1
|
Xu C, Wang B, Xu T, Lv Y, Pan X, Zhao X, Tan F, Sheng H, Yu L. EZH2 inhibitor and Vismodegib synergistically inhibit the growth and metastasis of medulloblastoma. Med Oncol 2025; 42:186. [PMID: 40299236 DOI: 10.1007/s12032-025-02734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Resistance frequently arises when treating medulloblastoma (MB) patients with Vismodegib, markedly shortening their survival time. Consequently, the urgent problem to be solved is the discovery of a drug that can synergize with Vismodegib to improve its resistance in patients and enhance its efficacy. To validate the feasibility and efficacy of combining EZH2 (Enhancer of zeste homolog 2) inhibitor (EZH2i) with Vismodegib. A comprehensive assessment of their individual and combined effects on MB cell proliferation, migration, and invasion capabilities was conducted. The promising potential of EZH2i in inhibiting MB cell growth, migration and invasion was exhibited when used alone. Furthermore, when combined with Vismodegib, the inhibitory effect on MB was significantly potentiated. This synergy was further confirmed by SynergyFinder analysis, which revealed a remarkable highest single-agent score of 14.85 for the GSK126 and Vismodegib combination. Importantly, the enhanced efficacy of the combined EZH2i and Vismodegib therapy in suppressing tumor growth was also verified by the xenograft experiments in vivo. In summary, the combined use of EZH2i and Vismodegib demonstrated a remarkable synergistic effect in suppressing MB growth, presenting a promising treatment option for MB patients who had become resistant to Vismodegib.
Collapse
Affiliation(s)
- Chao Xu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bohong Wang
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Xu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Lv
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiani Pan
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangmao Zhao
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hansong Sheng
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lisheng Yu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Fontão P, Teixeira GR, Moreno DA, Marques RF, Stavale JN, Malheiros SMF, Júnior CA, Mançano BM, Reis RM. High B7-H3 protein expression in Medulloblastoma is associated with metastasis and unfavorable patient outcomes. Diagn Pathol 2025; 20:49. [PMID: 40269882 PMCID: PMC12016131 DOI: 10.1186/s13000-025-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children. Although the 5-year survival rate is approximately 70-80%, the current standard treatment results in severe and long-term side effects. The search for new anticancer immunotherapeutic targets has identified B7-H3 as a promising candidate in various solid tumors. However, the role of B7-H3 in MB remains unclear, and studies reporting its protein expression and association with clinicopathological characteristics are still limited. METHODS In this study, B7-H3 protein expression was evaluated by immunohistochemistry in seven non-tumor samples and 43 molecularly characterized MB tissues. Its expression profile was correlated with B7-H3 (CD276) mRNA levels, which were previously determined by nCounter, as well as with the patients' clinical features. RESULTS Only 14.3% (1/7) of non-tumor brain and cerebellum tissues showed B7-H3 positivity, whereas 95.6% (41/43) of the MB samples expressed this protein at distinct levels. B7-H3 was found in the cytoplasm and on the membrane of cancer cells. A significant positive correlation was observed between CD276 mRNA and B7-H3 protein levels. Moreover, high expression of B7-H3 protein was associated with worse overall survival and the presence of metastasis at diagnosis. CONCLUSIONS This is the first study to associate CD276 mRNA and B7-H3 protein levels in MB, revealing a significant positive correlation. We observed that B7-H3 was overexpressed in MB compared to non-tumor brain tissue. High B7-H3 expression was associated with a worse outcome and with the presence of metastasis at diagnosis.
