1
|
Njotu FN, Pougoue Ketchemen J, Babeker H, Henning N, Tikum AF, Nwangele E, Monzer A, Hassani N, Gray BD, Pak KY, Torlakovic EE, Uppalapati M, Fonge H. Preclinical safety and effectiveness of a long-acting somatostatin analogue [ 225Ac]Ac-EBTATE against small cell lung cancer and pancreatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2025; 52:1305-1320. [PMID: 39627348 DOI: 10.1007/s00259-024-07011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/24/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE We report the preclinical evaluation of potent long-acting [225Ac]Ac-EBTATE against SSTR2-positive small cell lung cancer (SCLC) and pancreatic neuroendocrine tumors (pan-NETs). METHODS The pharmacokinetic, biodistribution, and safety studies were evaluated in healthy female and/or male BALB/c mice after intravenous injections of [225Ac]Ac-EBTATE. Further biodistribution and radioligand therapy were investigated in female athymic BALB/c nude mice bearing high or low SSTR2-expressing subcutaneous SCLC models NCI-H524 or NCI-H727, respectively, and in a pan-NET model QGP1.SSTR2. RESULTS Pharmacokinetics confirmed a prolonged clearance half-life (40.27 ± 9.23 h) while biodistribution in healthy male and female BALB/c mice was similar, with prolonged blood circulation that peaked at 6 h. Biodistribution in subcutaneous xenograft models of NCI-H524 and NCI-H727 showed consistent tumor-uptake with SSTR2-overexpression while the projected human effective doses for males and females were 61.7 and 83.7 millisievert/megabecquerel, respectively. 2 × 34 kBq of [225Ac]Ac-EBTATE administered 10 days (d) apart, was generally tolerated for 28 days in healthy BALB/c mice as revealed by blood biochemistry, complete blood count, and histopathological examination of H&E-stained organs. Targeted alpha therapy at 2 × 30 kBq of [225Ac]Ac-EBTATE, injected 10 days apart, resulted in 100% survivals and 80% and 20% complete remissions for NCI-H524 and QGP1.SSTR2 models, respectively. Additionally, [225Ac]Ac-EBTATE had a dose-dependent response in the NCI-H727 model, with median survivals for 2 × 30 kBq and 2 × 15 kBq groups being 63 d (p < 0.0007), and 47 d (p = 0.0148), respectively. CONCLUSIONS [225Ac]Ac-EBTATE is safe and effective against SCLC and pan-NET and therefore warrants clinical investigation.
Collapse
Affiliation(s)
- Fabrice N Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Anjong F Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nava Hassani
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Emina E Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Department of Pathology, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada.
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada.
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
2
|
Y KN, Arjunan A, Maigandan D, Dharmarajan A, Perumalsamy LR. Advances and challenges in therapeutic resistant biomarkers of neuroblastoma: A comprehensive review. Biochim Biophys Acta Rev Cancer 2024; 1879:189222. [PMID: 39577750 DOI: 10.1016/j.bbcan.2024.189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance is one of the significant challenges in Neuroblastoma. Owing to its molecular diversity, the therapeutic resistance mechanisms of Neuroblastoma are highly complicated. The traditional chemo and radio therapeutics fail to provide adequate solutions to the treatment resistance, demanding in-depth research to improvise the existing prognostic and therapeutic regimens. To address this knowledge gap, several investigations are being employed, such as unravelling the molecular signalling mechanisms involved in drug resistance at genomics and proteomics levels, development of biomarkers for assessing the therapeutic success, development of novel drug targets for cancer stem cells, targeted immunotherapy and combination therapies. This review collates the ongoing research efforts to address the challenges faced in Neuroblastoma treatment resistance and uncovers the importance of transitioning biomarker discoveries into clinical practice.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Amrutha Arjunan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Devi Maigandan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Arun Dharmarajan
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102 Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| |
Collapse
|
3
