1
|
Wu J, Song J, Ge Y, Hou S, Chang Y, Chen X, Nie Z, Guo L, Yin J. PRIM1 enhances colorectal cancer liver metastasis via promoting neutrophil recruitment and formation of neutrophil extracellular trap. Cell Signal 2025; 132:111822. [PMID: 40250692 DOI: 10.1016/j.cellsig.2025.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Despite advances in treatment, liver metastasis remains the predominant pattern of distant spread for colorectal cancer (CRC) and a major cause of cancer-related mortality. DNA Primase Subunit 1 (PRIM1) has been reported to play important roles in cancer progression. This study investigated the role of PRIM1 in CRC liver metastasis, focusing on its influence on neutrophil recruitment and the formation of neutrophil extracellular traps (NETs). In this study, PRIM1 was upregulated in liver metastasis tumor tissues. CCK-8 and Transwell assays showed that the proliferation, migration and invasion of CRC cells were promoted with the ablation of PRIM1 and inhibited with PRIM1 overexpression. For in vivo investigation, we observed that PRIM1 ablation reduced the number and size of metastasis nodules of MC38 cells. Importantly, PRIM1 depletion obviously reduced the percentage of Ly6G+ neutrophils in liver. In contrast, overexpression of PRIM1 reversed these effects. Besides, depletion of neutrophils by anti-Ly6G antibody in mice notably attenuated liver metastasis burden induced by the upregulation of PRIM1. Western blot and immunohistochemistry assays revealed that three chemokines CXCL8, C-GSF and CXCL2 were confirmed to be upregulated with PRIM1 overexpression. Furthermore, PRIM1 overexpression reduced the formation of NETs. These results suggested that PRIM1 could facilitate the liver metastasis of CRC via recruiting neutrophils and NET formation. In conclusion, our novel findings highlighted the important role of PRIM1 in neutrophil recruitment and CRC metastasis and provided new perspectives and potential targets for future research and treatment for CRC.
Collapse
Affiliation(s)
- Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Jianhui Song
- Department of General Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Yuzhuang Ge
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Shuangshuang Hou
- Department of General Surgery, Fuyang Normal University Second Affiliated Hospital, Fuyang 236000, China
| | - Yaoyuan Chang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Xi Chen
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Zhequn Nie
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| |
Collapse
|
2
|
Wahnou H, El Kebbaj R, Hba S, Ouadghiri Z, El Faqer O, Pinon A, Liagre B, Limami Y, Duval RE. Neutrophils and Neutrophil-Based Drug Delivery Systems in Anti-Cancer Therapy. Cancers (Basel) 2025; 17:1232. [PMID: 40227814 PMCID: PMC11988188 DOI: 10.3390/cancers17071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Neutrophils, the most abundant white blood cells, play a dual role in cancer progression. While they can promote tumor growth, metastasis, and immune suppression, they also exhibit anti-tumorigenic properties by attacking cancer cells and enhancing immune responses. This review explores the complex interplay between neutrophils and the tumor microenvironment (TME), highlighting their ability to switch between pro- and anti-tumor phenotypes based on external stimuli. Pro-tumorigenic neutrophils facilitate tumor growth through mechanisms such as neutrophil extracellular traps (NETs), secretion of pro-inflammatory cytokines, and immune evasion strategies. They contribute to angiogenesis, tumor invasion, and metastasis by releasing vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Conversely, anti-tumor neutrophils enhance cytotoxicity by generating reactive oxygen species (ROS), promoting antibody-dependent cell-mediated cytotoxicity (ADCC), and activating other immune cells such as cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Recent advances in neutrophil-based drug delivery systems have harnessed their tumor-homing capabilities to improve targeted therapy. Neutrophil-mimicking nanoparticles and membrane-coated drug carriers offer enhanced drug accumulation in tumors, reduced systemic toxicity, and improved therapeutic outcomes. Additionally, strategies to modulate neutrophil activity, such as inhibiting their immunosuppressive functions or reprogramming them towards an anti-tumor phenotype, are emerging as promising approaches in cancer immunotherapy. Understanding neutrophil plasticity and their interactions with the TME provides new avenues for therapeutic interventions. Targeting neutrophil-mediated mechanisms could enhance existing cancer treatments and lead to the development of novel immunotherapies, ultimately improving patient survival and clinical outcomes.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco;
| | - Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Zaynab Ouadghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Othman El Faqer
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (S.H.); (Z.O.); (O.E.F.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Youness Limami
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco;
| | | |
Collapse
|
3
|
Ali A, Younas K, Khatoon A, Murtaza B, Ji Z, Akbar K, Tanveer Q, Bahadur SUK, Su Z. Immune watchdogs: Tissue-resident lymphocytes as key players in cancer defense. Crit Rev Oncol Hematol 2025; 208:104644. [PMID: 39900319 DOI: 10.1016/j.critrevonc.2025.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Tissue-resident lymphocytes play a crucial role in immune surveillance against cancer, yet their complex interactions and regulatory pathways remain underexplored, highlighting the need for a deeper understanding to enhance cancer immunotherapy strategies. Lymphocytes across the range of innate-adaptive responses can establish long-lasting presence in tissues, exerting a vital function in the local immune response against diverse antigens. These tissue-resident lymphocytes identify antigens and alarmins secreted by microbial infections and non-infectious stresses at barrier locations by closely interacting with epithelial and endothelial cells. Then they initiate effector responses to restore tissue homeostasis. Significantly, this immune defense system has been demonstrated to monitor the processes of epithelial cell transformation, carcinoma advancement, and cancer metastasis at remote locations, so establishing it as an essential element of cancer immunological surveillance. This review aims to elucidate the roles of diverse tissue-resident lymphocyte populations in shaping cancer immune responses and to investigate their synergistic effector mechanisms for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| | - Khadija Younas
- Department of Theriogenology, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Bilal Murtaza
- Dalian University of Science and Technology, Dalian, China
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, EH25 9RG, UK
| | - Sami Ullah Khan Bahadur
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Colins, CO 80523, USA
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Zhong R, He H, Wang X. Novel neutrophil targeting platforms in treating Glioblastoma: Latest evidence and therapeutic approaches. Int Immunopharmacol 2025; 150:114173. [PMID: 39938169 DOI: 10.1016/j.intimp.2025.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal type of primary brain tumor, characterized by its rapid growth, resistance to conventional therapies, and a highly immunosuppressive tumor microenvironment (TME). Recent studies have highlighted the critical role of neutrophils in the progression of GBM, where they contribute to tumor growth, invasion, and treatment resistance. As a result, neutrophils have emerged as a promising target for therapeutic intervention in GBM. Various strategies are being investigated to specifically target neutrophils within the GBM environment, including using small molecules, antibodies, and nanoparticle-based methods. These approaches aim to regulate neutrophils' recruitment, activation, and functions. This study reviews the latest findings regarding the involvement of neutrophils in GBM, explores potential techniques targeting neutrophils for therapeutic purposes, and discusses current clinical studies and prospects in this rapidly evolving field. By studying the diverse functions of neutrophils in GBM, these innovative therapeutic strategies can help address some of the most significant challenges in treating this malignancy.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Hongmei He
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Xiande Wang
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China.
