1
|
De Carlo A, Tosca EM, Magni P. Precision Dosing in Presence of Multiobjective Therapies by Integrating Reinforcement Learning and PK-PD Models: Application to Givinostat Treatment of Polycythemia Vera. CPT Pharmacometrics Syst Pharmacol 2025. [PMID: 40325832 DOI: 10.1002/psp4.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 05/07/2025] Open
Abstract
Precision dosing aims to optimize and customize pharmacological treatment at the individual level. The integration of pharmacometric models with Reinforcement Learning (RL) algorithms is currently under investigation to support the personalization of adaptive dosing therapies. In this study, this hybrid technique is applied to the real multiobjective precision dosing problem of givinostat treatment in polycythemia vera (PV) patients. PV is a chronic myeloproliferative disease with an overproduction of platelets (PLT), white blood cells (WBC), and hematocrit (HCT). The therapeutic goal is to simultaneously normalize the levels of these efficacy/safety biomarkers, thus inducing a complete hematological response (CHR). An RL algorithm, Q-Learning (QL), was integrated with a PK-PD model describing the givinostat effect on PLT, WBC, and HCT to derive both an adaptive dosing protocol (QLpop-agent) for the whole population and personalized dosing strategies by coupling a specific QL-agent to each patient (QLind-agents). QLpop-agent learned a general adaptive dosing protocol that achieved a similar CHR rate (77% vs. 83%) when compared to the actual givinostat clinical protocol on 10 simulated populations. Treatment efficacy and safety increased with a deeper dosing personalization by QLind-agents. These QL-based patient-specific adaptive dosing rules outperformed both the clinical protocol and QLpop-agent by reaching the CHR in 93% of the test patients and completely avoided severe toxicities during the whole treatment period. These results confirm that RL and PK-PD models can be valid tools for supporting adaptive dosing strategies as interesting performances were achieved in both learning a general set of rules and in customizing treatment for each patient.
Collapse
Affiliation(s)
- Alessandro De Carlo
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Elena Maria Tosca
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Ghasemi P, Greenberg M, Southern DA, Li B, White JA, Lee J. Personalized decision making for coronary artery disease treatment using offline reinforcement learning. NPJ Digit Med 2025; 8:99. [PMID: 39948243 PMCID: PMC11825836 DOI: 10.1038/s41746-025-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Choosing optimal revascularization strategies for patients with obstructive coronary artery disease (CAD) remains a clinical challenge. While randomized controlled trials offer population-level insights, gaps remain regarding personalized decision-making for individual patients. We applied off-policy reinforcement learning (RL) to a composite data model from 41,328 unique patients with angiography-confirmed obstructive CAD. In an offline setting, we estimated optimal treatment policies and evaluated these policies using weighted importance sampling. Our findings indicate that RL-guided therapy decisions outperformed physician-based decision making, with RL policies achieving up to 32% improvement in expected rewards based on composite major cardiovascular events outcomes. Additionally, we introduced methods to ensure that RL CAD treatment policies remain compatible with locally achievable clinical practice models, presenting an interpretable RL policy with a limited number of states. Overall, this novel RL-based clinical decision support tool, RL4CAD, demonstrates potential to optimize care in patients with obstructive CAD referred for invasive coronary angiography.
Collapse
Affiliation(s)
- Peyman Ghasemi
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Greenberg
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A Southern
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bing Li
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Calgary, Alberta, Canada
| | - James A White
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Stephenson Cardiac Imaging Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joon Lee
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Tan MJT, Lichlyter DA, Maravilla NMAT, Schrock WJ, Ting FIL, Choa-Go JM, Francisco KK, Byers MC, Abdul Karim H, AlDahoul N. The data scientist as a mainstay of the tumor board: global implications and opportunities for the global south. Front Digit Health 2025; 7:1535018. [PMID: 39981102 PMCID: PMC11839724 DOI: 10.3389/fdgth.2025.1535018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Myles Joshua Toledo Tan
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
- Biology Program, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
- Department of Chemical Engineering, College of Engineering and Technology, University of St. La Salle, Bacolod, Philippines
- Department of Electronics Engineering, College of Engineering and Technology, University of St. La Salle, Bacolod, Philippines
- Yo-Vivo Corporation, Bacolod, Philippines
| | | | | | - Weston John Schrock
- College of Pharmacy, University of Florida, Gainesville, FL, United States
- VA North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Frederic Ivan Leong Ting
- Department of Clinical Sciences, College of Medicine, University of St. La Salle, Bacolod, Philippines
- Division of Oncology, Department of Internal Medicine, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod, Philippines
- Department of Internal Medicine, Dr. Pablo O. Torre Memorial Hospital, Bacolod, Philippines
| | - Joanna Marie Choa-Go
- Department of Clinical Sciences, College of Medicine, University of St. La Salle, Bacolod, Philippines
- Department of Radiology, The Doctors’ Hospital, Inc., Bacolod, Philippines
- Department of Diagnostic Imaging and Radiologic Sciences, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod, Philippines
| | - Kishi Kobe Francisco
- Biology Program, College of Arts and Sciences, University of St. La Salle, Bacolod, Philippines
| | - Mickael Cavanaugh Byers
- Department of Civil and Coastal Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Hezerul Abdul Karim
- Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, Malaysia
| | - Nouar AlDahoul
