a significant positive correlation between the semi-quantitative and quantitative methods. Necrosis was more common and more extensive in malignant tumors than in their benign counterparts. Despite the non-significant results in the survival analysis, extensive necrosis was significantly associated with aggressive clinicopathological features, such as higher histological grade, high mitotic count and lymphovascular invasion. Our results support the potential relevance of necrosis in FMT.
Collapse
Affiliation(s)
- Joana Rodrigues-Jesus
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, 4050-313 Porto, Portugal; (J.R.-J.); (A.C.-S.)
| | - Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, 4050-313 Porto, Portugal; (J.R.-J.); (A.C.-S.)
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, 3020-210 Coimbra, Portugal; (A.C.F.); (C.M.); (H.V.)
| | - Marta Santos
- Department of Microscopy, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, 4050-313 Porto, Portugal;
| | - Pedro Oliveira
- Department of Populations Studies, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, 4050-313 Porto, Portugal;
| | - Ana Catarina Figueira
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, 3020-210 Coimbra, Portugal; (A.C.F.); (C.M.); (H.V.)
- OneVet Veterinary University Hospital of Coimbra (HVUC), 3020-210 Coimbra, Portugal
| | - Carla Marrinhas
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, 3020-210 Coimbra, Portugal; (A.C.F.); (C.M.); (H.V.)
- OneVet Veterinary Hospital of Baixo Vouga (HVBV), 3750-742 Águeda, Portugal
| | - Gonçalo N. Petrucci
- OneVet Veterinary Hospital of Porto (HVP), 4250-475 Porto, Portugal;
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo Gregório
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- AniCura Veterinary Hospital Centre (CHV), 4100-320 Porto, Portugal
| | - Flora Tinoco
- Dra. Flora Tinoco Veterinary Clinic, 4475-498 Maia, Portugal;
| | | | - Helena Felga
- Clínica dos Gatos Veterinary Clinic, 4100-207 Porto, Portugal;
| | - Hugo Vilhena
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, 3020-210 Coimbra, Portugal; (A.C.F.); (C.M.); (H.V.)
- OneVet Veterinary University Hospital of Coimbra (HVUC), 3020-210 Coimbra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory of Animal and Veterinary Sciences AL4AnimaLS, 1300-477 Lisbon, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, 4050-313 Porto, Portugal; (J.R.-J.); (A.C.-S.)
| |
Collapse
|
3
|
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel) 2024; 17:1048. [PMID: 39204153 PMCID: PMC11357454 DOI: 10.3390/ph17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.
Collapse
Affiliation(s)
- Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| |
Collapse
|
4
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
5
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
YU TW, YAMAMOTO H, MORITA S, FUKUSHIMA R, ELBADAWY M, USUI T, SASAKI K. Comparative pharmacokinetics of tyrosine kinase inhibitor, lapatinib, in dogs and cats following single oral administration. J Vet Med Sci 2024; 86:317-321. [PMID: 38281758 PMCID: PMC10963087 DOI: 10.1292/jvms.23-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Lapatinib is an orally administered tyrosine kinase inhibitor used to treat human epidermal growth factor receptor 2 (HER2) -overexpressing breast cancers in humans. Recently, the potential of lapatinib treatment against canine urothelial carcinoma or feline mammary tumor was investigated. However, the pharmacokinetic studies of lapatinib in dogs and cats are not well-defined. In the present study, the pharmacokinetic characteristics of lapatinib in both cats and dogs after a single oral administration at a dose of 25 mg/kg were compared with each other. Lapatinib was administered orally to four female laboratory cats and four female beagle dogs. Blood samples were collected over time, and the plasma lapatinib concentrations were analyzed by HPLC. Following a single dose of 25 mg/kg, the averaged maximum plasma concentration (Cmax) of lapatinib in cats was 0.47 μg/mL and achieved at 7.1 hr post-administration, while the Cmax in dogs was 1.63 μg/mL and achieved at 9.5 hr post-administration. The mean elimination half-life was 6.5 hr in cats and 7.8 hr in dogs. The average area under the plasma concentration-time curve of dogs (37.2 hr·μg/mL) was significantly higher than that of cats (7.97 hr·μg/mL). These results exhibited slow absorptions of lapatinib in both animals after oral administration. The Cmax observed in cats was significantly lower and the half-life was shorter than those observed in dogs. Based on these results, a larger dose or shorter dosing intervals might be recommended in cats to achieve similar plasma concentration as dogs.
