1
|
PANG GUANTING, LI YAOHAN, SHI QIWEN, TIAN JINGKUI, LOU HANMEI, FENG YUE. Omics sciences for cervical cancer precision medicine from the perspective of the tumor immune microenvironment. Oncol Res 2025; 33:821-836. [PMID: 40191729 PMCID: PMC11964870 DOI: 10.32604/or.2024.053772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 04/09/2025] Open
Abstract
Immunotherapies have demonstrated notable clinical benefits in the treatment of cervical cancer (CC). However, the development of therapeutic resistance and diverse adverse effects in immunotherapy stem from complex interactions among biological processes and factors within the tumor immune microenvironment (TIME). Advanced omic technologies offer novel insights into a more expansive and thorough layer of the TIME. Furthermore, integrating multidimensional omics within the frameworks of systems biology and computational methodologies facilitates the generation of interpretable data outputs to characterize the clinical and biological trajectories of tumor behavior. In this review, we present advanced omics technologies that utilize various clinical samples to address scientific inquiries related to immunotherapies for CC, highlighting their utility in identifying metastasis dissemination, recurrence risk, and therapeutic resistance in patients treated with immunotherapeutic approaches. This review elaborates on the strategy for integrating multi-omics data through artificial intelligence algorithms. Additionally, an analysis of the obstacles encountered in the multi-omics analysis process and potential avenues for future research in this domain are presented.
Collapse
Affiliation(s)
- GUANTING PANG
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - YAOHAN LI
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - QIWEN SHI
- Collaborative Innovation Center for Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - JINGKUI TIAN
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - HANMEI LOU
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - YUE FENG
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| |
Collapse
|
2
|
Ewida H, Benson H, Tareq S, Ahmed MS. Molecular Targets and Small Molecules Modulating Acetyl Coenzyme A in Physiology and Diseases. ACS Pharmacol Transl Sci 2025; 8:36-46. [PMID: 39816789 PMCID: PMC11729435 DOI: 10.1021/acsptsci.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain. This Review delves into the role of acetyl-CoA in both physiological and pathological conditions, shedding light on the key players in its formation within the cytosol. We specifically focus on the physiological impact of malonyl-CoA decarboxylase (MCD), acetyl-CoA synthetase2 (ACSS2), and ATP-citrate lyase (ACLY) on metabolism, glucose homeostasis, free fatty acid utilization, and post-translational modification cellular processes. Additionally, we present the pathological implications of MCD, ACSS2, and ACLY in various clinical manifestations. This Review also explores the potential and limitations of targeting MCD, ACSS2, and ACLY using small molecules in different clinical settings.
Collapse
Affiliation(s)
- Heba Ewida
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
- Department
of Biochemistry, Faculty of Pharmacy, Future
University in Egypt, Cairo 11835, Egypt
| | - Harrison Benson
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Syed Tareq
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| | - Mahmoud Salama Ahmed
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States
| |
Collapse
|
3
|
Yin M, Weng Y, Qi T. PLOD2 exacerbates cervical squamous cell carcinoma by suppressing p53 by binding to YAP1. Mol Med Rep 2025; 31:23. [PMID: 39513600 DOI: 10.3892/mmr.2024.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Procollagen‑lysine, 2‑oxoglutarate 5‑dioxygenase 2 (PLOD2) has been identified as an oncogene involved in the progression of several human cancers. However, its role in cervical squamous cell carcinoma (CESC) and its underlying mechanisms are not well understood. In the present study, several public databases, RT‑qPCR and western blotting were employed to detect the expression of PLOD2 and the prognosis in CESC. Cell counting kit‑8 assay, wound healing assay, Transwell assay, western blotting and flow cytometry were utilized to assess the proliferation, migration and cell apoptosis of CESC cells. Cellular senescence was examined by RT‑qPCR and β‑galactosidase staining. Prediction of PLOD2 binding to Yes‑associated protein 1 (YAP1) was assessed using BioGrid, HDock and co‑immunoprecipitation, and p53 and p21 signaling were assessed using immunofluorescence staining. The findings indicated that the expression of PLOD2 was elevated in CESC tissues and cell lines, and PLOD2 silencing caused the inhibition of CESC cell proliferation, migration and the promotion of apoptosis and senescence of CESC cells. PLOD2 was predicted to be bound to YAP1 and YAP1 overexpression reversed the effects of PLOD2 silencing on CESC cell proliferation, cell migration, apoptosis and senescence. In addition, PLOD2 facilitated CESC progression by regulating the P53 pathway through YAP1. PLOD2 exerted pro‑oncogenic effects on CESC through the p53 pathway by binding to YAP1. These findings provide new perspectives for the future study of PLOD2‑targeted therapy for CESC.