- Department of Computer Science, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Javanmard Z, Zarean Shahraki S, Safari K, Omidi A, Raoufi S, Rajabi M, Akbari ME, Aria M. Artificial intelligence in breast cancer survival prediction: a comprehensive systematic review and meta-analysis. Front Oncol 2025; 14:1420328. [PMID: 39839787 PMCID: PMC11747035 DOI: 10.3389/fonc.2024.1420328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Background Breast cancer (BC), as a leading cause of cancer mortality in women, demands robust prediction models for early diagnosis and personalized treatment. Artificial Intelligence (AI) and Machine Learning (ML) algorithms offer promising solutions for automated survival prediction, driving this study's systematic review and meta-analysis. Methods Three online databases (Web of Science, PubMed, and Scopus) were comprehensively searched (January 2016-August 2023) using key terms ("Breast Cancer", "Survival Prediction", and "Machine Learning") and their synonyms. Original articles applying ML algorithms for BC survival prediction using clinical data were included. The quality of studies was assessed via the Qiao Quality Assessment tool. Results Amongst 140 identified articles, 32 met the eligibility criteria. Analyzed ML methods achieved a mean validation accuracy of 89.73%. Hybrid models, combining traditional and modern ML techniques, were mostly considered to predict survival rates (40.62%). Supervised learning was the dominant ML paradigm (75%). Common ML methodologies included pre-processing, feature extraction, dimensionality reduction, and classification. Deep Learning (DL), particularly Convolutional Neural Networks (CNNs), emerged as the preferred modern algorithm within these methodologies. Notably, 81.25% of studies relied on internal validation, primarily using K-fold cross-validation and train/test split strategies. Conclusion The findings underscore the significant potential of AI-based algorithms in enhancing the accuracy of BC survival predictions. However, to ensure the robustness and generalizability of these predictive models, future research should emphasize the importance of rigorous external validation. Such endeavors will not only validate the efficacy of these models across diverse populations but also pave the way for their integration into clinical practice, ultimately contributing to personalized patient care and improved survival outcomes. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024513350.
Collapse
Affiliation(s)
- Zohreh Javanmard
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Zarean Shahraki
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kosar Safari
- Department of Aerospace Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran
| | - Abbas Omidi
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Sadaf Raoufi
- Department of Computer Science, University of Arizona, Tucson, AZ, United States
| | - Mahsa Rajabi
- Department of Electrical Engineering, University of Guilan, Rasht, Iran
| | | | - Mehrad Aria
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ghorbian M, Ghorbian S. Comprehensive review of reinforcement learning in lung cancer diagnosis and treatment: Taxonomy, challenges and recommendations. Comput Biol Med 2024; 183:109326. [PMID: 39461105 DOI: 10.1016/j.compbiomed.2024.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Lung cancer (LuC) is one of the leading causes of death in the world, and due to the complex mechanisms and widespread metastasis, diagnosis and treatment are challenging. In recent years, the application of reinforcement learning (RL) techniques as a new tool to improve LuC diagnosis and treatment has been dramatically expanded. These techniques can potentially increase the accuracy of diagnosis and optimize treatment processes by learning from limited data and improving clinical decisions. However, RL in LuC diagnosis and treatment faces challenges such as limited access to clinical data, the complexity of algorithms, and the need for technical expertise for proper implementation. Our systematic review article aims to evaluate the latest developments in applications and challenges of using RL techniques in LuC diagnosis and treatment. The findings showed that RL has increased the accuracy of identifying disease trends by 37 % and enhancing treatment decisions by 23 %. Also, using this approach reduces data processing time by 17 % and streamlining treatment processes by 12 %. Ultimately, analyzing the current challenges and offering recommendations to researchers could help develop new strategies for improving the diagnosis and treatment of LuC.
Collapse
Affiliation(s)
- Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
6
|
Muyama L, Neuraz A, Coulet A. Machine learning approaches for the discovery of clinical pathways from patient data: A systematic review. J Biomed Inform 2024; 160:104746. [PMID: 39537000 DOI: 10.1016/j.jbi.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Clinical pathways are sequences of events followed during the clinical care of a group of patients who meet pre-defined criteria. They have many applications ranging from healthcare evaluation and optimization to clinical decision support. These pathways can be discovered from existing healthcare data, in particular with machine learning which is a family of methods used to learn patterns from data. This review provides a comprehensive overview of the literature concerning the use of machine learning methods for clinical pathway discovery from patient data. METHODS Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method , we conducted a systematic review of the existing literature. We searched 6 databases, i.e., ACM Digital Library, ScienceDirect, Web of Science, PubMed, IEEE Xplore, and Scopus spanning from January 2004 to December 2023 using search terms pertinent to clinical pathways and their development. Subsequently, the retrieved papers were analyzed to assess their relevance to the scope of this study. RESULTS In total, 131 papers that met the specified inclusion criteria were identified. These papers expressed diverse motivations behind data-driven clinical pathway discovery ranging from knowledge discovery to conformance checking with established clinical guidelines (derived from existing literature and clinical experts). Notably, the predominant methods employed (67.2%, n=88) involved unsupervised machine learning techniques, such as clustering and process mining. CONCLUSIONS Relevant clinical pathways can be discovered from patient data using machine learning methods, with the desirable potential to aid clinical decision-making in healthcare. However, to reach this objective, the methods used to discover pathways should be reproducible, and rigorous performance evaluation by clinical experts needs to be conducted for validation.
