1
|
Balasubramanian A, Hsu AY, Ghimire L, Tahir M, Devant P, Fontana P, Du G, Liu X, Fabin D, Kambara H, Xie X, Liu F, Hasegawa T, Xu R, Yu H, Wei W, Chen M, Kolakowski S, Trauger S, Larsen MR, Wei W, Wu H, Kagan JC, Lieberman J, Luo HR. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci Immunol 2024; 9:eadn1452. [PMID: 38530158 PMCID: PMC11367861 DOI: 10.1126/sciimmunol.adn1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1β release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Arumugam Balasubramanian
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Alan Y. Hsu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Laxman Ghimire
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Muhammad Tahir
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
- Biomedical Mass Spectrometry and Systems Biology, University of Southern Denmark; Odense, DK
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School; 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Xing Liu
- Department of Pediatrics, Harvard Medical School; Program in Cellular and Molecular Medicine; Boston Children’s Hospital, Boston, MA 02115, USA
| | - Dang Fabin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School; Boston, MA, USA
| | - Hiroto Kambara
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Fei Liu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Tomoya Hasegawa
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Rong Xu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine; 1400 VFW Parkway, West Roxbury, MA 02132 USA
| | - Wenyi Wei
- Department of Pediatrics, Harvard Medical School; Program in Cellular and Molecular Medicine; Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mei Chen
- Harvard Center for Mass Spectrometry, Harvard University; Boston, MA 02115, USA
| | - Steven Kolakowski
- Harvard Center for Mass Spectrometry, Harvard University; Boston, MA 02115, USA
| | - Sunia Trauger
- Harvard Center for Mass Spectrometry, Harvard University; Boston, MA 02115, USA
| | - Martin Røssel Larsen
- Biomedical Mass Spectrometry and Systems Biology, University of Southern Denmark; Odense, DK
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School; Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School; 300 Longwood Avenue, Boston, MA 02115, USA
| | - Judy Lieberman
- Department of Pediatrics, Harvard Medical School; Program in Cellular and Molecular Medicine; Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hongbo R. Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children’s Hospital; Enders Research Building, Room 811, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
3
|
Nůsková H, Cortizo FG, Schwenker LS, Sachsenheimer T, Diakonov EE, Tiebe M, Schneider M, Lohbeck J, Reid C, Kopp-Schneider A, Helm D, Brügger B, Miller AK, Teleman AA. Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome. J Biol Chem 2023; 299:105088. [PMID: 37495107 PMCID: PMC10470219 DOI: 10.1016/j.jbc.2023.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.
Collapse
Affiliation(s)
- Hana Nůsková
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabiola Garcia Cortizo
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Sophie Schwenker
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Egor E Diakonov
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Tiebe
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Mass Spectrometry Based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Lohbeck
- Research Group Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carissa Reid
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Dominic Helm
- Mass Spectrometry Based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Aubry K Miller
- Research Group Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Grisanti LA. TRAIL and its receptors in cardiac diseases. Front Physiol 2023; 14:1256852. [PMID: 37621762 PMCID: PMC10445540 DOI: 10.3389/fphys.2023.1256852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Loss of cardiomyocytes that occurs during many types of damage to the heart such as ischemic injury and stress caused by pressure overload, diminishes cardiac function due to their limited regenerative capacity and promotes remodeling, which further damages the heart. Cardiomyocyte death occurs through two primary mechanisms, necrosis and apoptosis. Apoptosis is a highly regulated form of cell death that can occur through intrinsic (mitochondrial) or extrinsic (receptor mediated) pathways. Extrinsic apoptosis occurs through a subset of Tumor Necrosis Receptor (TNF) family receptors termed "Death Receptors." While some ligands for death receptors have been extensively studied in the heart, such as TNF-α, others have been virtually unstudied. One poorly characterized cardiac TNF related ligand is TNF-Related Apoptosis Inducing Ligand (TRAIL). TRAIL binds to two apoptosis-inducing receptors, Death Receptor (DR) 4 and DR5. There are also three decoy TRAIL receptors, Decoy Receptor (DcR) 1, DcR2 and osteoprotegerin (OPG). While TRAIL has been extensively studied in the cancer field due to its ability to selectively induce apoptosis in transformed cell types, emerging clinical evidence points towards a role for TRAIL and its receptors in cardiac pathology. This article will highlight our current understanding of TRAIL and its receptors in normal and pathological conditions in the heart.