| |
Collapse
|
5
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Chahal S, Patial V. Therapeutic potential of kakkatin derivatives against hepatocellular carcinoma. World J Clin Oncol 2025; 16:101686. [PMID: 40130053 PMCID: PMC11866094 DOI: 10.5306/wjco.v16.i3.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 01/21/2025] Open
Abstract
In this article, we commented on the work done by Jiang et al, where they synthesized a kakkatin derivative, 6-(hept-6-yn-1-yloxy)-3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one (HK), and investigated its antitumor activities and mechanism in gastric cancer MGC803 and hepatocellular carcinoma (HCC) SMMC-7721 cells. HK was evaluated for its antitumor activity as compared to kakkatin and cisplatin. This article focused on various risk factors of HCC, the mechanism of HCC progression and molecular targets of the kakkatin derivative, and limitations of available treatment options. HCC is a predominant form of primary liver cancer characterized by the accumulation of multiple gene modifications, overexpression of protooncogenes, altered immune microenvironment, and infiltration by immune cells. Puerariae flos (PF) has been used in traditional medicine in China, Korea, and Japan for lung clearing, spleen awakening, and relieving alcohol hangovers. PF exerts antitumor activity by inhibiting cancer cell proliferation, invasion, and migration. PF induces apoptosis in alcoholic HCC via the estrogen-receptor 1-extracellular signal-regulated kinases 1/2 signaling pathway. Kakkatin isolated from PF is known as a hepatoprotective bioflavonoid. The kakkatin derivative, HK, exhibited anticancer activity against HCC cell lines by inhibiting cell proliferation and upregulating nuclear factor kappa B subunit 1 and phosphodiesterase 3B. However, further preclinical and clinical studies are required to establish its therapeutic potential against HCC.
Collapse
Affiliation(s)
- Sahiba Chahal
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research Headquarters, Ghaziabad 201002, Uttar Pradesh, India
| | - Vikram Patial
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research Headquarters, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
HAO X, FENG Y, LU A, SUN Y, XIA J, MEI X, FENG L, JIANG M, WANG B, YANG H. [Research Progress of Neutrophil Extracellular Traps in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:201-212. [PMID: 40210480 PMCID: PMC11986667 DOI: 10.3779/j.issn.1009-3419.2025.106.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Indexed: 04/12/2025]
Abstract
Neutrophil extracellular traps (NETs), intricate reticular structures released by activated neutrophils, play a pivotal regulatory role in the pathogenesis of malignant tumors. Lung cancer is one of the most prevalent malignancies globally, with persistently high incidence and mortality rates. Recent studies have revealed that NETs dynamically modulate the tumor microenvironment through unique pathological mechanisms, exhibiting complex immunoregulatory characteristics during the progression of lung cancer, and this discovery has increasingly become a focal point in tumor immunology research. This paper provides a comprehensive review of the latest advancements in NETs research related to lung cancer, offering an in-depth analysis of their impact on lung cancer progression, their potential diagnostic value, and the current state of research on targeting NETs for lung cancer prevention and treatment. The aim is to propose novel strategies to enhance therapeutic outcomes and improve the prognosis for lung cancer patients.
.
Collapse
|
8
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Kaya TA, Stein KP, Schaufler A, Neyazi B, Rashidi A, Kahlert UD, Mawrin C, Sandalcioglu IE, Dumitru CA. The tumor-neutrophil interactions in the microenvironment of brain metastases with different primary sites. J Leukoc Biol 2025; 117:qiae248. [PMID: 39565891 DOI: 10.1093/jleuko/qiae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Brain metastases originating from lung and breast cancer can recruit and activate neutrophils to acquire a tumor-promoting phenotype. It is currently unclear if this phenomenon also occurs in brain metastases arising from other primary sites. Here, we investigated the effect of tumor cells isolated from melanoma, lung cancer, and gastrointestinal cancer brain metastases on neutrophil biology and functions. We found that lung and gastrointestinal but not melanoma brain metastasis cells produced CXCL8/IL-8 and promoted neutrophil recruitment. Similarly, lung and gastrointestinal but not melanoma brain metastasis cells prolonged the survival of neutrophils and stimulated them to release MMP9 and CCL4/MIP1β. In situ, lung and gastrointestinal brain metastasis tissues contained significantly higher numbers of tumor-infiltrating neutrophils compared to melanoma brain metastases. The levels of neutrophil infiltration significantly correlated with the proliferation index of these tumors. Our findings identify variabilities in the immune microenvironment of brain metastases with different primary sites, which may ultimately affect their pathophysiology and progression.
Collapse
Affiliation(s)
- Tamer A Kaya
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Anna Schaufler
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Claudia A Dumitru
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
11
|
Qian YY, Xu M, Huang XK, Zhu B. Bioinformatic analysis indicated that LINC01150 might be a novel neutrophil extracellular traps-related biomarker of gastric cancer. Sci Rep 2025; 15:7875. [PMID: 40050656 PMCID: PMC11885803 DOI: 10.1038/s41598-025-92968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/04/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer (GC) is a highly aggressive malignancy associated with poor prognosis, particularly in its advanced stages. Neutrophil extracellular traps (NETs) have been implicated in cancer progression and immune therapy responses; however, the role of NETs-related long non-coding RNAs (lncRNAs) in GC remains poorly understood. This study used data from the Cancer Genome Atlas (TCGA) and previous research to identify NETs-related lncRNAs in GC. A prognostic signature comprising four NETs-related lncRNAs (NlncSig) was developed and validated, serving as a predictor for patient survival and response to immunotherapy. The NlncSig was correlated with poorer outcomes in high-risk patients and demonstrated that those with lower risk scores exhibited more favorable responses to immunotherapy. In vitro experiments confirmed that LINC01150 enhances GC cell proliferation, migration, and invasion. This robust NlncSig provides a reliable tool for predicting survival and immune characteristics in GC, with the potential to guide personalized therapeutic approaches and improve patient care.