Collapse
Affiliation(s)
- Lillian Muyama
- Inria Paris, Paris, 75013, France; Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, 75006, France.
| | - Antoine Neuraz
- Inria Paris, Paris, 75013, France; Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, 75006, France; Hôpital Necker, Assistance Publique - Hôpitaux de Paris, Paris, 75015, France
| | - Adrien Coulet
- Inria Paris, Paris, 75013, France; Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| |
Collapse
|
7
|
Pham TD, Teh MT, Chatzopoulou D, Holmes S, Coulthard P. Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions. Curr Oncol 2024; 31:5255-5290. [PMID: 39330017 PMCID: PMC11430806 DOI: 10.3390/curroncol31090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Artificial intelligence (AI) is revolutionizing head and neck cancer (HNC) care by providing innovative tools that enhance diagnostic accuracy and personalize treatment strategies. This review highlights the advancements in AI technologies, including deep learning and natural language processing, and their applications in HNC. The integration of AI with imaging techniques, genomics, and electronic health records is explored, emphasizing its role in early detection, biomarker discovery, and treatment planning. Despite noticeable progress, challenges such as data quality, algorithmic bias, and the need for interdisciplinary collaboration remain. Emerging innovations like explainable AI, AI-powered robotics, and real-time monitoring systems are poised to further advance the field. Addressing these challenges and fostering collaboration among AI experts, clinicians, and researchers is crucial for developing equitable and effective AI applications. The future of AI in HNC holds significant promise, offering potential breakthroughs in diagnostics, personalized therapies, and improved patient outcomes.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (M.-T.T.); (D.C.); (S.H.); (P.C.)
| | | | | | | | | |
Collapse
|
8
|
Tosca EM, De Carlo A, Ronchi D, Magni P. Model-Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing. Clin Pharmacol Ther 2024; 116:619-636. [PMID: 38989560 DOI: 10.1002/cpt.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Precision dosing, the tailoring of drug doses to optimize therapeutic benefits and minimize risks in each patient, is essential for drugs with a narrow therapeutic window and severe adverse effects. Adaptive dosing strategies extend the precision dosing concept to time-varying treatments which require sequential dose adjustments based on evolving patient conditions. Reinforcement learning (RL) naturally fits this paradigm: it perfectly mimics the sequential decision-making process where clinicians adapt dose administration based on patient response and evolution monitoring. This paper aims to investigate the potentiality of coupling RL with population PK/PD models to develop precision dosing algorithms, reviewing the most relevant works in the field. Case studies in which PK/PD models were integrated within RL algorithms as simulation engine to predict consequences of any dosing action have been considered and discussed. They mainly concern propofol-induced anesthesia, anticoagulant therapy with warfarin and a variety of anticancer treatments differing for administered agents and/or monitored biomarkers. The resulted picture highlights a certain heterogeneity in terms of precision dosing approaches, applied methodologies, and degree of adherence to the clinical domain. In addition, a tutorial on how a precision dosing problem should be formulated in terms of the key elements composing the RL framework (i.e., system state, agent actions and reward function), and on how PK/PD models could enhance RL approaches is proposed for readers interested in delving in this field. Overall, the integration of PK/PD models into a RL-framework holds great promise for precision dosing, but further investigations and advancements are still needed to address current limitations and extend the applicability of this methodology to drugs requiring adaptive dosing strategies.
Collapse
Affiliation(s)
- Elena Maria Tosca
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Alessandro De Carlo
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Davide Ronchi
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Zhao Y, Chaw JK, Liu L, Chaw SH, Ang MC, Ting TT. Systematic literature review on reinforcement learning in non-communicable disease interventions. Artif Intell Med 2024; 154:102901. [PMID: 38838400 DOI: 10.1016/j.artmed.2024.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
There is evidence that reducing modifiable risk factors and strengthening medical and health interventions can reduce early mortality and economic losses from non-communicable diseases (NCDs). Machine learning (ML) algorithms have been successfully applied to preventing and controlling NCDs. Reinforcement learning (RL) is the most promising of these approaches because of its ability to dynamically adapt interventions to NCD disease progression and its commitment to achieving long-term intervention goals. This paper reviews the preferred algorithms, data sources, design details, and obstacles to clinical application in existing studies to facilitate the early application of RL algorithms in clinical practice research for NCD interventions. We screened 40 relevant papers for quantitative and qualitative analysis using the PRISMA review flow diagram. The results show that researchers tend to use Deep Q-Network (DQN) and Actor-Critic as well as their improved or hybrid algorithms to train and validate RL models on retrospective datasets. Often, the patient's physical condition is the main defining parameter of the state space, while interventions are the main defining parameter of the action space. Mostly, changes in the patient's physical condition are used as a basis for immediate rewards to the agent. Various attempts have been made to address the challenges to clinical application, and several approaches have been proposed from existing research. However, as there is currently no universally accepted solution, the use of RL algorithms in clinical practice for NCD interventions necessitates more comprehensive responses to the issues addressed in this paper, which are safety, interpretability, training efficiency, and the technical aspect of exploitation and exploration in RL algorithms.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Institute of Visual Informatics, National University of Malaysia, Bangi, Selangor, Malaysia
| | - Jun Kit Chaw
- Institute of Visual Informatics, National University of Malaysia, Bangi, Selangor, Malaysia.