Collapse
Affiliation(s)
- Laurel A. Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Hong K, Yang Q, Yin H, Zhang J, Yu B. SDR16C5 promotes proliferation and migration and inhibits apoptosis in pancreatic cancer. Open Life Sci 2023; 18:20220630. [PMID: 37360782 PMCID: PMC10290281 DOI: 10.1515/biol-2022-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Pancreatic cancer (PAAD) is usually found when it is already in its advanced stage, which has limited options available for treatment and poor overall survival. The SDR16C5 gene is necessary for embryonic and adult tissue differentiation, development, and apoptosis, and it also participates in immune response and regulates energy metabolism. However, the role of SDR16C5 in PAAD remains unclear. In this study, we find that SDR16C5 was highly expressed in multiple tumors including PAAD. Furthermore, higher expression of SDR16C5 was significantly associated with poorer survival. We also find that the knockdown of SDR16C5 can inhibit PAAD cell proliferation and promote cell apoptosis by repressing Bcl-2, cleaved caspase 3, and cleaved caspase 9 protein expression. Moreover, silencing SDR16C5 inhibits the migration of PANC-1 and SW1990 cells by interrupting epithelial-mesenchymal transition. KEGG pathway analysis and immunofluorescence staining indicate that SDR16C5 is associated with immunity and may also participate in the development of PAAD through the IL-17 signaling pathway. Collectively, our findings provide evidence that SDR16C5 is overexpressed in PAAD patients and promotes its proliferation, migration, invasion, and apoptosis-inhibition of PAAD cells. Thus, SDR16C5 may be a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
- Kunqiao Hong
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immune-related Disease, Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Haisen Yin
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianwei Zhang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Subtype Classification, Immune Infiltration, and Prognosis Analysis of Lung Adenocarcinoma Based on Pyroptosis-Related Genes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1371315. [PMID: 36277882 PMCID: PMC9581708 DOI: 10.1155/2022/1371315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
The effect of pyroptosis-related genes (PRGs) on the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Thus, this study is aimed at evaluating the prognostic value of PRGs in patients with LUAD and to elucidate their role in the TME and their effect on immunotherapy. Transcriptomic and clinical data were obtained from the Cancer Genome Atlas and the Gene Expression Omnibus databases (GSE3141, GSE31210). Patients with LUAD were classified using consistent clustering, and the differences in the TME for each type were determined using the ESTIMATE and CIBERSORT algorithms. PRGs were screened using univariate regression analysis, and a prognostic risk model was constructed using LASSO regression analysis. The tumor mutational burden and the tumor immune dysfunction and exclusion algorithms were used to predict therapeutic sensitivity in LUAD patients. Then, we evaluated the potential therapeutic interventions using the GDSC database. LUAD patients in cluster 2 had significantly shorter overall survival and progression-free survival rates, lower immune scores, and higher infiltration of T follicular helper cells than those in cluster 1. We used five PRGs to classify patients with LUAD into different risks groups and found that the high-risk group is sensitive to immunotherapy; however, its immune-related pathways were inhibited, which may be related to tumor metabolic reprogramming. Lastly, we identified several potential therapeutic drugs for application in low-risk patients who were less sensitive to immunotherapy. Overall, our findings showed that PRGs can be used to predict prognosis and may aid in the development of personalized therapeutic strategies in LUAD patients.
Collapse
|
7
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
8
|
Fritsch J, Frankenheim J, Marischen L, Vadasz T, Troeger A, Rose-John S, Schmidt-Arras D, Schneider-Brachert W. Roles for ADAM17 in TNF-R1 Mediated Cell Death and Survival in Human U937 and Jurkat Cells. Cells 2021; 10:3100. [PMID: 34831323 PMCID: PMC8620378 DOI: 10.3390/cells10113100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Julia Frankenheim
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Lothar Marischen
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, 93053 Regensburg, Germany; (L.M.); (A.T.)
| | - Timea Vadasz
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| | - Anja Troeger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, 93053 Regensburg, Germany; (L.M.); (A.T.)
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany;
| | - Dirk Schmidt-Arras
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany; (J.F.); (T.V.); (W.S.-B.)
| |
Collapse
|