Collapse
Affiliation(s)
- Meilin Yin
- Clinical Laboratory Department, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100021, P.R. China
| | - Yanhua Weng
- Clinical Laboratory Department, Beijing Da Wang Lu Emergency Hospital, Beijing 100021, P.R. China
| | - Tianshu Qi
- Clinical Laboratory Department, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100021, P.R. China
| |
Collapse
|
4
|
Yang J, Wang H, Li B, Liu J, Zhang X, Wang Y, Peng J, Gao L, Wang X, Hu S, Zhang W, Hong L. Inhibition of ACSS2 triggers glycolysis inhibition and nuclear translocation to activate SIRT1/ATG5/ATG2B deacetylation axis, promoting autophagy and reducing malignancy and chemoresistance in ovarian cancer. Metabolism 2025; 162:156041. [PMID: 39362518 DOI: 10.1016/j.metabol.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer, characterized by a high dependence on glycolysis and an enhanced utilization of acetate as an alternative carbon source. ACSS2 is a critical regulator of acetate metabolism, playing a significant role in the development and progression of various malignancies. ACSS2 facilitates the conversion of acetate to acetyl-CoA, which participates in multiple metabolic pathways and functions as an epigenetic regulator of protein acetylation, thereby modulating key cellular processes such as autophagy. However, the roles and intrinsic connections of ACSS2, glycolysis, protein acetylation, and autophagy in ovarian cancer (OC) remain to be elucidated. BASIC PROCEDURES Utilizing clinical specimens and online databases, we analysed the expression of ACSS2 in OC and its relationship with clinical prognosis. By knocking down ACSS2, we evaluated its effects on the malignant phenotype, acetate metabolism, glycolysis, and autophagy. The metabolic alterations in OC cells were comprehensively analysed using Seahorse assays, transmission electron microscopy, membrane potential measurements, and stable-isotope labeling techniques. CUT&TAG and co-immunoprecipitation techniques were employed to explore the deacetylation of autophagy-related proteins mediated by ACSS2 via SIRT1. Additionally, through molecular docking, transcriptome sequencing, and metabolomics analyses, we validated the pharmacological effects of paeonol on ACSS2 and the glycolytic process in OC cells. Finally, both in vitro and in vivo experiments were performed to investigate the impact of paeonol on autophagy and its anti-OC effects mediated through the ACSS2/SIRT1 deacetylation axis. MAIN FINDINGS ACSS2 is significantly upregulated in OC and is associated with poor prognosis. Knockdown of ACSS2 inhibits OC cells proliferation, migration, invasion, angiogenesis, and platinum resistance, while reducing tumour burden in vivo. Mechanistically, inhibiting ACSS2 reduces acetate metabolism and suppresses glycolysis by targeting HXK2. This glycolytic reduction promotes the translocation of ACSS2 from the cytoplasm to the nucleus, leading to increased expression of the deacetylase SIRT1. SIRT1 mediates the deacetylation of autophagy-related proteins, such as ATG5 and ATG2B, thereby significantly activating autophagy in OC cells and exerting antitumor effects. Paeonol inhibits acetate metabolism and glycolysis in OC cells by targeting ACSS2. Paeonol activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation axis, demonstrating inhibition of OC in vitro and in vivo. PRINCIPAL CONCLUSIONS Pae can serve as an effective, low-toxicity, multi-targeted drug targeting ACSS2 and glycolysis. It activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation signalling cascade, thereby exerting anti-OC effects. Our study provides new insights into the malignant mechanisms of OC and offers a novel strategy for its treatment.
Collapse
Affiliation(s)
- Jiang Yang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China; Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China
| | - Haoyu Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Bingshu Li
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jingchun Liu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ying Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jiaxin Peng
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Likun Gao
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xinqi Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Siyuan Hu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wenyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Li Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
5
|
Li C, Liu W, Liu Y, Wang W, Deng W. Role of ATP citrate lyase and its complementary partner on fatty acid synthesis in gastric cancer. Sci Rep 2024; 14:30043. [PMID: 39627427 PMCID: PMC11615372 DOI: 10.1038/s41598-024-81448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
ATP citrate lyase (ACLY) and acyl-CoA short-chain synthetases 2 (ACSS2) are key enzymes in lipid metabolism. We explored the role of ACLY in gastric cancer (GC) and the effect of ACLY and ACSS2 compensation on GC growth. We used immunohistochemistry to verify the expression level of ACLY in GC, shRNA to stably knock down the expression level of ACLY in GC cells. The expression levels of lipid metabolizing enzymes were verified by qPCR and WB, and targeted lipidomics and quantification of lipid metabolism-related indicators helped us to understand the changes in lipid metabolism. Finally, subcutaneous graft tumors validate our findings from in vitro experiments. ACLY is upregulated in GC tissues, downregulation of ACLY reduced lipid accumulation and inhibited GC proliferation, migration, and invasion in vitro. ACSS2 maintains cell growth by compensatory elevation to maintain fatty acid synthesis activity in ACLY-depleted GC cells. Inhibition of ACSS2 enhanced the inhibitory effect of downregulation of ACLY on the growth of transplanted tumors in nude mice. Downregulation of ACLY inhibited GC cell growth in vitro and in vivo. ACSS2 was compensated to increase to maintain cell growth in ACLY-depleted GC cells.