Collapse
Affiliation(s)
- Yang-Yang Qian
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Min Xu
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xin-Kun Huang
- Department of General Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Bin Zhu
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
| |
Collapse
|
12
|
Chen C, Shao Y, Ye C, Yu X, Hu M, Yan J, Ye G. Weighted Gene Coexpression Network Analysis Identifies Neutrophil-Related Molecular Subtypes and Their Clinical Significance in Gastric Cancer. Cancer Manag Res 2025; 17:397-418. [PMID: 40040634 PMCID: PMC11878151 DOI: 10.2147/cmar.s500215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
Background Gastric cancer (GC) is among the most lethal malignancies worldwide. Due to the substantial heterogeneity of GC, more accurate molecular typing systems are desperately required to enhance the prognosis of GC patients. Methods The major immune cell subclusters in GC were identified by a single-cell RNA sequencing (scRNA-seq) dataset. High-dimensional weighted gene coexpression network analysis (hdWGCNA) and multiple bioinformatics methods were utilized to classify the molecular subtypes of GC and further investigate the differences among the subtypes. Based on the module genes and differentially expressed genes (DEGs), random survival forest analysis was applied to identify the key prognostic genes for GC, and the roles and functional mechanisms of the key genes in GC were explored by clinical samples and cellular experiments. Results Two distinct GC molecular subtypes (C1 and C2) associated with neutrophils were identified, with C1 associated with better prognosis. Compared with C2 subtype, C1 subtype has significant differences in immune infiltration, immune checkpoint expression, signaling pathway regulation, tumor mutation burden, and immunotherapy and chemotherapeutic drug sensitivity. Three new key genes (VIM, RBMS1 and RGS2) were revealed to be highly correlated with the prognosis of GC patients. In addition, the expression and cellular functions of key genes RBMS1 and RGS2 in gastric carcinogenesis were verified. Conclusion We identified two neutrophil-related molecular GC subtypes with different prognostic outcomes and clinical significance. VIM, RBMS1 and RGS2 were identified as potential prognostic markers and therapeutic targets for GC. These findings provide a new perspective for the molecular typing and personalized treatment of GC.
Collapse
Affiliation(s)
- Chujia Chen
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, People’s Republic of China
- Health Science Center, Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, People’s Republic of China
| | - Chengyuan Ye
- Health Science Center, Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Xuan Yu
- Health Science Center, Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Meng Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, People’s Republic of China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, People’s Republic of China
| |
Collapse
|
13
|
Aierken Y, Tan K, Liu T, Lv Z. Prognosis and immune infiltration prediction in neuroblastoma based on neutrophil extracellular traps-related gene signature. Sci Rep 2025; 15:5343. [PMID: 39948114 PMCID: PMC11825912 DOI: 10.1038/s41598-025-88608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Neuroblastoma (NB) is a malignant tumor originating from the peripheral sympathetic nervous system and high-risk NB patients have a dismal prognosis. Recent studies have underscored the pivotal role of neutrophil extracellular traps (NETs) in the proliferation, metastasis and immune evasion of cancer. To explore the effect of NETs on NB, we have carried out a systematic analysis and showed several findings in the present work. First, expression profiles along with clinical data were analyzed using the training dataset GSE62564 and 36 NETs-related genes were identified to be significantly associated with overall survival. Following LASSO regression analysis, 11 genes were enrolled to construct the NETs signature, which exhibited a robust predictive capability for overall survival with exhibiting high AUC values within the training set. Validation cohorts confirmed a similar predictive efficacy. Next, NB patients were classified into subgroups based on median risk scores and differentially expressed genes were analyzed. Furthermore, the study performed comprehensive analyses encompassing functional enrichment, immune infiltration and drug sensitivity. Enrichment analysis revealed that the high-risk NBs with high-risk score displayed characteristics of oncogenic malignancy, poor prognosis and immunosuppression. Notably, the risk score exhibited a strong correlation with infiltration levels of various immune cells and the sensitivity to anti-cancer drugs, and was further recognized as an independent prognostic factor for NB patients. In summary, our study elucidates a novel NETs-related gene signature comprising 11 genes, which serves a reliable predictor for NB prognosis.
Collapse
Affiliation(s)
- Yeerfan Aierken
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Tao Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
14
|
Sun Y, Cai J, Zhang Y, Bao S. A high concentration of neutrophil extracellular traps is observed in humans and mice suffering from endometriosis. J Reprod Immunol 2025; 167:104414. [PMID: 39657366 DOI: 10.1016/j.jri.2024.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
We wished to ascertain if there is an association between neutrophil extracellular traps and endometriosis (EMS). We collected the lesional tissues and normal endometrium of 30 patients suffering from endometriosis. Samples were also taken from healthy controls. Blood from the peripheral circulation was collected to isolate serum and neutrophils. A mouse model of endometriosis was also created. Expression of citrullinated histone and the myeloperoxidase level in tissue were measured by immunofluorescence staining and western blotting. The myeloperoxidase level in peripheral blood serum was measured by enzyme-linked immunosorbent assay. Staining (Trypan Blue) and flow cytometry were used to measure the apoptosis of neutrophils in peripheral blood. BALB/C mice were modeled by allotransplantation, and the experimental parameters noted above quantified. The myeloperoxidase content in the peripheral blood of patients with endometriosis was increased compared with that in healthy controls. Flow cytometry showed that the percent apoptosis of neutrophils in patients with endometriosis was lower than that in healthy controls. Expression of citrullinated histone was higher in the endometriosis group in humans and mice compared with respective controls according to immunofluorescence staining and western blotting. Our data suggest that a high concentration of neutrophil extracellular traps was observed in humans and mice suffering from endometriosis.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Gynecology and Obstetrics Mudanjiang Medical University Affliated Honggi Hospital, No.5 Tongxiang Road, Aimin District, Mudanjiang,Heilongjiang 157011, China
| | - Junhong Cai
- Medical Laboratory Center, Hainan General Hospital, Haikou 570102, China
| | - Yanan Zhang
- Department of Gynecology and Obstetrics Mudanjiang Medical University Affliated Honggi Hospital, No.5 Tongxiang Road, Aimin District, Mudanjiang,Heilongjiang 157011, China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
| |
Collapse
|
15
|
Zheng WC, Lin F, Qiu QRS, Wu YP, Ke ZB, Chen SH, Li XD, Sun XL, Zheng QS, Wei Y, Xue XY, Xu N. Identification of neutrophil extracellular traps (NETs)-related molecular clusters in prostate cancer: Implications for predicting biochemical recurrence. Int Immunopharmacol 2025; 146:113908. [PMID: 39733640 DOI: 10.1016/j.intimp.2024.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE To identify neutrophil extracellular traps (NETs)-related molecular clusters and establish a novel gene signature for predicting biochemical recurrence in prostate cancer (PCa). METHODS The transcriptome and clinicaldata of PCa sampleswere obtained from The TCGA and GEO databases. To identify NET-related molecular clusters, consensus clustering analyses were performed. Using univariate Cox and Lasso regression analysis, a novel NETs-related prognostic model was formulated. To evaluate the validity of the model, both internal and external validations were carried out. At last, preliminary experimental validations were performed to verify the biological functions of ANXA3 in PCa cells. RESULTS After screening 75 NETs-related prognostic genes, two NET-related clusters with significantly different clinical features, immune cell infiltration, and biochemical recurrence were established. Next, a new NET-related model was constructed. In training, test, whole TCGA, and GEO cohorts, the biochemical recurrences free survival of the patients with high-risk scores was considerably lower. The AUCs for the four cohorts were 0.827, 0.696, 0.757, and 0.715, respectively. Subgroup analysis suggested that the novel NETs-related prognostic model has a strong clinical value in the identification of high-risk patients. Finally, we confirmed that chemotherapy might be more beneficial for patients at low risk. In preliminary experiments, the inhibition of ANXA3 could reduce the invasion, migration, and proliferation of PCa cells. CONCLUSIONS We have identified novel NETs-related clusters and developed a NETs-related model for PCa that has excellent predictive performance for predicting biochemical recurrences as well as chemotherapy efficacy.