| | - Lin Liu
- Henan Vocational University of Science and Technology, Zhoukou, Henan, China
| | - Sook Hui Chaw
- Department of Anaesthesiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mei Choo Ang
- Institute of Visual Informatics, National University of Malaysia, Bangi, Selangor, Malaysia
| | - Tin Tin Ting
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
10
|
Nussinov R, Yavuz BR, Demirel HC, Arici MK, Jang H, Tuncbag N. Review: Cancer and neurodevelopmental disorders: multi-scale reasoning and computational guide. Front Cell Dev Biol 2024; 12:1376639. [PMID: 39015651 PMCID: PMC11249571 DOI: 10.3389/fcell.2024.1376639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
The connection and causality between cancer and neurodevelopmental disorders have been puzzling. How can the same cellular pathways, proteins, and mutations lead to pathologies with vastly different clinical presentations? And why do individuals with neurodevelopmental disorders, such as autism and schizophrenia, face higher chances of cancer emerging throughout their lifetime? Our broad review emphasizes the multi-scale aspect of this type of reasoning. As these examples demonstrate, rather than focusing on a specific organ system or disease, we aim at the new understanding that can be gained. Within this framework, our review calls attention to computational strategies which can be powerful in discovering connections, causalities, predicting clinical outcomes, and are vital for drug discovery. Thus, rather than centering on the clinical features, we draw on the rapidly increasing data on the molecular level, including mutations, isoforms, three-dimensional structures, and expression levels of the respective disease-associated genes. Their integrated analysis, together with chromatin states, can delineate how, despite being connected, neurodevelopmental disorders and cancer differ, and how the same mutations can lead to different clinical symptoms. Here, we seek to uncover the emerging connection between cancer, including pediatric tumors, and neurodevelopmental disorders, and the tantalizing questions that this connection raises.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | | | - M. Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Türkiye
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
11
|
Tang BH, Zhang XF, Fu SM, Yao BF, Zhang W, Wu YE, Zheng Y, Zhou Y, van den Anker J, Huang HR, Hao GX, Zhao W. Machine Learning Approach in Dosage Individualization of Isoniazid for Tuberculosis. Clin Pharmacokinet 2024; 63:1055-1063. [PMID: 38990504 DOI: 10.1007/s40262-024-01400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Isoniazid is a first-line antituberculosis agent with high variability, which would profit from individualized dosing. Concentrations of isoniazid at 2 h (C2h), as an indicator of safety and efficacy, are important for optimizing therapy. OBJECTIVE The objective of this study was to establish machine learning (ML) models to predict the C2h, that can be used for establishing an individualized dosing regimen in clinical practice. METHODS Published population pharmacokinetic (PopPK) models for adults were searched based on PubMed and ultimately four reliable models were selected for simulating individual C2h datasets under different conditions (demographics, genotype, ethnicity, etc.). Machine learning models were trained on simulated C2h obtained from the four PopPK models. Five different algorithms were used for ML model building to predict C2h. Real-world data were used for predictive performance evaluations. Virtual trials were used to compare ML-optimized doses with PopPK model-optimized doses. RESULTS Categorical boosting (CatBoost) exhibited the highest prediction ability. Target C2h can be predicted using the ML model combined with the dosing regimen and three covariates (N-acetyltransferase 2 [NAT2] genotypes, weight and race [Asians and Africans]). Real-world data validation results showed that the ML model can achieve an overall prediction accuracy of 93.4%. Using the final ML model, the mean absolute prediction error value decreased by 45.7% relative to the average of PopPK models. Using the ML-optimized dosing regimen, the probability of target attainment increased by 43.7% relative to the PopPK model-optimized dosing regimens. CONCLUSION Machine learning models were developed with great predictive performance, which can be used to determine the individualized initial dose of isoniazid in adult patients.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Fang Zhang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shu-Meng Fu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Departments of Pediatrics, Pharmacology and Physiology, Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Hai-Rong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Gallagher K, Strobl MA, Park DS, Spoendlin FC, Gatenby RA, Maini PK, Anderson AR. Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy. Cancer Res 2024; 84:1929-1941. [PMID: 38569183 PMCID: PMC11148552 DOI: 10.1158/0008-5472.can-23-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Standard-of-care treatment regimens have long been designed for maximal cell killing, yet these strategies often fail when applied to metastatic cancers due to the emergence of drug resistance. Adaptive treatment strategies have been developed as an alternative approach, dynamically adjusting treatment to suppress the growth of treatment-resistant populations and thereby delay, or even prevent, tumor progression. Promising clinical results in prostate cancer indicate the potential to optimize adaptive treatment protocols. Here, we applied deep reinforcement learning (DRL) to guide adaptive drug scheduling and demonstrated that these treatment schedules can outperform the current adaptive protocols in a mathematical model calibrated to prostate cancer dynamics, more than doubling the time to progression. The DRL strategies were robust to patient variability, including both tumor dynamics and clinical monitoring schedules. The DRL framework could produce interpretable, adaptive strategies based on a single tumor burden threshold, replicating and informing optimal treatment strategies. The DRL framework had no knowledge of the underlying mathematical tumor model, demonstrating the capability of DRL to help develop treatment strategies in novel or complex settings. Finally, a proposed five-step pathway, which combined mechanistic modeling with the DRL framework and integrated conventional tools to improve interpretability compared with traditional "black-box" DRL models, could allow translation of this approach to the clinic. Overall, the proposed framework generated personalized treatment schedules that consistently outperformed clinical standard-of-care protocols. SIGNIFICANCE Generation of interpretable and personalized adaptive treatment schedules using a deep reinforcement framework that interacts with a virtual patient model overcomes the limitations of standardized strategies caused by heterogeneous treatment responses.