Collapse
Affiliation(s)
- Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Youzhao Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
6
|
Liu J, Hu D, Wang Y, Zhou X, Jiang L, Wang P, Lai H, Wang Y, Xiao H. Exploration of a Predictive Model for Keloid and Potential Therapeutic Drugs Based on Immune Infiltration and Cuproptosis-Related Genes. J Burn Care Res 2024; 45:1217-1231. [PMID: 38334429 DOI: 10.1093/jbcr/irae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 02/10/2024]
Abstract
The aim of this study was to investigate the correlation between cuproptosis-related genes and immunoinfiltration in keloid, develop a predictive model for keloid occurrence, and explore potential therapeutic drugs. The microarray datasets (GSE7890 and GSE145725) were obtained from Gene Expression Omnibus database to identify the differentially expressed genes (DEGs) between keloid and nonkeloid samples. Key genes were identified through immunoinfiltration analysis and DEGs and then analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, followed by the identification of protein-protein interaction networks, transcription factors, and miRNAs associated with key genes. Additionally, a logistic regression analysis was performed to develop a predictive model for keloid occurrence, and potential candidate drugs for keloid treatment were identified. Three key genes (FDX1, PDHB, and DBT) were identified, showing involvement in acetyl-CoA biosynthesis, mitochondrial matrix, oxidoreductase activity, and the tricarboxylic acid cycle. Immune infiltration analysis suggested the involvement of B cells, Th1 cells, dendritic cells, T helper cells, antigen-presenting cell coinhibition, and T cell coinhibition in keloid. These genes were used to develop a logistic regression-based nomogram for predicting keloid occurrence with an area under the curve of 0.859 and good calibration. We identified 32 potential drug molecules and extracted the top 10 compounds based on their P-values, showing promise in targeting key genes and potentially effective against keloid. Our study identified some genes in keloid pathogenesis and potential therapeutic drugs. The predictive model enhances early diagnosis and management. Further research is needed to validate and explore clinical implications.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Ding Hu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yaojun Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Houan Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
7
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
8
|
Mochmann LH, Treue D, Bockmayr M, Silva P, Zasada C, Mastrobuoni G, Bayram S, Forbes M, Jurmeister P, Liebig S, Blau O, Schleich K, Splettstoesser B, Nordmann TM, von der Heide EK, Isaakidis K, Schulze V, Busch C, Siddiq H, Schlee C, Hester S, Fransecky L, Neumann M, Kempa S, Klauschen F, Baldus CD. Proteomic profiling reveals ACSS2 facilitating metabolic support in acute myeloid leukemia. Cancer Gene Ther 2024; 31:1344-1356. [PMID: 38851813 PMCID: PMC11405269 DOI: 10.1038/s41417-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by genomic aberrations in oncogenes, cytogenetic abnormalities, and an aberrant epigenetic landscape. Nearly 50% of AML cases will relapse with current treatment. A major source of therapy resistance is the interaction of mesenchymal stroma with leukemic cells resulting in therapeutic protection. We aimed to determine pro-survival/anti-apoptotic protein networks involved in the stroma protection of leukemic cells. Proteomic profiling of cultured primary AML (n = 14) with Hs5 stroma cell line uncovered an up-regulation of energy-favorable metabolic proteins. Next, we modulated stroma-induced drug resistance with an epigenetic drug library, resulting in reduced apoptosis with histone deacetylase inhibitor (HDACi) treatment versus other epigenetic modifying compounds. Quantitative phosphoproteomic probing of this effect further revealed a metabolic-enriched phosphoproteome including significant up-regulation of acetyl-coenzyme A synthetase (ACSS2, S30) in leukemia-stroma HDACi treated cocultures compared with untreated monocultures. Validating these findings, we show ACSS2 substrate, acetate, promotes leukemic proliferation, ACSS2 knockout in leukemia cells inhibits leukemic proliferation and ACSS2 knockout in the stroma impairs leukemic metabolic fitness. Finally, we identify ACSS1/ACSS2-high expression AML subtype correlating with poor overall survival. Collectively, this study uncovers the leukemia-stroma phosphoproteome emphasizing a role for ACSS2 in mediating AML growth and drug resistance.
Collapse
Affiliation(s)
- Liliana H Mochmann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Denise Treue
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Michael Bockmayr
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Christin Zasada
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Safak Bayram
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Liebig
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Blau
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstanze Schleich
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Thierry M Nordmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Eva K von der Heide
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Veronika Schulze
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Caroline Busch
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Hafsa Siddiq
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Cornelia Schlee
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Svenja Hester
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Lars Fransecky
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany.
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Claudia D Baldus
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany.
| |
Collapse
|
9
|
Zhang B, Zhu Q, Qu D, Zhao M, Du J, Zhang H, Wang H, Jiang L, Yi X, Guo S, Wang H, Yang Y, Guo W. ACSS2 enables melanoma cell survival and tumor metastasis by negatively regulating the Hippo pathway. Front Mol Biosci 2024; 11:1423795. [PMID: 38887280 PMCID: PMC11180738 DOI: 10.3389/fmolb.2024.1423795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Acetyl-CoA synthetase 2 (ACSS2), one of the enzymes that catalyze the conversion of acetate to acetyl-CoA, has been proved to be an oncogene in various cancers. However, the function of ACSS2 is still largely a black box in melanoma. Methods The ACSS2 expression was detected in melanoma cells and melanocytes at both protein and mRNA levels. Cell viability, apoptosis, migration and invasion were investigated after ACSS2 knockdown. RNA sequencing (RNA-Seq) technology was employed to identify differentially expressed genes caused by ACSS2 knockdown, which were then verified by immunoblotting analysis. Animal experiments were further performed to investigate the influence of ACSS2 on tumor growth and metastasis in vivo. Results Firstly, we found that ACSS2 was upregulated in most melanoma cell lines compared with melanocytes. In addition, ACSS2 knockdown dramatically suppressed melanoma cell migration and invasion, whereas promoted cell apoptosis in response to endoplasmic reticulum (ER) stress. Furthermore, tumor growth and metastasis were dramatically suppressed by ACSS2 knockdown in vivo. RNA-Seq suggested that the Hippo pathway was activated by ACSS2 knockdown, which was forwardly confirmed by Western blotting and rescue experiments. Taken together, we demonstrated that ACSS2 enables melanoma cell survival and tumor metastasis via the regulation of the Hippo pathway. Discussion In summary, this study demonstrated that ACSS2 may promote the growth and metastasis of melanoma by negatively regulating the Hippo pathway. Targeting ACSS2 may be a promising target for melanoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Norenhag J, Edfeldt G, Stålberg K, Garcia F, Hugerth LW, Engstrand L, Fransson E, Du J, Schuppe-Koistinen I, Olovsson M. Compositional and functional differences of the vaginal microbiota of women with and without cervical dysplasia. Sci Rep 2024; 14:11183. [PMID: 38755259 PMCID: PMC11099171 DOI: 10.1038/s41598-024-61942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Alterations in the vaginal microbiota, including both species composition and functional pathways, have been associated with HPV infection and progression of dysplasia to cervical cancer. To further explore this, shotgun metagenomic sequencing was used to taxonomically and functionally characterize the vaginal microbiota of women with and without cervical dysplasia. Women with histologically verified dysplasia (n = 177; low grade dysplasia (LSIL) n = 81, high-grade dysplasia (HSIL) n = 94, cancer n = 2) were compared with healthy controls recruited from the cervical screening programme (n = 177). Women with dysplasia had a higher vaginal microbial diversity, and higher abundances of Gardnerella vaginalis, Aerococcus christensenii, Peptoniphilus lacrimalis and Fannyhessea vaginae, while healthy controls had higher relative abundance of Lactobacillus crispatus. Genes involved in e.g. nucleotide biosynthesis and peptidoglycan biosynthesis were more abundant in women with dysplasia. Healthy controls showed higher abundance of genes important for e.g. amino acid biosynthesis, (especially L-lysine) and sugar degradation. These findings suggest that the microbiota may have a role in creating a pro-oncogenic environment in women with dysplasia. Its role and potential interactions with other components in the microenvironment deserve further exploration.