Collapse
Affiliation(s)
- Wen-Cai Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qian-Ren-Shun Qiu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yu-Peng Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
16
|
Fan LL, Wang XW, Zhang XM, Wei ZY, Wu HY, Yang QX, Fu D, de Mello RA, Lin JW, Yu H, Jiang GX. GNGT1 remodels the tumor microenvironment and promotes immune escape through enhancing tumor stemness and modulating the fibrinogen beta chain-neutrophil extracellular trap signaling axis in lung adenocarcinoma. Transl Lung Cancer Res 2025; 14:239-259. [PMID: 39958208 PMCID: PMC11826275 DOI: 10.21037/tlcr-2024-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Despite the recent advancements in the treatment of cancer, the 5-year survival of patients with non-small cell lung cancer (NSCLC) remains unsatisfactory. Lung adenocarcinoma (LUAD) is NSCLC's most common subtype, and metastasis is the major cause of death in patients with cancer. Therefore, identifying novel targets associated with metastasis in NSCLC is crucial to improving treatment. This study aimed to characterize the expression of GNGT1 in LUAD and to clarify the mechanism underlying the association between the higher expression level of GNGT1 and worse prognosis in patients. METHODS The transcriptome datasets and clinical information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Bioinformatics analyses were performed in 515 patients who were stratified into two groups (high- and low-GNGT1 expression group) according to the GNGT1 level. Overall survival, DNA promotor methylation, immune cell infiltration, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the functions of GNGT1 and to identify the related hub genes in LUAD. Their expression and functions in LUAD were verified using tissues from patients and transgenic mice overexpressing GNGT1 under the control of a lung-specific promoter (Scgb1a1-Cre). RESULTS GNGT1 was overexpressed in patients with LUAD and was associated with poor prognosis. GNGT1 expression was significantly correlated with gene alteration and hypomethylated promoter status. High GNGT1 expression in patients with LUAD was associated with advanced lymph node metastasis and the degree of immune cell infiltration. Functional enrichment analyses indicated that differentially expressed genes (DEGs) in the high-GNGT1 group participated in DNA replication, DNA replication preinitiation, and M phase, while cell adhesion molecules, apoptosis, and natural killer cell-mediated cytotoxicity were all downregulated. Messenger RNA and protein levels were correspondingly regulated in human LUAD tissues and the Scgb1a1-Cre; LSL-GNGT1 mouse model (GNGT1fl/+ mice). CONCLUSIONS GNGT1 was associated with tumor cell proliferation via the enhancement of tumor cell stemness and interaction with driver genes. Elevated GNGT1 expression promoted epithelial-mesenchymal transformation, remodeled the tumor microenvironment, and led to tumor metastasis, ultimately worsening the survival-related prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Lin-Lin Fan
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, Linyi People’s Hospital, Linyi, China
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Xiao-Wei Wang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Xiu-Mei Zhang
- Department of Pathology, The People’s Hospital of Xinghua City, Xinghua, China
| | - Zhi-Yong Wei
- Department of Pathology, Linyi People’s Hospital, Linyi, China
| | - Hui-Yi Wu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Da Fu
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ramon Andrade de Mello
- Division of Medical Oncology, Nine of July University (UNINOVE), São Paulo, SP, Brazil
- Medical Oncology MSc Programme, University of Buckingham, Buckingham, UK
| | - Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Dalian Medical University, Taizhou, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| |
Collapse
|
17
|
LI C, PENG D, SUN W. [Dual Roles of Neutrophil Extracellular Traps in Lung Cancer:
Mechanism Exploration and Therapeutic Prospects]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:63-68. [PMID: 39988441 PMCID: PMC11848645 DOI: 10.3779/j.issn.1009-3419.2025.101.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 02/25/2025]
Abstract
Lung cancer is one of the most common and lethal malignancies in China. In the context of the tumor microenvironment, neutrophil extracellular traps (NETs) released by neutrophils exert a profound impact on the occurrence and progression of lung cancer. Although the exact mechanisms by which NETs promote tumor growth have not been fully elucidated, existing research has revealed their multiple roles in tumor growth, invasion, metastasis, and cancer-related thrombosis. This article will review the molecular biology mechanisms and research progress of NETs in lung cancer based on recent studies.
.
Collapse
|
18
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
19
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Wang X, Qu Y, Xu Q, Jiang Z, Wang H, Lin B, Cao Z, Pan Y, Li S, Hu Y, Yang H, He L, Chang H, Hang B, Wen H, Wu H, Mao JH. NQO1 Triggers Neutrophil Recruitment and NET Formation to Drive Lung Metastasis of Invasive Breast Cancer. Cancer Res 2024; 84:3538-3555. [PMID: 39073320 DOI: 10.1158/0008-5472.can-24-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Metastasis to the lungs is a leading cause of death for patients with breast cancer. Therefore, effective therapies are urgently needed to prevent and treat lung metastasis. In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis. NQO1 stabilized and upregulated peptidyl-prolyl cis-trans isomerase A (PPIA), a chaperone that regulates protein conformation and activity, by preventing its oxidation at a critical cysteine residue C161. PPIA subsequently activated CD147, a membrane protein that facilitates cell invasion. Moreover, NQO1-induced secretion of PPIA modulated the immune landscape of both primary and lung metastatic sites. Secreted PPIA engaged CD147 on neutrophils and triggered the release of neutrophil extracellular traps (NET) and neutrophil elastase, which enhanced tumor progression, invasiveness, and lung colonization. Pharmacological targeting of PPIA effectively inhibited NQO1-mediated breast cancer lung metastasis. These findings reveal a previously unrecognized NQO1-PPIA-CD147-NET axis that drives breast cancer lung metastasis. Inhibiting this axis is a potential therapeutic strategy to limit lung metastasis in patients with breast cancer. Significance: NQO1 stabilizes and promotes the secretion of PPIA to activate CD147 in neutrophils and stimulate NET formation, promoting breast cancer lung metastasis and providing therapeutic targets for this fatal condition.
Collapse
Affiliation(s)
- Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yi Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Qianqian Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Zeyu Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Hang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Binyan Lin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehong Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, China
| | - Sheng Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yili Hu
- Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Hongmei Wen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
21
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
23
|
Qian J, Duan J, Cao D. Identification of a Novel 4-gene Prognostic Model Related to Neutrophil Extracellular Traps for Colorectal Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:849-858. [PMID: 39549020 PMCID: PMC11562497 DOI: 10.5152/tjg.2024.24131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 11/18/2024]
Abstract
Background/Aims Colorectal cancer (CRC) is a significant global health concern, and understanding the molecular mechanisms underlying CRC progression and prognosis is crucial. Neutrophil extracellular traps (NETs) have been implicated in various cancers, but their role in CRC and its clinical implications remain to be elucidated. Materials and Methods Transcriptomic data from TCGA of CRC patients were analyzed to assess NETs enrichment and "NETs formation" pathway scores in NETs_high and NETs_low groups. Univariate Cox regression was used to identify prognosis-associated genes with the Log-Rank test for selection. Patients in the TCGA database were randomly split into training and testing sets to build a prognostic model with LASSO Cox regression. Model diagnostic performance was evaluated using Kaplan-Meier curves and receiver operating characteristic analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to determine the abundance of 23 immune cells. ESTIMATE was used to calculate ImmuneScore and ESTIMATEScore, characterizing immune features of CRC samples. Results The NETs_high group in CRC showed significantly better survival than the NETs_low group. A robust prognostic model based on PRKRIP1, SERTAD2, ELFN1, and LINC00672 accurately predicted patient outcomes. NETs_high samples exhibited a more enriched immune environment with higher immune cell infiltration levels, as well as ImmuneScore and ESTIMATEScore. PRKRIP1, SERTAD2, ELFN1, and LINC00672 were significantly correlated with key immune cell types. Additionally, 18 drugs displayed differential sensitivity between NETs_high and NETs_low groups, with Daporinad and Selumetinib as potential therapeutic options. Conclusion Our findings may catalyze the development of personalized treatment modalities and bestow invaluable insights into the intricate dynamics governing CRC progression.