Collapse
Affiliation(s)
- Patrícia Fontão
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gustavo Ramos Teixeira
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | - Bruna Minniti Mançano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
4
|
Penco-Campillo M, Pages G, Martial S. Angiogenesis and Lymphangiogenesis in Medulloblastoma Development. BIOLOGY 2023; 12:1028. [PMID: 37508458 PMCID: PMC10376362 DOI: 10.3390/biology12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Medulloblastoma (MB) is the most prevalent brain tumor in children. Although the current cure rate stands at approximately 70%, the existing treatments that involve a combination of radio- and chemotherapy are highly detrimental to the patients' quality of life. These aggressive therapies often result in a significant reduction in the overall well-being of the patients. Moreover, the most aggressive forms of MB frequently relapse, leading to a fatal outcome in a majority of cases. However, MB is highly vascularized, and both angiogenesis and lymphangiogenesis are believed to play crucial roles in tumor development and spread. In this context, our objective is to provide a comprehensive overview of the current research progress in elucidating the functions of these two pathways.
Collapse
Affiliation(s)
- Manon Penco-Campillo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Gilles Pages
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Sonia Martial
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
5
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Knight TE, Ahn KW, Hebert KM, Atshan R, Wall DA, Chiengthong K, Rotz SJ, Fraint E, Rangarajan HG, Auletta JJ, Sharma A, Kitko CL, Hashem H, Williams KM, Wirk B, Dvorak CC, Myers KC, Pulsipher MA, Warwick AB, Lalefar NR, Schultz KR, Qayed M, Broglie L, Eapen M, Yanik GA. Effect of Autograft CD34 + Dose on Outcome in Pediatric Patients Undergoing Autologous Hematopoietic Stem Cell Transplant for Central Nervous System Tumors. Transplant Cell Ther 2023; 29:380.e1-380.e9. [PMID: 36990222 PMCID: PMC10247464 DOI: 10.1016/j.jtct.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Consolidation with autologous hematopoietic stem cell transplantation (HSCT) has improved survival for patients with central nervous system tumors (CNSTs). The impact of the autologous graft CD34+ dose on patient outcomes is unknown. We wanted to analyze the relationship between CD34+ dose, total nucleated cell (TNC) dose, and clinical outcomes, including overall survival (OS), progression-free survival (PFS), relapse, non-relapse mortality (NRM), endothelial-injury complications (EIC), and time to neutrophil engraftment in children undergoing autologous HSCT for CNSTs. A retrospective analysis of the CIBMTR database was performed. Children aged <10 years who underwent autologous HSCT between 2008 to 2018 for an indication of CNST were included. An optimal cut point was identified for patient age, CD34+ cell dose, and TNC, using the maximum likelihood method and PFS as an endpoint. Univariable analysis for PFS, OS, and relapse was described using the Kaplan-Meier estimator. Cox models were fitted for PFS and OS outcomes. Cause-specific hazards models were fitted for relapse and NRM. One hundred fifteen patients met the inclusion criteria. A statistically significant association was identified between autograft CD34+ content and clinical outcomes. Children receiving >3.6×106/kg CD34+ cells experienced superior PFS (p = .04) and OS (p = .04) compared to children receiving ≤3.6 × 106/kg. Relapse rates were lower in patients receiving >3.6 × 106/kg CD34+ cells (p = .05). Higher CD34+ doses were not associated with increased NRM (p = .59). Stratification of CD34+ dose by quartile did not reveal any statistically significant differences between quartiles for 3-year PFS (p = .66), OS (p = .29), risk of relapse (p = .57), or EIC (p = .87). There were no significant differences in patient outcomes based on TNC, and those receiving a TNC >4.4 × 108/kg did not experience superior PFS (p = .26), superior OS (p = .14), reduced risk of relapse (p = .37), or reduced NRM (p = .25). Children with medulloblastoma had superior PFS (p < .001), OS (p = .01), and relapse rates (p = .001) compared to those with other CNS tumor types. Median time to neutrophil engraftment was 10 days versus 12 days in the highest and lowest infused CD34+ quartiles, respectively. For children undergoing autologous HSCT for CNSTs, increasing CD34+ cell dose was associated with significantly improved OS and PFS, and lower relapse rates, without increased NRM or EICs.