Collapse
Affiliation(s)
- Johanna Norenhag
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Gabriella Edfeldt
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Karin Stålberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fabricio Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Warchavchik Hugerth
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Li CJ, Tzeng YDT, Hsiao JH, Tseng LM, Hsu TS, Chu PY. Spatial and single-cell explorations uncover prognostic significance and immunological functions of mitochondrial calcium uniporter in breast cancer. Cancer Cell Int 2024; 24:140. [PMID: 38632642 PMCID: PMC11022417 DOI: 10.1186/s12935-024-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
The mitochondrial calcium uniporter (MCU) is a transmembrane protein facilitating the entry of calcium ions into mitochondria from the cell cytosol. Maintaining calcium balance is crucial for enhancing cellular energy supply and regulating cell death. The interplay of calcium balance through MCU and the sodium-calcium exchanger is known, but its regulation in the breast cancer tumor microenvironment remains elusive. Further investigations are warranted to explore MCU's potential in BRCA clinical pathology, tumor immune microenvironment, and precision oncology. Our study, employing a multi-omics approach, identifies MCU as an independent diagnostic biomarker for breast cancer (BRCA), correlated with advanced clinical status and poor overall survival. Utilizing public datasets from GEO and TCGA, we discern differentially expressed genes in BRCA and examine their associations with immune gene expression, overall survival, tumor stage, gene mutation status, and infiltrating immune cells. Spatial transcriptomics is employed to investigate MCU gene expression in various regions of BRCA, while spatial transcriptomics and single-cell RNA-sequencing methods explore the correlation between MCUs and immune cells. Our findings are validated through the analysis of 59 BRCA patient samples, utilizing immunohistochemistry and bioinformatics to examine the relationship between MCU expression, clinicopathological features, and prognosis. The study uncovers the expression of key gene regulators in BRCA associated with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators positively correlate with different immune cells in six immune datasets, playing a pivotal role in immune cell infiltration in BRCA. Notably, high MCU performance is linked to CD8 + T cells infiltration in BRCA. Furthermore, pharmacogenomic analysis of BRCA cell lines indicates that MCU inactivation is associated with increased sensitivity to specific small molecule drugs. Our findings suggest that MCU alterations may be linked to BRCA progression, unveiling new diagnostic and prognostic implications for MCU in BRCA. The study underscores MCU's role in the tumor immune microenvironment and cell cycle progression, positioning it as a potential tool for BRCA precision medicine and drug screening.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, 802, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
12
|
Chang R, Tsui KH, Pan LF, Li CJ. Spatial and single-cell analyses uncover links between ALKBH1 and tumor-associated macrophages in gastric cancer. Cancer Cell Int 2024; 24:57. [PMID: 38317214 PMCID: PMC10845659 DOI: 10.1186/s12935-024-03232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AlkB homolog 1, histone H2A dioxygenase (ALKBH1), a crucial enzyme involved in RNA demethylation in humans, plays a significant role in various cellular processes. While its role in tumor progression is well-established, its specific contribution to stomach adenocarcinoma (STAD) remains elusive. This study seeks to explore the clinical and pathological relevance of ALKBH1, its impact on the tumor immune microenvironment, and its potential for precision oncology in STAD. METHODS We adopted a comprehensive multi-omics approach to identify ALKBH1 as an potential diagnostic biomarker for STAD, demonstrating its association with advanced clinical stages and reduced overall survival rates. Our analysis involved the utilization of publicly available datasets from GEO and TCGA. We identified differentially expressed genes in STAD and scrutinized their relationships with immune gene expression, overall survival, tumor stage, gene mutation profiles, and infiltrating immune cells. Moreover, we employed spatial transcriptomics to investigate ALKBH1 expression across distinct regions of STAD. Additionally, we conducted spatial transcriptomic and single-cell RNA-sequencing analyses to elucidate the correlation between ALKBH1 expression and immune cell populations. Our findings were validated through immunohistochemistry and bioinformatics on 60 STAD patient samples. RESULTS Our study unveiled crucial gene regulators in STAD linked with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators demonstrated a positive association with distinct immune cell populations across six immune datasets, exerting a substantial influence on immune cell infiltration in STAD. Furthermore, we established a connection between elevated ALKBH1 expression and macrophage infiltration in STAD. Pharmacogenomic analysis of gastric cancer cell lines further indicated that ALKBH1 inactivation correlated with heightened sensitivity to specific small-molecule drugs. CONCLUSION In conclusion, our study highlights the potential role of ALKBH1 alterations in the advancement of STAD, shedding light on novel diagnostic and prognostic applications of ALKBH1 in this context. We underscore the significance of ALKBH1 within the tumor immune microenvironment, suggesting its utility as a precision medicine tool and for drug screening in the management of STAD.