Collapse
Affiliation(s)
- Kit Gallagher
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Derek S. Park
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Fabian C. Spoendlin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
| | - Robert A. Gatenby
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Hou H, Zhang R, Li J. Artificial intelligence in the clinical laboratory. Clin Chim Acta 2024; 559:119724. [PMID: 38734225 DOI: 10.1016/j.cca.2024.119724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Laboratory medicine has become a highly automated medical discipline. Nowadays, artificial intelligence (AI) applied to laboratory medicine is also gaining more and more attention, which can optimize the entire laboratory workflow and even revolutionize laboratory medicine in the future. However, only a few commercially available AI models are currently approved for use in clinical laboratories and have drawbacks such as high cost, lack of accuracy, and the need for manual review of model results. Furthermore, there are a limited number of literature reviews that comprehensively address the research status, challenges, and future opportunities of AI applications in laboratory medicine. Our article begins with a brief introduction to AI and some of its subsets, then reviews some AI models that are currently being used in clinical laboratories or that have been described in emerging studies, and explains the existing challenges associated with their application and possible solutions, finally provides insights into the future opportunities of the field. We highlight the current status of implementation and potential applications of AI models in different stages of the clinical testing process.
Collapse
Affiliation(s)
- Hanjing Hou
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
14
|
Al-Hamadani MNA, Fadhel MA, Alzubaidi L, Balazs H. Reinforcement Learning Algorithms and Applications in Healthcare and Robotics: A Comprehensive and Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2461. [PMID: 38676080 PMCID: PMC11053800 DOI: 10.3390/s24082461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Reinforcement learning (RL) has emerged as a dynamic and transformative paradigm in artificial intelligence, offering the promise of intelligent decision-making in complex and dynamic environments. This unique feature enables RL to address sequential decision-making problems with simultaneous sampling, evaluation, and feedback. As a result, RL techniques have become suitable candidates for developing powerful solutions in various domains. In this study, we present a comprehensive and systematic review of RL algorithms and applications. This review commences with an exploration of the foundations of RL and proceeds to examine each algorithm in detail, concluding with a comparative analysis of RL algorithms based on several criteria. This review then extends to two key applications of RL: robotics and healthcare. In robotics manipulation, RL enhances precision and adaptability in tasks such as object grasping and autonomous learning. In healthcare, this review turns its focus to the realm of cell growth problems, clarifying how RL has provided a data-driven approach for optimizing the growth of cell cultures and the development of therapeutic solutions. This review offers a comprehensive overview, shedding light on the evolving landscape of RL and its potential in two diverse yet interconnected fields.
Collapse
Affiliation(s)
- Mokhaled N. A. Al-Hamadani
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, H-4032 Debrecen, Hungary;
- Doctoral School of Informatics, University of Debrecen, H-4032 Debrecen, Hungary
- Department of Electronic Techniques, Technical Institute/Alhawija, Northern Technical University, 36001 Kirkuk, Iraq
| | - Mohammed A. Fadhel
- Research and Development Department, Akunah Company, Brisbane, QLD 4120, Australia; (M.A.F.); (L.A.)
| | - Laith Alzubaidi
- Research and Development Department, Akunah Company, Brisbane, QLD 4120, Australia; (M.A.F.); (L.A.)
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Harangi Balazs
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|
15
|
Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, Zhou Y, van den Anker J, Hao GX, Zhao W. Machine Learning: A New Approach for Dose Individualization. Clin Pharmacol Ther 2024; 115:727-744. [PMID: 37713106 DOI: 10.1002/cpt.3049] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
The application of machine learning (ML) has shown promising results in precision medicine due to its exceptional performance in dealing with complex multidimensional data. However, using ML for individualized dosing of medicines is still in its early stage, meriting further exploration. A systematic review of study designs and modeling details of using ML for individualized dosing of different drugs was performed. We have summarized the status of the study populations, predictive targets, and data sources for ML modeling, the selection of ML algorithms and features, and the evaluation and validation of their predictive performance. We also used the Prediction model Risk of Bias Assessment Tool (PROBAST) to assess the risk of bias of included studies. Currently, ML can be used for both a priori and a posteriori dose selection and optimization, and it can also assist the implementation of therapeutic drug monitoring. However, studies are mainly focused on drugs with narrow therapeutic windows, predominantly immunosuppressants (N = 23, 35.9%) and anti-infectives (N = 21, 32.8%), and there is currently only very limited attention for special populations, such as children (N = 22, 34.4%). Most studies showed poor methodological quality and a high risk of bias. The lack of external validation and clinical utility evaluation currently limits the further clinical implementation of ML for dose individualization. We therefore have proposed several ways to improve the clinical relevance of the studies and facilitate the translation of ML models into clinical practice.
Collapse
Affiliation(s)
- Qiu-Yue Li
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
16
|
De Carlo A, Tosca EM, Fantozzi M, Magni P. Reinforcement Learning and PK-PD Models Integration to Personalize the Adaptive Dosing Protocol of Erdafitinib in Patients with Metastatic Urothelial Carcinoma. Clin Pharmacol Ther 2024; 115:825-838. [PMID: 38339803 DOI: 10.1002/cpt.3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
The integration of pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulations with artificial intelligence/machine learning algorithms is one of the most attractive areas of the pharmacometric research. These hybrid techniques are currently under investigation to perform several tasks, among which precision dosing. In this scenario, this paper presents and evaluates a new framework embedding PK-PD models into a reinforcement learning (RL) algorithm, Q-learning (QL), to personalize pharmacological treatment. Each patient is represented with a set of PK-PD parameters and has a personal QL agent which optimizes the individual treatment. In the training phase, leveraging PK-PD simulations, the QL agent assesses different actions, defined consistently with the clinical knowledge to consider only plausible dose-adjustments, in order to find the optimal rules. The proposed framework was evaluated to optimize the erdafitinib treatment in patients with metastatic urothelial carcinoma. This drug was approved by the US Food and Drug Administration (FDA) with a dose-adaptive protocol based on monitoring the levels of serum phosphate, which represent a biomarker of both treatment efficacy and toxicity. To evaluate the flexibility of the methodology, a heterogeneous virtual population of 141 patients was generated using an erdafitinib population PK (PopPK)-PD literature model. For each patient, treatment response was simulated by using both QL-optimized protocol and the clinical one. QL agents outperform the approved dose-adaptive rules, increasing more than 10% the efficacy and the safety of treatment at each end point. Results confirm the great potentialities of the integration of PopPK-PD models and RL algorithms to optimize precision dosing tasks.