Collapse
Affiliation(s)
- Tristan E Knight
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington; Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Kwang Woo Ahn
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin; CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kyle M Hebert
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rasha Atshan
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donna A Wall
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kanhatai Chiengthong
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Ellen Fraint
- Division of Pediatric Hematology, Oncology, and Cellular Therapy, The Children's Hospital at Montefiore, Bronx, New York
| | - Hemalatha G Rangarajan
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Jeffery J Auletta
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, Minnesota; Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carrie L Kitko
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hasan Hashem
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplantation, King Hussein Cancer Center, Amman, Jordan
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Baldeep Wirk
- Bone Marrow Transplant Program, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, Benioff Children's Hospital, University of California San Francisco, San Francisco, California
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Pulsipher
- Intermountain Primary Children's Hospital Division of Hematology and Oncology, Huntsman Cancer Institute at the Spencer Eccles Fox School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Anne B Warwick
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Nahal Rose Lalefar
- Division of Pediatric Hematology, UCSF Benioff Children's Hospital, Oakland, California
| | - Kirk R Schultz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia's Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Larisa Broglie
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Mary Eapen
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gregory A Yanik
- Mott Children's Hospital, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
7
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
8
|
Marques RF, Moreno DA, da Silva L, Leal LF, de Paula FE, Santana I, Teixeira G, Saggioro F, Neder L, Junior CA, Mançano B, Reis RM. Digital expression profile of immune checkpoint genes in medulloblastomas identifies CD24 and CD276 as putative immunotherapy targets. Front Immunol 2023; 14:1062856. [PMID: 36825029 PMCID: PMC9941636 DOI: 10.3389/fimmu.2023.1062856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Medulloblastoma is the most common and lethal pediatric malignant brain tumor. It comprises four main molecular subgroups: WNT-activated, SHH-activated, Group 3, and Group 4. Medulloblastoma treatment is surgical resection, craniospinal radiation, and chemotherapy. However, many patients do not respond to therapy, and most suffer severe side effects. Cancer immunotherapy targeting immune checkpoints (IC) (PD-1, PD-L1, and CTLA4) has been getting disappointing outcomes in brain tumors. Nevertheless, other less explored immune checkpoints may be promising candidates for medulloblastoma therapy. Objectives In the present study, we aimed to characterize the expression profile of 19 immune checkpoints in medulloblastoma. Methods We analyzed 88 formalin-fixed paraffin-embedded medulloblastomas previously classified for each molecular subgroup and three non-tumoral brain tissue. mRNA levels of 19 immune checkpoint-related genes were quantified using the nCounter (PanCancer Immune Profiling Panel) assay. Further in silico analysis was performed in two larger public microarray datasets, one of which enabled comparisons between tumoral and non-tumoral tissues. Immunohistochemistry of PD-L1 was performed in a subset of cases. Microsatellite instability was also molecularly analyzed. Results We observed an absence of expression of the canonic ICs, namely PDCD1 (PD-1), CD274 (PD-L1), and CTLA4, as well as CD80, CD86, BTLA, IDO1, CD48, TNFSF14, CD160, CEACAM1, and CD244. PD-L1 protein expression was also practically absent. We found higher mRNA levels of CD24, CD47, CD276 (B7-H3), and PVR, and lower mRNA levels of HAVCR2, LAG3, and TIGIT genes, with significant differences across the four molecular subgroups. Compared to the non-tumor tissues, the expression levels of CD276 in all subgroups and CD24 in SHH, Group 3, and Group 4 subgroups are significantly higher. The in silico analysis confirmed the expression profile found in the Brazilian cohort, including the lower/absent expression of the canonic ICs. Moreover, it confirmed the overexpression of CD24 and CD276 in medulloblastomas compared with the non-tumor tissue. Additionally, CD276 and CD24 high levels were associated with worse survival. Conclusion These results highlight the low or absence of mRNA levels of the canonic targetable ICs in medulloblastomas. Importantly, the analysis revealed overexpression of CD24 and CD276, which can constitute prognostic biomarkers and attractive immunotherapy targets for medulloblastomas.