Collapse
Affiliation(s)
- Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
14
|
Tzeng YDT, Hsiao JH, Chu PY, Tseng LM, Hou MF, Tsang YL, Shao AN, Sheu JJC, Li CJ. The role of LSM1 in breast cancer: Shaping metabolism and tumor-associated macrophage infiltration. Pharmacol Res 2023; 198:107008. [PMID: 37995895 DOI: 10.1016/j.phrs.2023.107008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
LSM1 is part of the cytoplasmic protein complex Lsm1-7-Pat1 and is likely involved in pre-mRNA degradation by aiding U4/U6 snRNP formation. More research is needed to uncover LSM1's potential in breast cancer (BRCA) clinical pathology, the tumor immune microenvironment, and precision oncology. We discovered LSM1 as a diagnostic marker for advanced BRCA with poor survival, using a multi-omics approach. We studied LSM1 expression across BRCA regions and its link to immune cells through various methods, including spatial transcriptomics and single-cell RNA-sequencing. We also examined how silencing LSM1 affects mitochondrial function and energy metabolism in the tumor environment. These findings were confirmed using 54 BRCA patient biopsies and tissue microarrays. Immunofluorescence and bioinformatics assessed LSM1's connection to clinicopathological features and prognosis. This study uncovers gene patterns linked to breast cancer, with LSM1 linked to macrophage energy processes. Silencing LSM1 in breast cancer cells disrupts mitochondria and energy metabolism. Spatial analysis aligns with previous results, showing LSM1's connection to macrophages. Biopsies confirm LSM1 elevation in advanced breast cancer with increased macrophage presence. To summarize, LSM1 changes may drive BRCA progression, making it a potential diagnostic and prognostic marker. It also influences energy metabolism and the tumor's immune environment during metastasis, showing promise for precision medicine and drug screening in BRCA.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ai-Ning Shao
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
15
|
Pardo-Rodriguez D, Santamaría-Torres M, Salinas A, Jiménez-Charris E, Mosquera M, Cala MP, García-Perdomo HA. Unveiling Disrupted Lipid Metabolism in Benign Prostate Hyperplasia, Prostate Cancer, and Metastatic Patients: Insights from a Colombian Nested Case-Control Study. Cancers (Basel) 2023; 15:5465. [PMID: 38001725 PMCID: PMC10670336 DOI: 10.3390/cancers15225465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer is a significant global health concern, and its prevalence is increasing worldwide. Despite extensive research efforts, the complexity of the disease remains challenging with respect to fully understanding it. Metabolomics has emerged as a powerful approach to understanding prostate cancer by assessing comprehensive metabolite profiles in biological samples. In this study, metabolic profiles of patients with benign prostatic hyperplasia (BPH), prostate cancer (PCa), and metastatic prostate cancer (Met) were characterized using an untargeted approach that included metabolomics and lipidomics via liquid chromatography and gas chromatography coupled with high-resolution mass spectrometry. Comparative analysis among these groups revealed distinct metabolic profiles, primarily associated with lipid biosynthetic pathways, such as biosynthesis of unsaturated fatty acids, fatty acid degradation and elongation, and sphingolipid and linoleic acid metabolism. PCa patients showed lower levels of amino acids, glycerolipids, glycerophospholipids, sphingolipids, and carnitines compared to BPH patients. Compared to Met patients, PCa patients had reduced metabolites in the glycerolipid, glycerophospholipid, and sphingolipid groups, along with increased amino acids and carbohydrates. These altered metabolic profiles provide insights into the underlying pathways of prostate cancer's progression, potentially aiding the development of new diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Angela Salinas
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mildrey Mosquera
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Herney Andrés García-Perdomo
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali 72824, Colombia
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali 72824, Colombia
| |
Collapse
|
16
|
Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci 2023; 18:413-429. [PMID: 37614614 PMCID: PMC10443664 DOI: 10.4103/1735-5362.378088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Acyl-CoA synthetase (ACS) enzymes play an important role in the activation of fatty acids. While many studies have found correlations between the expression levels of ACS enzymes with the progression, growth, and survival of cancer cells, their role and expression patterns in colon adenocarcinoma are still greatly unknown and demand further investigation. Experimental approach The expression data of colon adenocarcinoma samples were downloaded from the Cancer Genome Atlas (TCGA) database. Normalization and differential expression analysis were performed to identify differentially expressed genes (DEGs). Gene set enrichment analysis was applied to identify top enriched genes from ACS enzymes in cancer samples. Gene ontology and protein-protein interaction analyses were performed for the prediction of molecular functions and interactions. Survival analysis and receiver operating characteristic test (ROC) were performed to find potential prognostic and diagnostic biomarkers. Findings/Results ACSL6 and ACSM5 genes demonstrated more significant differential expression and LogFC value compared to other ACS enzymes and also achieved the highest enrichment scores. Gene ontology analysis predicted the involvement of top DEGs in fatty acids metabolism, while protein-protein interaction network analysis presented strong interactions between ACSLs, ACSSs, ACSMs, and ACSBG enzymes with each other. Survival analysis suggested ACSM3 and ACSM5 as potential prognostic biomarkers, while the ROC test predicted stronger diagnostic potential for ACSM5, ACSS2, and ACSF2 genes. Conclusion and implications Our findings revealed the expression patterns, prognostic, and diagnostic biomarker potential of ACS enzymes in colon adenocarcinoma. ACSM3, ACSM5, ACSS2, and ACSF2 genes are suggested as possible prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Ehsan Parsazad
- Department of Bioscience and Biotechnology, Malek Ashtar University, Tehran, I.R. Iran
- Medvac Biopharma Company, Alborz Province, I.R. Iran
| | - Farina Esrafili
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, I.R. Iran
| | - Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, I.R. Iran
| | - Saghi Ghafarzadeh
- Department of Royan Institute, University of Science and Culture, Tehran, I.R. Iran
| | - Namdar Razmavar