Collapse
Affiliation(s)
- Alessandro De Carlo
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Elena Maria Tosca
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Martina Fantozzi
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Bottomly D, McWeeney S. Just how transformative will AI/ML be for immuno-oncology? J Immunother Cancer 2024; 12:e007841. [PMID: 38531545 DOI: 10.1136/jitc-2023-007841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/28/2024] Open
Abstract
Immuno-oncology involves the study of approaches which harness the patient's immune system to fight malignancies. Immuno-oncology, as with every other biomedical and clinical research field as well as clinical operations, is in the midst of technological revolutions, which vastly increase the amount of available data. Recent advances in artificial intelligence and machine learning (AI/ML) have received much attention in terms of their potential to harness available data to improve insights and outcomes in many areas including immuno-oncology. In this review, we discuss important aspects to consider when evaluating the potential impact of AI/ML applications in the clinic. We highlight four clinical/biomedical challenges relevant to immuno-oncology and how they may be able to be addressed by the latest advancements in AI/ML. These challenges include (1) efficiency in clinical workflows, (2) curation of high-quality image data, (3) finding, extracting and synthesizing text knowledge as well as addressing, and (4) small cohort size in immunotherapeutic evaluation cohorts. Finally, we outline how advancements in reinforcement and federated learning, as well as the development of best practices for ethical and unbiased data generation, are likely to drive future innovations.
Collapse
Affiliation(s)
- Daniel Bottomly
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
19
|
Mushtaq AH, Shafqat A, Salah HT, Hashmi SK, Muhsen IN. Machine learning applications and challenges in graft-versus-host disease: a scoping review. Curr Opin Oncol 2023; 35:594-600. [PMID: 37820094 DOI: 10.1097/cco.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW This review delves into the potential of artificial intelligence (AI), particularly machine learning (ML), in enhancing graft-versus-host disease (GVHD) risk assessment, diagnosis, and personalized treatment. RECENT FINDINGS Recent studies have demonstrated the superiority of ML algorithms over traditional multivariate statistical models in donor selection for allogeneic hematopoietic stem cell transplantation. ML has recently enabled dynamic risk assessment by modeling time-series data, an upgrade from the static, "snapshot" assessment of patients that conventional statistical models and older ML algorithms offer. Regarding diagnosis, a deep learning model, a subset of ML, can accurately identify skin segments affected with chronic GVHD with satisfactory results. ML methods such as Q-learning and deep reinforcement learning have been utilized to develop adaptive treatment strategies (ATS) for the personalized prevention and treatment of acute and chronic GVHD. SUMMARY To capitalize on these promising advancements, there is a need for large-scale, multicenter collaborations to develop generalizable ML models. Furthermore, addressing pertinent issues such as the implementation of stringent ethical guidelines is crucial before the widespread introduction of AI into GVHD care.
Collapse
Affiliation(s)
- Ali Hassan Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Haneen T Salah
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Sheikh Shakbout Medical City
- Medical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ibrahim N Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Lam TC, Cho WCS, Au JSK, Ma ESK, Lam STS, Loong HHF, Wong JWH, Wong SM, Lee VHF, Leung RCY, Lau JKS, Kam MTY, Mok FST, Lim FMY, Nyaw JSF, Tin WWY, Cheung KM, Chan OSH, Kwong PWK, Cheung FY, Poon DM, Chik JYK, Lam MHC, Chan LWC, Wong SCC, Cao YB, Hui CV, Chen JZJ, Chang JH, Kong SFM, El Helali A. Consensus Statements on Precision Oncology in the China Greater Bay Area. JCO Precis Oncol 2023; 7:e2200649. [PMID: 37315266 PMCID: PMC10309548 DOI: 10.1200/po.22.00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Next-generation sequencing comprehensive genomic panels (NGS CGPs) have enabled the delivery of tailor-made therapeutic approaches to improve survival outcomes in patients with cancer. Within the China Greater Bay Area (GBA), territorial differences in clinical practices and health care systems and strengthening collaboration warrant a regional consensus to consolidate the development and integration of precision oncology (PO). Therefore, the Precision Oncology Working Group (POWG) formulated standardized principles for the clinical application of molecular profiling, interpretation of genomic alterations, and alignment of actionable mutations with sequence-directed therapy to deliver clinical services of excellence and evidence-based care to patients with cancer in the China GBA. METHODS Thirty experts used a modified Delphi method. The evidence extracted to support the statements was graded according to the GRADE system and reported according to the Revised Standards for Quality Improvement Reporting Excellence guidelines, version 2.0. RESULTS The POWG reached consensus in six key statements: harmonization of reporting and quality assurance of NGS; molecular tumor board and clinical decision support systems for PO; education and training; research and real-world data collection, patient engagement, regulations, and financial reimbursement of PO treatment strategies; and clinical recommendations and implementation of PO in clinical practice. CONCLUSION POWG consensus statements standardize the clinical application of NGS CGPs, streamline the interpretation of clinically significant genomic alterations, and align actionable mutations with sequence-directed therapies. The POWG consensus statements may harmonize the utility and delivery of PO in China's GBA.