Collapse
Affiliation(s)
- Ting-Wei YU
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru YAMAMOTO
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shohei MORITA
- Animal Emergency Medical Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryuji FUKUSHIMA
- Animal Emergency Medical Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohamed ELBADAWY
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tatsuya USUI
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki SASAKI
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Bispecific antibodies revolutionizing breast cancer treatment: a comprehensive overview. Front Immunol 2023; 14:1266450. [PMID: 38111570 PMCID: PMC10725925 DOI: 10.3389/fimmu.2023.1266450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-Ya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
8
|
Žagar Ž, Schmidt JM. A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals (Basel) 2023; 13:3059. [PMID: 37835664 PMCID: PMC10572079 DOI: 10.3390/ani13193059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become invaluable in the treatment of human and canine malignancies, but their role in feline oncology is less defined. While toceranib phosphate and masitinib mesylate are licensed for use in dogs, no TKI is yet approved for cats. This review systematically maps the research conducted on the expression of tyrosine kinases in neoplastic and non-neoplastic domestic feline tissues, as well as the in vitro/in vivo use of TKIs in domestic cats. We identify and discuss knowledge gaps and speculate on the further research and potential indications for TKI use in cats. A comprehensive search of three electronic databases and relevant paper reference lists identified 139 studies meeting the inclusion criteria. The most commonly identified tumors were mast cell tumors (MCTs), mammary and squamous cell carcinomas and injection-site sarcomas. Based on the current literature, toceranib phosphate appears to be the most efficacious TKI in cats, especially against MCTs. Exploring the clinical use of TKIs in mammary carcinomas holds promise. Despite the progress, currently, the evidence falls short, underscoring the need for further research to discover new indications in feline oncology and to bridge the knowledge gaps between human and feline medicine.
Collapse
Affiliation(s)
- Žiga Žagar
- IVC Evidensia Small Animal Clinic Hofheim, 65719 Hofheim am Taunus, Germany
| | | |
Collapse
|
9
|
Frénel JS, Nguyen F. Mammary carcinoma: Comparative oncology between small animals and humans-New therapeutic tools. Reprod Domest Anim 2023; 58 Suppl 2:102-108. [PMID: 37312625 DOI: 10.1111/rda.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
The poor outcomes associated with mammary carcinomas (MCs) in dogs and cats in terms of locoregional recurrence, distant metastasis and survival, highlight the need for better management of mammary cancers in small animals. By contrast, the outcomes of women with breast cancer (BC) have dramatically improved during the last 10 years, notably thanks to new therapeutic strategies. The aim of this article was to imagine what could be the future of therapy for dogs and cats with MCs if it became inspired from current practices in human BC. This article focuses on the importance of taking into account cancer stage and cancer subtypes in therapeutic plans, on locoregional treatments (surgery, radiation therapy), new developments in endocrine therapy, chemotherapy, PARP inhibitors and immunotherapy. Ideally, multimodal treatment regimens would be chosen according to cancer stage and cancer subtypes, and according to predictive factors that are still to be defined.
Collapse
Affiliation(s)
- Jean-Sébastien Frénel
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Institut de Cancérologie de l'Ouest, Site René Gauducheau, Saint-Herblain, France
| | - Frédérique Nguyen
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Oniris, Nantes, France
| |
Collapse
|
10
|
Valente S, Nascimento C, Gameiro A, Ferreira J, Correia J, Ferreira F. TIM-3 Is a Potential Immune Checkpoint Target in Cats with Mammary Carcinoma. Cancers (Basel) 2023; 15:cancers15020384. [PMID: 36672332 PMCID: PMC9856819 DOI: 10.3390/cancers15020384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Recent findings in human breast cancer (HBC) indicate that T-cell immunoglobulin and mucin-domain-containing molecule-3 (TIM-3)-targeted therapies may effectively activate anticancer immune responses. Although feline mammary carcinoma (FMC) is a valuable cancer model, no studies on TIM-3 have been developed in this species. Thus, we evaluated the expression of TIM-3 by immunohistochemistry in total (t), stromal (s), and intra-tumoral (i) tumor-infiltrating lymphocytes (TILs) and in cancer cells, of 48 cats with mammary carcinoma. In parallel, serum TIM-3 levels were quantified using ELISA and the presence of somatic mutations in the TIM-3 gene was evaluated in 19 tumor samples. sTILs-TIM3+ were more frequent than iTILs-TIM-3+, with the TIM-3 ex-pression in sTILs and cancer cells being associated with more aggressive clinicopathological features. In contrast, the TIM-3 expression in iTILs and tTILs was associated with a more benign clinical course. Moreover, the serum TIM-3 levels were lower in animals with FMC when compared to healthy animals (p < 0.001). Only one somatic mutation was found in the TIM-3 gene, at intron 2, in one tumor sample. Altogether, our results suggest that the expression of TIM-3 among TILs subpopulations and cancer cells may influence the clinical outcome of cats with FMC, in line with the previous reports in HBC.