- Department of Biology, University of Guilan, Rasht, I.R. Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
17
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
18
|
Lin Q, Jiang Y, Zhou F, Zhang Y. Fatty acid synthase (FASN) inhibits the cervical squamous cell carcinoma (CESC) progression through the Akt/mTOR signaling pathway. Gene 2023; 851:147023. [PMID: 36375657 DOI: 10.1016/j.gene.2022.147023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cervical cancer is a malignant tumor that affects females and remains the cause of the highest morbidity and mortality among women worldwide. Currently, gene-targeted therapy is a novel treatment option for clinicians. Furthermore, fatty acid synthase (FASN) plays a therapeutic role in various cancers. Nonetheless, the mechanism of action of this enzyme in cervical squamous cell carcinoma and cervical duct adenocarcinoma (CESC) has not yet been reported. METHODS RNA (ribonucleic acid) sequencing data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). The expression levels of FASN were obtained from Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA). Univariate and multivariate Cox regression analyses were utilized to assess independent prognostic factors associated with survival. A nomogram and receiver operating characteristic curve (ROC) were employed to evaluate survival and predictive power. In vitro experiments and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) were conducted to identify cell interference efficiency. MTS, monoclonal formation, and EDU assays were used to determine cell viability. Wound healing and invasion assays (transwell assay) were used to evaluate cell migration and invasion. Finally, Hoechst 33342, propidium iodide (PI) staining and Annexin V-FITC staining were used to assess apoptosis and the cell cycle, while western blotting was utilized to determine the protein expression levels. RESULTS FASN was aberrantly expressed in various cancers, including CESC, where it was highly expressed. Kaplan-Meier, univariate, multivariate Cox regression analyses and ROC curve indicated that FASN is a potential key indicator of survival prognosis among CESC patients and demonstrated good predictive ability and efficacy. Complementary in vitro experiments confirmed that FASN is an important target for CESC therapy. CONCLUSION The current study validated the biological and clinical significance of FASN in CESC prognosis, suggesting that FASN knockdown may exert antitumor activity against cervical cancer through the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- QianXia Lin
- Vascular Breast Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.
| | - Yong'An Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| | - Fang Zhou
- Vascular Breast Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| | - YongPing Zhang
- Department of Gynecology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
19
|
He W, Li Q, Li X. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188837. [PMID: 36403921 DOI: 10.1016/j.bbcan.2022.188837] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA, as an important molecule, not only participates in multiple intracellular metabolic reactions, but also affects the post-translational modification of proteins, playing a key role in the metabolic activity and epigenetic inheritance of cells. Cancer cells require extensive lipid metabolism to fuel for their growth, while also require histone acetylation modifications to increase the expression of cancer-promoting genes. As a raw material for de novo lipid synthesis and histone acetylation, acetyl-CoA has a major impact on lipid metabolism and histone acetylation in cancer. More importantly, in cancer, acetyl-CoA connects lipid metabolism with histone acetylation, forming a more complex regulatory mechanism that influences cancer growth, proliferation, metastasis.
Collapse
Affiliation(s)
- Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Liao WT, Chu PY, Su CC, Wu CC, Li CJ. Mitochondrial AAA protease gene associated with immune infiltration is a prognostic biomarker in human ovarian cancer. Pathol Res Pract 2022; 240:154215. [DOI: 10.1016/j.prp.2022.154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
21
|
Li CJ, Chang CH, Tsang YL, Fang SH, Chen SN, Chiang AJ. Prognostic significance of ferroptosis pathway gene signature and correlation with macrophage infiltration in cervical squamous cell carcinoma. Int Immunopharmacol 2022; 112:109273. [PMID: 36183678 DOI: 10.1016/j.intimp.2022.109273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (NFE2L2) plays a critical role in ferroptosis and biogenesis, however, its role in cervical squamous cell carcinoma (CESC) remains unknown. Therefore, in this study, we aimed to determine the role of NFE2L2 in CESC using multiomic analysis. METHODS All raw data were downloaded from The Cancer Genome Atlas (TCGA) and further validated in our dataset. NFE2L2 mRNA expression and methylation data on CESC were examined using the Tumor Immune Estimation Resource (TIMER) and University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) database resources. NFE2L2 expression was examined in paraffin-embedded tissues from our cohort of 240 samples each of cancerous and non-cancerous tissues. Further, cervical cancer biopsies were genetically validated. TIMER and Tumor-Immune System Interactions Database (TISIDB) were used to analyze the correlation between NFE2L2 and cluster of differentiation 163 (CD163) with co-expressed genes in tumor-infiltrating immune cells. RESULTS The mRNA and protein levels of NFE2L2 were lower in CESC tissues than they were in adjacent tissues. Importantly, a low NFE2L2 level correlated with poor prognosis in CESC patients. NFE2L2 was specifically expressed in tumor macrophages and correlated with the tumor immune landscape and poor prognosis in the cohort data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis showed that co-expressed genes are mainly associated with multiple immune-related pathways. Furthermore, our data analysis revealed that NFE2L2 and macrophage CD163 expression levels were negatively correlated. Interestingly, we discovered multiple NFE2L2 binding sites in promoters of CD163. CONCLUSION This study confirmed the novel pyroptosis landscape in CESC, provided a role for NFE2L2 in the tumor microenvironment, and identified prognostic biomarkers for CESC and related immune infiltration.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital, Tainan 701, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, Münster, Germany
| | - Shao-Hsuan Fang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - San-Nung Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - An-Jen Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
22
|