Collapse
Affiliation(s)
- Tai-Chung Lam
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Joseph Siu-Kie Au
- Adventist Oncology Centre, Hong Kong Adventist Hospital, Hong Kong SAR, China
| | - Edmond Shiu-Kwan Ma
- Clinical and Molecular Pathology and Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Stephen Tak-Sum Lam
- Clinical Genetic Service Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - S.N. Michael Wong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Michael Tsz-Yeung Kam
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | | | - Fiona Mei-Ying Lim
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong SAR, China
| | | | | | - Ka-Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | | | | | - Foon-Yiu Cheung
- Hong Kong International Oncology Centre, Hong Kong SAR, China
| | - Darren M.C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | | | | | - Lawrence Wing-Chi Chan
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze-Chuen Cesar Wong
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ya-Bing Cao
- Department of Radiology & Oncology, Kiang Wu Hospital, Macao SAR, China
| | - Cheng-Vai Hui
- Department of Clinical Oncology, Centro Hospitalar Conde de São Januário, Macao SAR, China
| | - Jack Zhi-Jian Chen
- Department of Radiation Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Jian-Hua Chang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Spring Feng-Ming Kong
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aya El Helali
- Department of Clinical Oncology, Queen Mary Hospital/Hong Kong University-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Yang CY, Shiranthika C, Wang CY, Chen KW, Sumathipala S. Reinforcement learning strategies in cancer chemotherapy treatments: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107280. [PMID: 36529000 DOI: 10.1016/j.cmpb.2022.107280] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cancer is one of the major causes of death worldwide and chemotherapies are the most significant anti-cancer therapy, in spite of the emerging precision cancer medicines in the last 2 decades. The growing interest in developing the effective chemotherapy regimen with optimal drug dosing schedule to benefit the clinical cancer patients has spawned innovative solutions involving mathematical modeling since the chemotherapy regimens are administered cyclically until the futility or the occurrence of intolerable adverse events. Thus, in this present work, we reviewed the emerging trends involved in forming a computational solution from the aspect of reinforcement learning. METHODS Initially, this survey in-depth focused on the details of the dynamic treatment regimens from a broad perspective and then narrowed down to inspirations from reinforcement learning that were advantageous to chemotherapy dosing, including both offline reinforcement learning and supervised reinforcement learning. RESULTS The insights established in the chemotherapy-planning problem associated with the Reinforcement Learning (RL) has been discussed in this study. It showed that the researchers were able to widen their perspectives in comprehending the theoretical basis, dynamic treatment regimens (DTR), use of the adaptive control on DTR, and the associated RL techniques. CONCLUSIONS This study reviewed the recent researches relevant to the topic, and highlighted the challenges, open questions, possible solutions, and future steps in inventing a realistic solution for the aforementioned problem.
Collapse
Affiliation(s)
- Chan-Yun Yang
- Department of Electrical Engineering, National Taipei University, New Taipei City, Taiwan
| | - Chamani Shiranthika
- Department of Electrical Engineering, National Taipei University, New Taipei City, Taiwan
| | - Chung-Yih Wang
- Department of Radiation Oncology, Cheng Hsin General Hospital, Taipei City, Taiwan
| | - Kuo-Wei Chen
- Section of Hematology and Oncology, Department of Internal Medicine, Cheng Hsin General Hospital, Taipei City, Taiwan.
| | - Sagara Sumathipala
- Faculty of Information Technology, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka
| |
Collapse
|
22
|
Capobianco E, Dominietto M. Translating Data Science Results into Precision Oncology Decisions: A Mini Review. J Clin Med 2023; 12:438. [PMID: 36675367 PMCID: PMC9862106 DOI: 10.3390/jcm12020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
While reviewing and discussing the potential of data science in oncology, we emphasize medical imaging and radiomics as the leading contextual frameworks to measure the impacts of Artificial Intelligence (AI) and Machine Learning (ML) developments. We envision some domains and research directions in which radiomics should become more significant in view of current barriers and limitations.
Collapse
Affiliation(s)
- Enrico Capobianco
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Marco Dominietto
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
23
|
Niraula D, Cui S, Pakela J, Wei L, Luo Y, Ten Haken RK, El Naqa I. Current status and future developments in predicting outcomes in radiation oncology. Br J Radiol 2022; 95:20220239. [PMID: 35867841 PMCID: PMC9793488 DOI: 10.1259/bjr.20220239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Advancements in data-driven technologies and the inclusion of information-rich multiomics features have significantly improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, challenges related to robust data modeling such as small sample size, low size to feature ratio, noisy data, as well as issues related to algorithmic modeling such as complexity, uncertainty, and interpretability, need to be mitigated if not resolved. Emerging computational technologies and new paradigms such as federated learning, human-in-the-loop, quantum computing, and novel interpretability methods show great potential in overcoming these challenges and bridging the gap towards precision outcome modeling in radiotherapy. Examples of these promising technologies will be presented and their potential role in improving outcome modeling will be discussed.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Sunan Cui
- Department of Radiation Oncology, Stanford Medicine, Stanford University, Stanford, USA
| | - Julia Pakela
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Yi Luo
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Issam El Naqa
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
24
|
Yan J, Wang X. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1527-1538. [PMID: 35821601 DOI: 10.1111/tpj.15905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Advances in high-throughput omics technologies are leading plant biology research into the era of big data. Machine learning (ML) performs an important role in plant systems biology because of its excellent performance and wide application in the analysis of big data. However, to achieve ideal performance, supervised ML algorithms require large numbers of labeled samples as training data. In some cases, it is impossible or prohibitively expensive to obtain enough labeled training data; here, the paradigms of unsupervised learning (UL) and semi-supervised learning (SSL) play an indispensable role. In this review, we first introduce the basic concepts of ML techniques, as well as some representative UL and SSL algorithms, including clustering, dimensionality reduction, self-supervised learning (self-SL), positive-unlabeled (PU) learning and transfer learning. We then review recent advances and applications of UL and SSL paradigms in both plant systems biology and plant phenotyping research. Finally, we discuss the limitations and highlight the significance and challenges of UL and SSL strategies in plant systems biology.