Collapse
Affiliation(s)
- Sofia Valente
- CIISA—Center of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Catarina Nascimento
- CIISA—Center of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andreia Gameiro
- CIISA—Center of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - João Ferreira
- iMM João Lobo Antunes, University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Jorge Correia
- CIISA—Center of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- CIISA—Center of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence: ; Tel.: +(351)-21-365-2800 (ext. 431234)
| |
Collapse
|
11
|
Soares M, Correia AN, Batista MR, Correia J, Ferreira F. fHER2, PR, ER, Ki-67 and Cytokeratin 5/6 Expression in Benign Feline Mammary Lesions. Animals (Basel) 2022; 12:1599. [PMID: 35804497 PMCID: PMC9264830 DOI: 10.3390/ani12131599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Biomarkers are essential in the characterization of neoplastic lesions and aid not only in the classification of the nature of the lesions, but also in the understanding of their ontogeny, development and prognosis. In cats, while mammary carcinomas are increasingly being characterized, information on their benign lesions is still scarce. Indeed, a better characterization of benign lesions could have an important role in unravelling mammary oncogenesis, similar to that in human breast cancer. Thus, in this study, the expression of five markers was analyzed in 47 benign mammary lesions (hyperplasia, dysplasia and benign tumors) collected from 27 queens. Dysplastic and hyperplastic lesions were the most common (41/47, 81.7%). Most of the lesions were classified as ER positive (43/47, 91.5%), PR negative (30/47, 63.8%), fHER2 negative (29/47, 64.4%), CK 5/6 negative (36/47, 76.6%) and with a low Ki-67 index (37/47, 78.7%). Statistical analysis revealed a correlation between younger ages and ER positivity (p = 0.013) and between larger lesions and negative PR status (p = 0.038). These results reinforce the importance of evaluating the expression of the ER status, prevalent in benign lesions, as a putative precursor in cancer progression.
Collapse
Affiliation(s)
- Maria Soares
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (M.S.); (M.R.B.); (J.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- IUEM—Instituto Universitário Egas Moniz, Egas Moniz—Cooperativas de Ensino Superior, Campus Universitário, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Assunção N. Correia
- Basic Sciences Academic Division, FMV-ULHT—Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Mariana R. Batista
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (M.S.); (M.R.B.); (J.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Basic Sciences Academic Division, FMV-ULHT—Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Jorge Correia
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (M.S.); (M.R.B.); (J.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (M.S.); (M.R.B.); (J.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
12
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
13
|
Damiani I, Castiglioni S, Sochaj-Gregorczyk A, Bonacina F, Colombo I, Rusconi V, Otlewski J, Corsini A, Bellosta S. Purification and In Vitro Evaluation of an Anti-HER2 Affibody-Monomethyl Auristatin E Conjugate in HER2-Positive Cancer Cells. BIOLOGY 2021; 10:biology10080758. [PMID: 34439990 PMCID: PMC8389717 DOI: 10.3390/biology10080758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Antibody-drug conjugates (ADCs) represent an innovative class of anticancer agents specifically aimed at targeting cancer cells, reducing damage to healthy tissues but showing some weaknesses. A promising approach for the development of high-affinity tumor targeting ADCs is the use of engineered protein drugs, such as affibody molecules. Our aim was to develop a more efficient purification method for the cytotoxic conjugate ZHER2:2891DCS-MMAE that targets human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. The conjugate is based on ZHER2:2891 affibody and a drug conjugation sequence (DCS), which allowed for site-specific conjugation of the cytotoxic auristatin E molecule (MMAE) to the affibody. We tested the in vitro efficacy of ZHER2:2891DCS-MMAE on several parameters, such as cell viability, proliferation, migration, and apoptosis. Our results confirmed that the cytotoxic conjugate efficiently interacts with high affinity with HER2 positive cancer cells, allowing the selective and specific delivery of the cytotoxic payload. Abstract A promising approach for the development of high-affinity tumor targeting ADCs is the use of engineered protein drugs, such as affibody molecules, which represent a valuable alternative to monoclonal antibodies (mAbs) in cancer-targeted therapy. We developed a method for a more efficient purification of the ZHER2:2891DCS affibody conjugated with the cytotoxic antimitotic agent auristatin E (MMAE), and its efficacy was tested in vitro on cell viability, proliferation, migration, and apoptosis. The effects of ZHER2:2891DCS-MMAE were compared with the clinically approved monoclonal antibody trastuzumab (Herceptin®). To demonstrate that ZHER2:2891DCS-MMAE can selectively target HER2 overexpressing tumor cells, we used three different cell lines: the human adenocarcinoma cell lines SK-BR-3 and ZR-75-1, both overexpressing HER2, and the triple-negative breast cancer cell line MDA-MB-231. MTT assay showed that ZHER2:2891DCS-MMAE induces a significant time-dependent toxic effect in SK-BR-3 cells. A 30% reduction of cell viability was already found after 10 min exposure at a concentration of 7 nM (IC50 of 80.2 nM). On the contrary, MDA-MB-231 cells, which express basal levels of HER2, were not affected by the conjugate. The cytotoxic effect of the ZHER2:2891DCS-MMAE was confirmed by measuring apoptosis by flow cytometry. In SK-BR-3 cells, increasing concentrations of conjugated affibody induced cell death starting from 10 min of treatment, with the strongest effect observed after 48 h. Overall, these results demonstrate that the ADC, formed by the anti-HER2 affibody conjugated to monomethyl auristatin E, efficiently interacts with high affinity with HER2 positive cancer cells in vitro, allowing the selective and specific delivery of the cytotoxic payload.