Extracellular Vesicle-Mediated Metastasis Suppressors NME1 and NME2 Modify Lipid Metabolism in Fibroblasts. Cancers (Basel) 2022; 14:cancers14163913. [PMID: 36010906 PMCID: PMC9406105 DOI: 10.3390/cancers14163913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Communication between cancer and stromal cells involves paracrine signalling mediated by extracellular vesicles (EVs). EVs transmit essential factors among cells of the tumour microenvironment. EVs derived from both cancer and stromal cells have been implicated in tumour progression. In this study, we focused on the first identified metastasis suppressor NME1, and on its close homolog NME2, and investigated their function in EVs in the interplay between cancer and stromal cells. Abstract Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
Collapse
|
23
|
Ling R, Chen G, Tang X, Liu N, Zhou Y, Chen D. Acetyl-CoA synthetase 2(ACSS2): a review with a focus on metabolism and tumor development. Discov Oncol 2022; 13:58. [PMID: 35798917 PMCID: PMC9263018 DOI: 10.1007/s12672-022-00521-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Acetyl-CoA synthetase 2 (ACSS2), an important member of the acetyl-CoA synthetase (ACSS) family, can catalyze the conversion of acetate to acetyl coenzyme A (acetyl-CoA). Currently, acetyl-CoA is considered an important intermediate metabolite in the metabolism of energy substrates. In addition, nutrients converge through acetyl-CoA into a common metabolic pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Not only does ACSS2 play a crucial role in material energy metabolism, it is also involved in the regulation of various acetylation processes, such as regulation of histone and transcription factor acetylation. ACSS2-mediated regulation of acetylation is related to substance metabolism and tumorigenesis. In mammalian cells, ACSS2 utilizes intracellular acetate to synthesize acetyl-CoA, a step in the process of DNA and histone acetylation. In addition, studies in tumors have shown that cancer cells adapt to the growth conditions in the tumor microenvironment (TME) by activating or increasing the expression level of ACSS2 under metabolic stress. Therefore, this review mainly outlines the role of ACSS2 in substance metabolism and tumors and provides insights useful for investigating ACSS2 as a therapeutic target.
Collapse
Affiliation(s)
- Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Gong Chen
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
24
|
Tzeng YT, Tsui K, Tseng L, Hou M, Chu P, Sheu JJ, Li C. Integrated analysis of pivotal biomarker of LSM1, immune cell infiltration and therapeutic drugs in breast cancer. J Cell Mol Med 2022; 26:4007-4020. [PMID: 35692083 PMCID: PMC9279588 DOI: 10.1111/jcmm.17436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
The discovery of early diagnosis and prognostic markers for breast cancer can significantly improve survival and reduce mortality. LSM1 is known to be involved in the general process of mRNA degradation in complexes containing LSm subunits, but the molecular and biological functions in breast cancer remain unclear. Here, the expression of LSM1 mRNA in breast cancer was estimated using The Cancer Genome Atlas (TCGA), Oncomine, TIMER and bc-GenExMiner databases. We found that functional LSM1 inactivation caused by mutations and profound deletions predicted poor prognosis in breast cancer (BRCA) patients. LSM1 was highly expressed in both BRCA tissues and cells compared to normal breast tissues/cells. High LSM1 expression is associated with poorer overall survival and disease-free survival. The association between LSM1 and immune infiltration of breast cancer was assessed by TIMER and CIBERSORT algorithms. LSM1 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of BRCA cell lines revealed that LSM1 inactivation was associated with increased sensitivity to refametinib and trametinib. However, both drugs could mimic the effects of LSM1 inhibition and their drug sensitivity was associated with MEK molecules. Therefore, we investigated the clinical application of LSM1 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Yen‐Dun Tony Tzeng
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Kuan‐Hao Tsui
- Department of Obstetrics and GynecologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of BioPharmaceutical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Ling‐Ming Tseng
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Comprehensive Breast Health CenterTaipei Veterans General HospitalTaipeiTaiwan
| | - Ming‐Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer ResearchKaohsiung Medical University Chung‐Ho Memorial HospitalKaohsiungTaiwan
| | - Pei‐Yi Chu
- Department of PathologyShow Chwan Memorial HospitalChanghuaTaiwan
| | | | - Chia‐Jung Li
- Department of Obstetrics and GynecologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of BioPharmaceutical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| |
Collapse
|
25
|
Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism. Cancers (Basel) 2022; 14:cancers14122896. [PMID: 35740562 PMCID: PMC9221533 DOI: 10.3390/cancers14122896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Acetyl-CoA Synthetase 2 (ACSS2) is highly expressed in a variety of tumors, which is very important for tumor growth, proliferation, invasion, and metastasis in the nutritional stress microenvironment. Studies have proven that ACSS2 inhibitors can be effective in halting cancer growth and can be combined with other antineoplastic drugs to reduce drug resistance. This article mainly reviews the mechanism of ACSS2-promoting tumor growth from many aspects and the prospect of clinical application of targeted inhibitors. Abstract Acetyl-CoA Synthetase 2 (ACSS2) belongs to a member of the acyl-CoA short-chain synthase family, which can convert acetate in the cytoplasm and nucleus into acetyl-CoA. It has been proven that ACSS2 is highly expressed in glioblastoma, breast cancer, liver cancer, prostate cancer, bladder cancer, renal cancer, and other tumors, and is closely related to tumor stage and the overall survival rate of patients. Accumulating studies show that hypoxia and a low serum level induce ACSS2 expression to help tumor cells cope with this nutrient-poor environment. The potential mechanisms are associated with the ability of ACSS2 to promote the synthesis of lipids in the cytoplasm, induce the acetylation of histones in the nucleus, and facilitate the expression of autophagy genes. Novel-specific inhibitors of ACSS2 are developed and confirmed to the effectiveness in pre-clinical tumor models. Targeting ACSS2 may provide novel approaches for tumor treatment. This review summarizes the biological function of ACSS2, its relation to survival and prognosis in different tumors, and how ACSS2 mediates different pathways to promote tumor metastasis, invasion, and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xu Wang
- Correspondence: (X.W.); (D.C.)