Collapse
Affiliation(s)
- Junwen Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| | - Jiyun Duan
- Department of Breast Thyroid Head and Neck Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| | - Dong Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, China
| |
Collapse
|
24
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Zhu E, Xie Q, Huang X, Zhang Z. Application of spatial omics in gastric cancer. Pathol Res Pract 2024; 262:155503. [PMID: 39128411 DOI: 10.1016/j.prp.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.
Collapse
Affiliation(s)
- Erran Zhu
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Xie
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan; Department of Pathology, Department of Pathology of Hengyang Medical College, University of South China; The First Affiliated Hospital of University of South China, China.
| |
Collapse
|
26
|
Zeng X, Li J, Pei L, Yang Y, Chen Y, Wang X, Zhang T, Zhou T. Didang decoction attenuates cancer-associated thrombosis by inhibiting PAD4-dependent NET formation in lung cancer. Pulm Circ 2024; 14:e12454. [PMID: 39386377 PMCID: PMC11462072 DOI: 10.1002/pul2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
This research aims to investigate the impact of Didang decoction (DD) on the formation of neutrophil extracellular traps (NETs) and cancer-associated thrombosis in lung cancer. BALB/c nude mice were used to establish xenograft models for inducing deep vein thrombosis. Tumor growth and thrombus length were assessed. The impact of DD on NET generation was analyzed using enzyme-linked immunosorbent assay, immunofluorescence staining, quantitative real-time PCR, and western blot analysis, both in vivo and in vitro. CI-amidine, a PAD4 inhibitor, was employed to evaluate the role of PAD4 in the generation of NETs. In vivo studies demonstrated that treatment with DD reduced tumor growth, inhibited thrombus formation, and decreased the levels of NET markers in the serum, tumor tissues, neutrophils, and thrombus tissues of mice. Additional data indicated that DD could suppress neutrophil counts, the release of tissue factor (TF), and the activation of thrombin-activated platelets, all of which contributed to increased formation of NETs in mouse models. In vitro, following incubation with conditioned medium (CM) derived from Lewis lung carcinoma cells, the expression of NET markers in neutrophils was significantly elevated, and an extracellular fibrous network structure was observed. Nevertheless, these NET-associated changes were partially counteracted by DD. Additionally, CI-amidine reduced the expression of NET markers in CM-treated neutrophils, consistent with the effects of DD. Collectively, DD inhibits cancer-associated thrombosis in lung cancer by decreasing PAD4-dependent NET formation through the regulation of TF-mediated thrombin-platelet activation. This presents a promising therapeutic strategy for preventing and treating venous thromboembolism in lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Jiuxi Li
- College of Acupuncture, Massage and RehabilitationHunan University of Chinese MedicineChangshaHunanChina
| | - Liyuan Pei
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Yaping Yang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ya Chen
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Xuejing Wang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ting Zhang
- Cardiovascular DepartmentHunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Ting Zhou
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
27
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
28
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
30
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
31
|
Wang M, Dai B, Liu Q, Zhang X. Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer. Cancer Cell Int 2024; 24:297. [PMID: 39182081 PMCID: PMC11344416 DOI: 10.1186/s12935-024-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes. MATERIALS AND METHODS We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model. RESULTS Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels. CONCLUSION In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Bangshun Dai
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Qiushi Liu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
32
|
Horaguchi S, Nakahara Y, Igarashi Y, Kouro T, Wei F, Murotani K, Udagawa S, Higashijima N, Matsuo N, Murakami S, Kato T, Kondo T, Xiang H, Kasajima R, Himuro H, Tsuji K, Mano Y, Komahashi M, Miyagi Y, Saito H, Azuma K, Uehara S, Sasada T. Prognostic Significance of Plasma Neutrophil Extracellular Trap Levels in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Biomedicines 2024; 12:1831. [PMID: 39200295 PMCID: PMC11351864 DOI: 10.3390/biomedicines12081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) released from neutrophils are related to cancer progression. However, the relationship between the therapeutic effects of immune checkpoint inhibitors (ICIs) such as anti-PD-1 and anti-PD-L1 antibodies and plasma NET concentration in patients with non-small cell lung cancer (NSCLC) is poorly understood. In this study, concentrations of citrullinated histone H3 (CitH3), a surrogate marker of NETs, in plasma before/after treatment were examined in patients with advanced or recurrent NSCLC undergoing ICI treatment (n = 185). The clinical significances of NET levels before/after treatment and posttreatment changes were statistically evaluated. As a result, multivariate Cox analysis showed that high NET levels before treatment were statistically significant predictors of unfavorable overall survival (OS; p < 0.001, HR 1.702, 95% CI 1.356-2.137) and progression-free survival (PFS; p < 0.001, HR 1.566, 95% CI 1.323-1.855). The Kaplan-Meier curves showed significant separation between the high- and low-NET groups in OS (p = 0.002) and PFS (p < 0.001). Additionally, high NET levels after treatment were also significantly associated with worse OS (p < 0.001) and PFS (p < 0.001) by multivariate Cox analysis. Notably, the pretreatment NET levels were significantly correlated with the plasma levels of NET-related inflammatory cytokines, such as IL-6 and IL-8, and with NET-related gene expression and immune-suppressive profile in peripheral blood mononuclear cells. Our findings suggest that NETs released from activated neutrophils might reduce the clinical efficacy of ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Shun Horaguchi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara 252-0375, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Taku Kouro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Feifei Wei
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Kenta Murotani
- Biostatistics Center, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Seiichi Udagawa
- Mathematics Section, Division of Natural Sciences, Nihon University School of Medicine, Tokyo 173-0032, Japan;
| | - Naoko Higashijima
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (N.M.); (K.A.)
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Tetsuro Kondo
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Huihui Xiang
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Hidetomo Himuro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Kayoko Tsuji
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Yasunobu Mano
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| | - Mitsuru Komahashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (H.X.); (R.K.); (Y.M.)
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama 241-8515, Japan; (Y.N.); (S.M.); (T.K.); (T.K.); (H.S.)
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (N.M.); (K.A.)