Collapse
Affiliation(s)
- Isabella Damiani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
| | - Silvia Castiglioni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
| | - Alicja Sochaj-Gregorczyk
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland;
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
| | - Irma Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
| | - Valentina Rusconi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50137 Wroclaw, Poland;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, Italy
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (I.D.); (S.C.); (F.B.); (I.C.); (V.R.); (A.C.)
- Correspondence: ; Tel.: +39-0250318392
| |
Collapse
|
14
|
Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model. Biochim Biophys Acta Rev Cancer 2021; 1876:188587. [PMID: 34237352 DOI: 10.1016/j.bbcan.2021.188587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
In recent years, the tumor microenvironment (TME) has been a research hotspot, as it is composed of distinct cellular and non-cellular elements that may influence the diagnosis, prognosis, and treatment of breast cancer patients. Cancer cells are able to escape immune control through an immunoediting process which depends on complex communication networks between immune and cancer cells. Thus, a better understanding of the immune cell infiltrate in the breast cancer microenvironment is crucial for the development of more effective therapeutic approaches. In this review article, we overview the different actors that orchestrate the complexity of the TME, including tumor infiltrating lymphocytes (TILs), natural killer cells, tumor infiltrating dendritic cells (TIDCs), tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), cancer associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), distinct pro-angiogenic factors and immune checkpoint biomarkers. Additionally, we summarize the recent advances in the TME of feline mammary carcinoma (FMC). FMC has been proposed as a reliable cancer model for the study of human breast cancer, as they share clinicopathological, histopathological and epidemiological features, as well as the pathways involved in cancer initiation and progression.
Collapse
|
15
|
Leis-Filho AF, de Faria Lainetti P, Emiko Kobayashi P, Fonseca-Alves CE, Laufer-Amorim R. Effects of Lapatinib on HER2-Positive and HER2-Negative Canine Mammary Carcinoma Cells Cultured In Vitro. Pharmaceutics 2021; 13:897. [PMID: 34204236 PMCID: PMC8235449 DOI: 10.3390/pharmaceutics13060897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
HER2 is a prognostic and predictive marker widely used in breast cancer. Lapatinib is a tyrosine kinase inhibitor that works by blocking the phosphorylation of the receptor HER2. Its use is related to relatively good results in the treatment of women with HER2+ breast cancer. Thus, this study aimed to verify the effects of lapatinib on four canine primary mammary gland carcinoma cell cultures and two paired metastatic cell cultures. Cultures were treated with lapatinib at concentrations of 100, 500, 1000 and 3000 nM for 24 h and the 50% inhibitory concentration (IC50) for each cell culture was determined. In addition, a transwell assay was performed to assess the ability of lapatinib to inhibit cell migration. Furthermore, we verified HER2 expression by RT-qPCR analysis of cell cultures and formalin-fixed paraffin-embedded tissues from samples corresponding to those used in cell culture. Lapatinib was able to inhibit cell proliferation in all cell cultures, but it was not able to inhibit migration in all cell cultures. The higher the expression of HER2 in a culture, the more sensitive the culture was to treatment. This relationship may be an indication that the expression of HER2 may be a predictive factor and opens a new perspective for the treatment of primary and metastatic mammary gland cancer.
Collapse
Affiliation(s)
- Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University-UNESP, Botucatu 18618-681, Brazil; (P.d.F.L.); (C.E.F.-A.)
- Institute of Health Sciences, Paulista University-UNIP, Bauru 17048-290, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University-UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.)
| |
Collapse
|