Collapse
Affiliation(s)
- Jun Yan
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100094, China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Xiangfeng Wang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100094, China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
25
|
Tang A, Woldemariam S, Roger J, Sirota M. Translational Bioinformatics to Enable Precision Medicine for All: Elevating Equity across Molecular, Clinical, and Digital Realms. Yearb Med Inform 2022; 31:106-115. [PMID: 36463867 PMCID: PMC9719766 DOI: 10.1055/s-0042-1742513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVES Over the past few years, challenges from the pandemic have led to an explosion of data sharing and algorithmic development efforts in the areas of molecular measurements, clinical data, and digital health. We aim to characterize and describe recent advanced computational approaches in translational bioinformatics across these domains in the context of issues or progress related to equity and inclusion. METHODS We conducted a literature assessment of the trends and approaches in translational bioinformatics in the past few years. RESULTS We present a review of recent computational approaches across molecular, clinical, and digital realms. We discuss applications of phenotyping, disease subtype characterization, predictive modeling, biomarker discovery, and treatment selection. We consider these methods and applications through the lens of equity and inclusion in biomedicine. CONCLUSION Equity and inclusion should be incorporated at every step of translational bioinformatics projects, including project design, data collection, model creation, and clinical implementation. These considerations, coupled with the exciting breakthroughs in big data and machine learning, are pivotal to reach the goals of precision medicine for all.
Collapse
Affiliation(s)
- Alice Tang
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Graduate Program in Bioengineering, UCSF, San Francisco, CA, USA
- School of Medicine, UCSF, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- School of Medicine, UCSF, San Francisco, CA, USA
| | - Jacquelyn Roger
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
26
|
Organized Breast and Cervical Cancer Screening: Attendance and Determinants in Rural China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148237. [PMID: 35886089 PMCID: PMC9318997 DOI: 10.3390/ijerph19148237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023]
Abstract
To evaluate the attendance and determinants of organized cervical and breast cancer (two-cancer) screening, especially higher-level factors, we conducted a cross-sectional survey in central China from June 2018 to November 2019 among 1949 women (age ≥ 35 years). We examined organizer-level factors, provider-level factors, receiver-lever factors and attendance and participation willingness of screening. The results indicate that the attendance and participation willingness of organized two-cancer screening was 61.19% and 77.15%, respectively. After adjustment for potential confounders, women who received screening notification were more likely to have greater participation willingness and higher attendance than those who received no notification (adjusted odds ratio [aOR] = 1.59, 95% confidence interval [CI]: 1.27-1.99; aOR = 98.03, 95% CI: 51.44-186.82, respectively). Compared with being notified about screening by GPs, being notified by community women's leaders and other community leaders were more likely to lead to greater willingness to participate again (aOR = 2.86, 95% CI: 1.13-7.24; aOR = 3.27, 95% CI: 1.26-8.48, respectively) and recommending screening to others (aOR = 2.18, 95% CI: 1.02-4.65; aOR = 4.14, 95% CI: 1.84-9.30, respectively). The results suggest that notification of women about screening by community leaders is an important organizer-level factor. As a part of public health services, the design and implementation of optimal cancer screening strategies may require public-sector involvement at the organizer level instead of a one-man show by the health sector.
Collapse
|
27
|
Modeling the efficacy of different anti-angiogenic drugs on treatment of solid tumors using 3D computational modeling and machine learning. Comput Biol Med 2022; 146:105511. [DOI: 10.1016/j.compbiomed.2022.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
|
28
|
Rickert CA, Lieleg O. Machine learning approaches for biomolecular, biophysical, and biomaterials research. BIOPHYSICS REVIEWS 2022; 3:021306. [PMID: 38505413 PMCID: PMC10914139 DOI: 10.1063/5.0082179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/12/2022] [Indexed: 03/21/2024]
Abstract
A fluent conversation with a virtual assistant, person-tailored news feeds, and deep-fake images created within seconds-all those things that have been unthinkable for a long time are now a part of our everyday lives. What these examples have in common is that they are realized by different means of machine learning (ML), a technology that has fundamentally changed many aspects of the modern world. The possibility to process enormous amount of data in multi-hierarchical, digital constructs has paved the way not only for creating intelligent systems but also for obtaining surprising new insight into many scientific problems. However, in the different areas of biosciences, which typically rely heavily on the collection of time-consuming experimental data, applying ML methods is a bit more challenging: Here, difficulties can arise from small datasets and the inherent, broad variability, and complexity associated with studying biological objects and phenomena. In this Review, we give an overview of commonly used ML algorithms (which are often referred to as "machines") and learning strategies as well as their applications in different bio-disciplines such as molecular biology, drug development, biophysics, and biomaterials science. We highlight how selected research questions from those fields were successfully translated into machine readable formats, discuss typical problems that can arise in this context, and provide an overview of how to resolve those encountered difficulties.
Collapse
|
29
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|