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (S.H.); (T.K.); (F.W.); (H.H.); (K.T.); (Y.M.); (M.K.)
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan; (Y.I.); (N.H.)
| |
Collapse
|
33
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
35
|
Zhang F, Zou M, Bai C, Zhu M. Prognostic signature based on S100 calcium-binding protein family members for lung adenocarcinoma and its clinical significance. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39012268 DOI: 10.1080/10255842.2024.2376668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The S100 family proteins (S100s) participate in multiple stages of tumorigenesis and are considered to have potential value as biomarkers for detecting and predicting various cancers. But the role of S100s in lung adenocarcinoma (LUAD) prognosis is elusive. Transcriptional data of LUAD patients were retrieved from TCGA, and relevant literature was extensively reviewed to collect S100 genes. Differential gene expression analysis was performed on the LUAD data, followed by intersection analysis between the differentially expressed genes (DEGs) and S100 genes. Unsupervised consensus clustering analysis identified two clusters. Significant variations in overall survival between the two clusters were shown by Kaplan-Meier analysis. DEGs between the two clusters were analyzed using Lasso regression and univariate/multivariate Cox regression analysis, leading to construction of an 11-gene prognostic signature. The signature exhibited stable and accurate predictive capability in TCGA and GEO datasets. Subsequently, we observed distinct immune cell infiltration, immunotherapy response, and tumor mutation characteristics in high and low-risk groups. Finally, small molecular compounds targeting prognostic genes were screened using CellMiner database, and molecular docking confirmed the binding of AMG-176, Estramustine, and TAK-632 with prognostic genes. In conclusion, we generated a prognostic signature with robust and reliable predictive ability, which may provide guidance for prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Fengshun Zhang
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Mi Zou
- Respiratory Department, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunsheng Bai
- Academician Expert Workstation of Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, China
- Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, China
| | - Mengjiao Zhu
- Academician Expert Workstation of Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, China
- Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
36
|
Yu C, Zhou G, Shi Z, Yu L, Zhou X. TREM1 facilitates the development of gastric cancer through regulating neutrophil extracellular traps-mediated macrophage polarization. Dig Liver Dis 2024; 56:1237-1247. [PMID: 38151453 DOI: 10.1016/j.dld.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Triggering receptor expressed on myeloid cell 1 (TREM1) elevation is associated with the unfavorable prognosis of gastric cancer (GC) patients. This work uncovered the effects and mechanism of TREM1 in GC. IHC staining examined TREM1 expression in GC tissues. TREM1-knockout and TREM1 knock-in mice were generated prior to the construction of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GC mice model. H&E staining detected the pathological alternations of gastric tissues. IHC staining tested Ki67 expression. Wright-Giemsa staining performed neutrophil counting and flow cytometry analysis measured neutrophil infiltration. ELISA analyzed serum and tissue myeloperoxidase (MPO) levels and serum MPO-DNA levels. Immunofluorescence, Western blotting and related kits detected NETs formation. Immunofluorescence and IHC staining evaluated macrophage polarization. In MNNG-treated GES-1 cells and phorbal myristate acetate (PMA)-treated neutrophils, TREM1 expression was also examined. CCK-8 method and Western blotting assayed cell proliferation. Western blotting and immunofluorescence detected NETs formation. Flow cytometry analysis detected the changes of macrophage typing. TREM1 was overexpressed in tumor tissues, MNNG-treated GES-1 cells and PMA-treated neutrophils. TREM1 deficiency hindered tumor growth, reduced neutrophil infiltration, NETs formation and stimulated M1 macrophage polarization in MNNG-induced GC models. Neutrophil extracellular traps (NETs) degrader DNase-1 countervailed the impacts of TREM1 on MNNG-induced GC models in vivo. Collectively, TREM1 knockdown obstructed NETs-mediated M2 macrophage polarization to hamper GC progression.
Collapse
Affiliation(s)
- Cheng Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Guoqiang Zhou
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Zhiliang Shi
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Liang Yu
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
37
|
Kong J, Deng Y, Xu Y, Zhang P, Li L, Huang Y. A Two-Pronged Delivery Strategy Disrupting Positive Feedback Loop of Neutrophil Extracellular Traps for Metastasis Suppression. ACS NANO 2024; 18:15432-15451. [PMID: 38842256 DOI: 10.1021/acsnano.3c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Neutrophil extracellular traps (NETs) severely affect tumor metastasis through a self-perpetuating feedback loop involving two key steps: (1) mitochondrial aerobic respiration-induced hypoxia promotes NET formation and (2) NETs enhance mitochondrial metabolism to exacerbate hypoxia. Herein, we propose a two-pronged approach with the activity of NET-degrading and mitochondrion-damaging by simultaneously targeting drugs to NETs and tumor mitochondria of this loop. In addition to specifically recognizing and eliminating extant NETs, the NET-targeting nanoparticle also reduces NET-induced mitochondrial biogenesis, thus inhibiting the initial step of the feedback loop and mitigating extant NETs' impact on tumor metastasis. Simultaneously, the mitochondrion-targeting system intercepts mitochondrial metabolism and alleviates tumor hypoxia, inhibiting neutrophil infiltration and subsequent NET formation, which reduces the source of NETs and disrupts another step of the self-amplifying feedback loop. Together, the combination significantly reduces the formation of NET-tumor cell clusters by disrupting the interaction between NETs and tumor mitochondria, thereby impeding the metastatic cascade including tumor invasion, hematogenous spread, and distant colonization. This work represents an innovative attempt to disrupt the feedback loop in tumor metastasis, offering a promising therapeutic approach restraining NET-assisted metastasis.
Collapse
Affiliation(s)
- Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yudi Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiwen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Bansal S, Sharma V, Gupta R, Singh H, Aggarwal A. A New Approach for Assessment of Neutrophil Extracellular Traps Through Immunofluorescence Staining in Whole Blood Smears. Bio Protoc 2024; 14:e5010. [PMID: 38873014 PMCID: PMC11166537 DOI: 10.21769/bioprotoc.5010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophils, constituting 50%-70% of circulating leukocytes, play crucial roles in host defense and exhibit anti-tumorigenic properties. An elevated peripheral blood neutrophil-to-lymphocyte ratio is associated with decreased survival rates in cancer patients. In response to exposure to various antigens, neutrophils release neutrophil granular proteins, which combine to form web-like structures known as neutrophil extracellular traps (NETs). Previously, the relative percentage of NETs was found to be increased in resected tumor tissue samples from patients with gastrointestinal malignancies. The presence of NETs in peripheral blood is indicative of underlying pathological conditions. Hence, employing a non-invasive method to detect NETs in peripheral blood, along with other diagnostic tests, shows potential as a valuable tool not just for identifying different inflammatory disorders but also for assessing disease severity and determining patient suitability for surgical resection. While reliable methods exist for identifying NETs in tissue, accurately quantifying them in whole blood remains challenging. Many previous methods are time-consuming and rely on a limited set of markers that are inadequate for fully characterizing NETs. Therefore, we established a unique sensitive smear immunofluorescence assay based on blood smears to identify NETs in only as little as 2 μL of whole blood. To identify the NET complexes that have enhanced specificities, this combines the use of various antibodies against neutrophil-specific CD15, NET-specific myeloperoxidase (MPO), citrullinated histone H3 (Cit H3), and nuclear DNA. This protocol offers an easy, affordable, rapid, and non-invasive method for identifying NETs; thus, it can be utilized as a diagnostic marker and targeted through various therapeutic approaches for treating human malignancies. Key features • Characterization of neutrophil extracellular traps in whole blood smears through immunofluorescence staining. • Affordable and quantitative approach to neutrophil extracellular trap detection.