| | | |
Collapse
|
26
|
Expression status and prognostic significance of mitochondrial dynamics OPA3 in human ovarian cancer. Aging (Albany NY) 2022; 14:3874-3886. [PMID: 35507809 PMCID: PMC9134952 DOI: 10.18632/aging.204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Early diagnosis of ovarian cancer and the discovery of prognostic markers can significantly improve survival and reduce mortality. OPA3 protein exists in a structure called mitochondria, which is the energy production center of cells, but its molecular and biological functions in ovarian cancer are still unclear. Here, the expression of OPA3 mRNA in ovarian cancer was estimated using TCGA, Oncomine, TIMER databases. We found that functional OPA3 activation caused by mutations and profound deletions predicted poor prognosis in OV patients. OPA3 was highly expressed in both OV tissues and cells compared to normal ovarian tissues/cells. High OPA3 expression is associated with poorer overall survival (OS). The association between OPA3 and immune infiltration of ovarian cancer was assessed by TIMER and CIBERSORT algorithms. OPA3 showed a strong correlation with various immune marker sets. Most importantly, pharmacogenetic analysis of OV cell lines revealed that OPA3 inactivation was associated with increased sensitivity to PFI-1, and WZ4003. Therefore, we investigated the clinical application of OPA3 to provide a basis for sensitive diagnosis, prognosis and targeted treatment of ovarian cancer.
Collapse
|
27
|
Chu PY, Tzeng YDT, Tsui KH, Chu CY, Li CJ. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging (Albany NY) 2022; 14:2252-2267. [PMID: 35247251 PMCID: PMC8954971 DOI: 10.18632/aging.203933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
The human ATP binding cassette (ABC) family of transporter proteins plays an important role in the maintenance of homeostasis in vivo. The aim of this study is to evaluate the potential diagnostic, prognostic, and therapeutic value of the ABCA10 gene in BRCA. We found that ABCA10 expression was downregulated in different subgroups of breast cancer and strongly correlated with pathological stage in BRCA patients. Low expression of ABCA10 was associated with BRCA patients showing shorter overall survival (OS). ABCA10 expression may be regulated by promoter methylation, copy number variation (CNV) and kinase, and is associated with immune infiltration. Our study also demonstrated the potential role of ABCA10 modifications in tumor microenvironment (TME) cellular infiltration. Nevertheless, the regulatory mechanism remains unknown and immunotherapy is marginal in BRCA. We demonstrate the expression of different ABCA10 modulators in breast cancer associated with genetic variants, deletions, tumor mutation burden (TMB) and TME. Mutations in ABCA10 are positively associated with different immune cells in six different immune databases and play an important role in immune cell infiltration in breast cancer. Overall, this study provides evidence that ABCA10 could become the potential targets for precision treatment and new biomarkers in the prognosis of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ching-Yu Chu
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
28
|
Ruan GT, Xie HL, Zhu LC, Ge YZ, Yan L, Liao C, Gong YZ, Shi HP. Immune ULBP1 is Elevated in Colon Adenocarcinoma and Predicts Prognosis. Front Genet 2022; 13:762514. [PMID: 35211154 PMCID: PMC8862730 DOI: 10.3389/fgene.2022.762514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Colon adenocarcinoma (COAD) is still the main cause of cancer deaths worldwide. Although immunotherapy has made progress in recent years, there is still a need to improve diagnosis, prognosis, and treatment tools. UL-16 binding protein 1 (ULBP1) is a ligand that activates the receptor natural killer cell group 2 receptor D (NKG2D) and plays an important immunomodulatory role. We aimed to investigate the clinical significance of ULBP1 in COAD. Methods: We obtained the relevant data from The Cancer Genome Atlas (TCGA). A total of 438 patients with COAD were included in this study, with a mean age of 67.1 ± 13.03 years old, of which 234 (53.42%) were male. The diagnostic value of COAD tumor tissues and adjacent tissues was analyzed by ROC curve. Univariate and multivariate survival analysis investigated the prognostic value of ULBP1 gene, and Gene Set Enrichment Analysis (GSEA) curve was performed to analyze the biological process and enriched enrichment pathway of ULBP1 in COAD. Combination survival analysis investigated the combined prognostic effect of prognostic genes. Results:ULBP1 gene had a high diagnostic value in COAD [AUC (TCGA) = 0.959; AUC (Guangxi) = 0.898]. Up-regulated ULBP1 gene of patients with COAD predicted a worse prognosis compared to those patients with down-regulated ULBP1 gene (Adjusted HR = 1.544, 95% CI = 1.020–2.337, p = 0.040). The GSEA showed that ULBP1 was involved in the apoptotic pathway and biological process of T cell mediated cytotoxicity, regulation of natural killer cell activation, and T cell mediated immunity of COAD. The combination survival analysis showed that the combination of high expression of ULBP1, AARS1, and DDIT3 would increase the 2.2-fold death risk of COAD when compared with those of low expression genes. Conclusion: The immune-related ULBP1 gene had diagnostic and prognostic value in COAD. The combination of ULBP1, AARS1, and DDIT3 genes could improve the prognostic prediction performance in COAD.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Lin Yan
- Department of Thoracic Surgery, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Zhen Gong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| |
Collapse
|
29
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|