Collapse
Affiliation(s)
- Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Luciane da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Faculty of Health Sciences of Barretos Dr. Paulo Prata (FACISB), School of Medicine, Barretos, Brazil
| | | | - Iara Santana
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - Gustavo Teixeira
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - Fabiano Saggioro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Bruna Mançano
- Barretos Children's Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Laboratory of Molecular Diagnostic, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|
9
|
Estevez-Ordonez D, Gary SE, Atchley TJ, Maleknia PD, George JA, Laskay NMB, Gross EG, Devulapalli RK, Johnston JM. Immunotherapy for Pediatric Brain and Spine Tumors: Current State and Future Directions. Pediatr Neurosurg 2022; 58:313-336. [PMID: 36549282 PMCID: PMC10233708 DOI: 10.1159/000528792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae. SUMMARY There is a substantial need for the development of new therapeutic approaches, and since the introduction of immunotherapy by immune checkpoint inhibitors, there has been an exponential increase in clinical trials to adopt these and other immunotherapy approaches in children with brain tumors. In this review, we summarize the current immunotherapy landscape for various pediatric brain tumor types including choroid plexus tumors, embryonal tumors (medulloblastoma, AT/RT, PNETs), ependymoma, germ cell tumors, gliomas, glioneuronal and neuronal tumors, and mesenchymal tumors. We discuss the latest clinical trials and noteworthy preclinical studies to treat these pediatric brain tumors using checkpoint inhibitors, cellular therapies (CAR-T, NK, T cell), oncolytic virotherapy, radioimmunotherapy, tumor vaccines, immunomodulators, and other targeted therapies. KEY MESSAGES The current landscape for immunotherapy in pediatric brain tumors is still emerging, but results in certain tumors have been promising. In the age of targeted therapy, genetic tumor profiling, and many ongoing clinical trials, immunotherapy will likely become an increasingly effective tool in the neuro-oncologist armamentarium.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA,
| | - Sam E Gary
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Pedram D Maleknia
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jordan A George
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rishi K Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Altinoz MA. Could dietary erucic acid lower risk of brain tumors? An epidemiological look to Chinese population with implications for prevention and treatment. Metab Brain Dis 2022; 37:2643-2651. [PMID: 35704146 DOI: 10.1007/s11011-022-01022-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Erucic acid, an omega-9 monounsaturated fatty acid present in Brassicaceae plants (rapeseed and mustard oils) is highly consumed by the Chinese population and according to several global survey studies, its highest levels are encountered in the Chinese women's milk. Erucic acid is an activating ligand of the transcription factor PPARδ and an inhibitor of the transcriptional activity of PPARγ, which drive tumorigenesis of glioblastomas and medulloblastomas. In this theoretical review, we propose that erucic acid in diet may associate with the risk of brain tumors. High grade brain tumors including medulloblastomas in children and glioblastomas in adults have devastating consequences for human health and the latter tumors are practically incurable. CONCORD-3 epidemiological study recently published in 2021 revealed a low ratio of medulloblastomas in the pediatric age group and also a low ratio of glioblastomas in adults in the Chinese population. It is certain that such profound differences can not be attributed to a single genetic factor or a single nurture pattern. It is very likely that multiple hereditary, nutritional and environmental factors are responsible for these lower ratios; yet here we propose that erucic acid may be one of the contributing factors. If future epidemiological studies and animal models show antitumor activity of erucic acid regarding brain neoplasias, it can be utilized as a preventive strategy for populations possessing very high risks to develop brain tumors such as those harbouring hereditary syndromes increasing the vulnerability to develop such malignancies.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, Acibadem M.A.A. University, Nurtepe Mh. Guven Sk. Kagithane, Istanbul, Turkey.