Collapse
Affiliation(s)
- Sakshi Bansal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinit Sharma
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB and Liver Transplantation, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harjeet Singh
- Department of GI Surgery, HPB and Liver Transplantation, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Moriyama E, Nadatani Y, Higashimori A, Otani K, Ominami M, Fukunaga S, Hosomi S, Tanaka F, Taira K, Fujiwara Y, Watanabe T. Neutrophil extracellular trap formation and its implications in nonsteroidal anti-inflammatory drug-induced small intestinal injury. J Gastroenterol Hepatol 2024; 39:1123-1133. [PMID: 38576269 DOI: 10.1111/jgh.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND AIM Nonsteroidal anti-inflammatory drugs (NSAIDs) damage the small intestine via neutrophil infiltration driven by the mucosal invasion of enterobacteria. The antimicrobial function of neutrophils is partially dependent on neutrophil extracellular traps (NETs). Excessive NET formation has been associated with several inflammatory diseases. Here, we aimed to investigate the role of NETs in NSAID-induced small intestinal damage using human samples and an experimental mouse model. METHODS Human small intestine specimens were obtained from NSAID users during double-balloon enteroscopy. Wild-type, protein arginine deiminase 4 (PAD4) knockout, and antibiotic-treated mice were administered indomethacin to induce small intestinal injury. The expression of NET-associated proteins, including PAD4, citrullinated histone H3 (CitH3), cell-free DNA, and myeloperoxidase (MPO), was evaluated. RESULTS The double-positive stained area with CitH3 and MPO, which is specific for neutrophil-derived extracellular traps, was significantly high in the injured small intestinal mucosa of NSAID users. In a mouse model, small intestinal damage developed at 6 h after indomethacin administration, accompanied by increased mRNA levels of interleukin-1β and keratinocyte chemoattractant and elevated NET-associated protein levels of PAD4, CitH3, and MPO in small intestine and serum levels of cell-free DNA. Both genetic deletion and pharmacological inhibition of PAD4 attenuated this damage by reducing the mRNA expression of inflammatory cytokines and NET-associated proteins. Furthermore, mice pretreated with antibiotics showed resistance to indomethacin-induced small intestinal damage, with less NET formation. CONCLUSION These results suggest that NETs aggravate NSAID-induced small intestinal injury. Therefore, NET inhibition could be a potential treatment for NSAID-induced small intestinal injury.
Collapse
Affiliation(s)
- Eiji Moriyama
- Department of Gastroenterology, Graduate School of Medicine, Osaka city University, Osaka, Japan
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Higashimori
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaki Ominami
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shusei Fukunaga
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshio Watanabe
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
40
|
Yuan Z, Yang X, Hu Z, Gao Y, Yan P, Zheng F, Guo Y, Wang X, Zhou J. Characterization of a predictive signature for tumor microenvironment and immunotherapy response in hepatocellular carcinoma involving neutrophil extracellular traps. Heliyon 2024; 10:e30827. [PMID: 38765048 PMCID: PMC11097059 DOI: 10.1016/j.heliyon.2024.e30827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Neutrophil extracellular traps (NETs) and other factors play a significant role in impacting the prognosis of patients with Hepatocellular carcinoma (HCC). Nevertheless, further research is warranted to fully elucidate the prognostic implications of NETs in patients with HCC. We employed a hierarchical clustering technique to examine the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data and identified subtypes associated with NETs. Subsequently, we utilized LASSO regression analysis to identify a distinct gene expression pattern within these subtypes. The strength of this signature was further validated through analysis of TCGA-LIHC and International Cancer Genome Consortium-Liver Cancer (ICGC-LIRI-JP) data. Our findings resulted in the construction of a six-gene signature related to NETs, which can predict survival outcomes in HCC patients. To enhance the predictive accuracy of our tool, we developed a nomogram that integrates the NETs signature with clinicopathological characteristics. We validated the significance of NETs in HCC patients using qRT-PCR and immunohistochemistry assays, along with in vitro experiments targeting high-risk genes. Furthermore, our exploration of the immune microenvironment uncovered augmented immune-specific metrics within the low-risk cohort, implying potential disparities in immune-related attributes between the high-risk and low-risk contingents. In summary, the NETs signature we discovered serves as a valuable biomarker and provides guidance for personalized therapy in HCC patients.
Collapse
Affiliation(s)
- Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Penghua Yan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fan Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yangyang Guo
- Department of General Surgery, Ningbo First Hospital, Ningbo, 315000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Whenzhou Medical University, Ruian, 325200, Zhejiang Province, China
| | - Jingzong Zhou
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
41
|
Tang XL, Xu ZY, Guan J, Yao J, Tang XL, Zhou ZQ, Zhang ZY. Establishment of a neutrophil extracellular trap-related prognostic signature for colorectal cancer liver metastasis and expression validation of CYP4F3. Clin Exp Med 2024; 24:112. [PMID: 38795162 PMCID: PMC11127854 DOI: 10.1007/s10238-024-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Liver metastasis stands as the primary contributor to mortality among patients diagnosed with colorectal cancer (CRC). Neutrophil extracellular traps (NETs) emerge as pivotal players in the progression and metastasis of cancer, showcasing promise as prognostic biomarkers. Our objective is to formulate a predictive model grounded in genes associated with neutrophil extracellular traps and identify novel therapeutic targets for combating CRLM. We sourced gene expression profiles from the Gene Expression Omnibus (GEO) database. Neutrophil extracellular trap-related gene set was obtained from relevant literature and cross-referenced with the GEO datasets. Differentially expressed genes (DEGs) were identified through screening via the least absolute shrinkage and selection operator regression and random forest modeling, leading to the establishment of a nomogram and subtype analysis. Subsequently, a thorough analysis of the characteristic gene CYP4F3 was undertaken, and our findings were corroborated through immunohistochemical staining. We identified seven DEGs (ATG7, CTSG, CYP4F3, F3, IL1B, PDE4B, and TNF) and established nomograms for the occurrence and prognosis of CRLM. CYP4F3 is highly expressed in CRC and colorectal liver metastasis (CRLM), exhibiting a negative correlation with CRLM prognosis. It may serve as a potential therapeutic target for CRLM. A novel prognostic signature related to NETs has been developed, with CYP4F3 identified as a risk factor and potential target for CRLM.
Collapse
Affiliation(s)
- Xiao-Li Tang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yang Xu
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiao Guan
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Yao
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Long Tang
- Department of General Surgery, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai, 200235, China.
| | - Zun-Qiang Zhou
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Zheng-Yun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
42
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
43
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
44
|
Lin S, Lin R, Zhu P, Sun X, Qiu C, Zhang B, He Y, Xu Q, Zhang H. Neutrophil extracellular traps promoting fibroblast activation and aggravating limb ischemia through Wnt5a pathway. Am J Cancer Res 2024; 14:1866-1879. [PMID: 38726275 PMCID: PMC11076237 DOI: 10.62347/sqoc7984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Although the formation of NETs contributes to cancer cell invasion and distant metastasis, its role in the pathological progression of limb ischemia remains unknown. This study investigated the functional significance of NETs in cell-cell crosstalk during limb ischemia. The changes of cell subsets in lower limb ischemia samples were detected by single-cell RNA sequencing. The expression of neutrophil extracellular traps (NETs) related markers in lower limb ischemia samples was detected by immunohistochemistry and Western blotting. The signaling pathway of NETs activation in fibroblasts was verified by immunofluorescence, PCR and Western blotting. Through single-cell RNA sequencing (scRNA-seq), we identified 9 distinct cell clusters, with significantly upregulated activation levels in fibroblasts and neutrophils and phenotypic transformation of smooth muscle cells (SMCs) into a proliferative state in ischemic tissue. At the same time, the interaction between fibroblasts and smooth muscle cells was significantly enhanced in ischemic tissue. NETs levels rise and fibroblast activation is induced in ischemic conditions. Mechanistically, activated fibroblasts promote smooth muscle cell proliferation through the Wnt5a pathway. In ischemic mice, inhibition of Wnt5a mitigated vascular remodeling and subsequent ischemia. These findings highlighting the role of cell-cell crosstalk in ischemia and vascular remodeling. We found that the NETs-initiated fibroblast-SMC interaction is a critical regulator of limb ischemia via Wnt5a pathway, a potential therapeutic target for the treatment.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Ruoran Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Pengwei Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Xiaotong Sun
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Chenyang Qiu
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Bohuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, Zhejiang, China
| |
Collapse
|
45
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
46
|
Liu R, Zhang J, Rodrigues Lima F, Zeng J, Nian Q. Targeting neutrophil extracellular traps: A novel strategy in hematologic malignancies. Biomed Pharmacother 2024; 173:116334. [PMID: 38422658 DOI: 10.1016/j.biopha.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have emerged as a critical factor in malignant hematologic disease pathogenesis. These structures, comprising DNA, histones, and cytoplasmic proteins, were initially recognized for their role in immune defense against microbial threats. Growing evidence suggests that NETs contribute to malignant cell progression and dissemination, representing a double-edged sword. However, there is a paucity of reports on its involvement in hematological disorders. A comprehensive understanding of the intricate relationship between malignant cells and NETs is necessary to explore effective therapeutic strategies. This review highlights NET formation and mechanisms underlying disease pathogenesis. Moreover, we discuss recent advancements in targeted inhibitor development for selective NET disruption, empowering precise design and efficacious therapeutic interventions for malignant hematologic diseases.
Collapse
Affiliation(s)
- Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400000, China
| | - Jin Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 2-16 Rue Theroigne deMericourt, Paris 75013, France
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No.37 Shierqiaolu, Chengdu, Sichuan 610000, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China.
| |
Collapse
|
47
|
Liu D, Yang X, Wang X. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2. Cell Signal 2024; 116:111014. [PMID: 38110168 DOI: 10.1016/j.cellsig.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
It has been reported that the formation of neutrophil extracellular traps (NETs) is associated with cancer metastasis. The current study aimed to explore the effects of NETs on gastric cancer (GC) cell metastasis and uncover their underlying mechanism. NETs were measured in the plasma of patients with GC. Then, GC cells were treated with NETs to assess cell viability, migration, and invasion using cell counting kit 8 and Transwell assay, The liver metastasis and xenograft tumor mouse models were established to assess tumor growth and metastasis. The N4-acetylcytidine (ac4C) modification of SET and MYND domain containing 2 (SMYD2) mediated by NAT10 was evaluated using acetylated RNA immunoprecipitation. The results showed that the level of NETs was increased in the plasma of patients with GC, particularly in those with metastatic GC. In addition, GC cell co-treatment with NETs promoted cell viability, migration and invasion, while NAT10 or SMYD2 knockdown abrogated this effect. NAT10 also promoted the ac4C modification of SMYD2, thus increasing SMYD2 stability. Furthermore, NETs promoted the metastasis of GC cells in the liver in vivo. Overall, the results of the present study demonstrated that NETs promoted GC cell metastasis via the NAT10-mediated ac4C modification of SMYD2. These findings suggested that inhibiting the formation of NETs could be an effective approach for attenuating GC progression.
Collapse
Affiliation(s)
- Donghui Liu
- School of Life Science and Technology, Harbin Institute of Technology, Building 2E, phase II, Science Park, Xiangfang District, Harbin 150000, Heilongjiang, China; Department of Oncology, Heilongjiang Provincial Hospital, No. 82, Zhongshan Road, Xiangfang District, Harbin 150000, Heilongjiang, China
| | - Xiaoyao Yang
- Department of Science and Education, Heilongjiang Provincial Hospital, Harbin 150000, Heilongjiang, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, No. 38, Weixing Road, Daowai District, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
48
|
Zhang J, Wang C, Yu Y. Comprehensive analyses and experimental verification of NETs and an EMT gene signature for prognostic prediction, immunotherapy, and chemotherapy in pancreatic adenocarcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2006-2023. [PMID: 38088494 DOI: 10.1002/tox.24082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is an aggressive malignancy with high mortality and poor prognosis. Neutrophil extracellular traps (NETs) and the epithelial-mesenchymal transition (EMT) significantly influence on the progression of various cancers. However, the underlying relevance of NETs- and EMT-associated genes on the outcomes of patients with PAAD remains to be elucidated. Transcriptome RNA sequencing data, together with clinical information and single-cell sequencing data of PAAD were collected from public databases. In the TCGA-PAAD cohort, ssGSEA was used to calculate NET and EMT scores. WGCNA was used to determine the key gene modules. A risk model with eight NET- and EMT-related genes (NERGs) was established using LASSO and multivariate Cox regression analysis. Patients in the reduced risk (RR) group showed better prognostic values compared with those in the elevated risk (ER) group. The prognostic model exhibited reliable and robust prediction when validated using an external database. The distributions of risk genes were explored in a single-cell sequencing data set. Immune infiltration, immune cycle, and immune checkpoints were compared between the RR and ER groups. Moreover, potential chemotherapeutic drugs were examined. DCBLD2 was identified as a key gene in PAAD cell lines by qRT-PCR, and was highly expressed in PAAD tissues. GSEA demonstrated that DCBLD2 induced the EMT. Transwell assays and western blotting showed that cell invasion and EMT induction were significantly reduced after DCBLD2 knockdown. Collectively, we constructed a prognosis model based on a NET and EMT gene signature, providing a valuable perspective for the prognostic evaluation and management of PAAD patient.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
49
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
50
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|