| |
Collapse
|
11
|
Schakelaar MY, Monnikhof M, Crnko S, Pijnappel E, Meeldijk J, Ten Broeke T, Bovenschen N. Cellular Immunotherapy for Medulloblastoma. Neuro Oncol 2022; 25:617-627. [PMID: 36219688 PMCID: PMC10076947 DOI: 10.1093/neuonc/noac236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, making up ~20% of all primary pediatric brain tumors. Current therapies consist of maximal surgical resection and aggressive radio- and chemotherapy. A third of the treated patients cannot be cured and survivors are often left with devastating long-term side effects. Novel efficient and targeted treatment is desperately needed for this patient population. Cellular immunotherapy aims to enhance and utilize immune cells to target tumors, and has been proven successful in various cancers. However, for MB, the knowledge and possibilities of cellular immunotherapy are limited. In this review, we provide a comprehensive overview of the current status of cellular immunotherapy for MB, from fundamental in vitro research to in vivo models and (ongoing) clinical trials. In addition, we compare our findings to cellular immunotherapy in glioma, an MB-like intracranial tumor. Finally, future possibilities for MB are discussed to improve efficacy and safety.
Collapse
Affiliation(s)
- Michael Y Schakelaar
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Emma Pijnappel
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan Meeldijk
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
13
|
Zhang H, Li J, Zhou Q. Prognostic role of indoleamine 2,3-dioxygenase 1 expression in solid tumors: A systematic review and meta-analysis. Front Oncol 2022; 12:954495. [PMID: 36212460 PMCID: PMC9538899 DOI: 10.3389/fonc.2022.954495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs an emerging immune checkpoint molecule, indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive rate-limiting enzyme in metabolism of tryptophan to kynurenine. The expression of IDO1 affected the prognosis of patients in cancers by regulating the kynurenine pathway, inhibiting the proliferation of T cells. However, the association between IDO1 and solid tumor prognosis was controversial. To further investigate the role of IDO1 expression in solid tumors, we conducted the systematic review and meta-analysis.MethodsWe searched the Web of Science, PubMed, Embase, and Cochrane Library databases and China National Knowledge Infrastructure (CNKI) to identify studies evaluating the prognostic value of IDO1 in solid tumors. Overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) were extracted as the outcome. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated by using the fixed-effect/random-effect model, while heterogeneity, publication bias, and sensitivity between studies were also analyzed.ResultsEighteen studies with 2,168 patients were included in this systematic review and meta-analysis. The results indicated that the high expression of IDO1 was associated with a shorter OS (n = 1926, HR = 1.60, 95% CI: 1.22–2.11, P = 0.001) and DFS (n = 327, HR = 2.65, 95% CI: 1.52–4.63, P = 0.001), while it was uncorrelated with PFS (n = 428, HR = 1.76, 95% CI: 0.99–3.14, P = 0.240). There was significant heterogeneity between studies on OS (I2 = 77.8%, P < 0.001). Subgroup analysis showed that age, gender, tumor type, follow-up period, and study quality were possible reasons for high heterogeneity. The result of the trim-and-fill method indicated that publication bias for OS had no impact on our results. Egger’s test suggested no publication bias for PFS (P = 0.553) and DFS (P = 0.273). Furthermore, sensitivity analysis indicated the result was stable.ConclusionHigh expression of IDO1 was associated with poor clinical outcomes, indicating that it could be a potential prognostic marker in various cancer types.
Collapse
Affiliation(s)
- Haiyan Zhang
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Zhou,
| |
Collapse
|
14
|
Medulloblastoma: Immune microenvironment and targeted nano-therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics (Basel) 2021; 12:diagnostics12010061. [PMID: 35054230 PMCID: PMC8774967 DOI: 10.3390/diagnostics12010061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Kishor K. Bhakat
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-(402)-599-7754
| |
Collapse
|