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Vulasala SS, Virarkar M, Gopireddy D, Waters R, Alkhasawneh A, Awad Z, Maxwell J, Ramani N, Kumar S, Onteddu N, Morani AC. Small Bowel Neuroendocrine Neoplasms-A Review. J Comput Assist Tomogr 2024; 48:563-576. [PMID: 38110305 DOI: 10.1097/rct.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Neuroendocrine neoplasms (NENs) are rapidly evolving small bowel tumors, and the patients are asymptomatic at the initial stages. Metastases are commonly observed at the time of presentation and diagnosis. This review addresses the small bowel NEN (SB-NEN) and its molecular, histological, and imaging features, which aid diagnosis and therapy guidance. Somatic cell number alterations and epigenetic mutations are studied to be responsible for sporadic and familial SB-NEN. The review also describes the grading of SB-NEN in addition to rare histological findings such as mixed neuroendocrine-non-NENs. Anatomic and nuclear imaging with conventional computed tomography, magnetic resonance imaging, computed tomographic enterography, and positron emission tomography are adopted in clinical practice for diagnosing, staging, and follow-up of NEN. Along with the characteristic imaging features of SB-NEN, the therapeutic aspects of imaging, such as peptide receptor radionuclide therapy, are discussed in this review.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- From the Department of Radiology, University of Florida College of Medicine, Jacksonville
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Rebecca Waters
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Ziad Awad
- Surgery, University of Florida College of Medicine, Jacksonville, FL
| | - Jessica Maxwell
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center
| | - Nisha Ramani
- Department of Pathology, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Sindhu Kumar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL
| | - Nirmal Onteddu
- Department of Internal Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Ajaykumar C Morani
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Ambrosini V, Fortunati E, Fanti S, Ursprung S, Asmundo L, O'Shea A, Kako B, Lee S, Furtado FS, Blake M, Goiffon RJ, Najmi Z, Hesami M, Murakami T, Domachevsky L, Catalano OA. State-of-the-Art Hybrid Imaging of Neuroendocrine Neoplasms. J Comput Assist Tomogr 2024; 48:510-520. [PMID: 38518197 DOI: 10.1097/rct.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) may be challenging to diagnose due to their small size and diverse anatomical locations. Hybrid imaging techniques, specifically positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI), represent the current state-of-the-art for evaluating NENs. The preferred radiopharmaceuticals for NEN PET imaging are gallium-68 (68Ga) DOTA-peptides, which target somatostatin receptors (SSTR) overexpressed on NEN cells. Clinical applications of [68Ga]Ga-DOTA-peptides PET/CT include diagnosis, staging, prognosis assessment, treatment selection, and response evaluation. Fluorodeoxyglucose-18 (18F-FDG) PET/CT aids in detecting low-SSTR-expressing lesions and helps in patient stratification and treatment planning, particularly in grade 3 neuroendocrine tumors (NETs). New radiopharmaceuticals such as fluorine-labeled SSTR agonists and SSTR antagonists are emerging as alternatives to 68Ga-labeled peptides, offering improved detection rates and favorable biodistribution. The maturing of PET/MRI brings advantages to NEN imaging, including simultaneous acquisition of PET and MRI images, superior soft tissue contrast resolution, and motion correction capabilities. The PET/MRI with [68Ga]Ga-DOTA-peptides has demonstrated higher lesion detection rates and more accurate lesion classification compared to PET/CT. Overall, hybrid imaging offers valuable insights in the diagnosis, staging, and treatment planning of NENs. Further research is needed to refine response assessment criteria and standardize reporting guidelines.
Collapse
Affiliation(s)
| | - Emilia Fortunati
- From the Nuclear Medicine, Alma Mater Studiorum, University of Bologna
| | | | | | | | - Aileen O'Shea
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bashar Kako
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Blake
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Liu Y, Cui R, Wang Z, Lin Q, Tang W, Zhang B, Li G, Wang Z. Evaluating Prognosis of Gastrointestinal Metastatic Neuroendocrine Tumors: Constructing a Novel Prognostic Nomogram Based on NETPET Score and Metabolic Parameters from PET/CT Imaging. Pharmaceuticals (Basel) 2024; 17:373. [PMID: 38543159 PMCID: PMC10975134 DOI: 10.3390/ph17030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION The goal of this study is to compare the prognostic performance of NETPET scores, based on gallium-68 DOTANOC (68Ga-DOTANOC) and fluorine-18 fluorodeoxyglucose (18F-FDG) Positron Emission Tomography-Computed Tomography (PET-CT), and PET-CT metabolic parameters in metastatic gastrointestinal neuroendocrine tumors (GI-NET), while constructing and validating a nomogram derived from dual-scan PET-CT. METHODS In this retrospective study, G1-G3 GI-NET patients who underwent 68Ga-DOTANOC and 18F-FDG PET scans were enrolled and divided into training and internal validation cohorts. Three grading systems were constructed based on NETPET scores and standardized uptake value maximum (SUVmax). LASSO regression selected variables for a multivariable Cox model, and nomograms predicting progression-free survival (PFS) and overall survival (OS) were created. The prognostic performance of these systems was assessed using time-dependent receiver-operating characteristic (ROC) curves, concordance index (C-index), and other methods. Nomogram evaluation involved calibration curves, decision curve analysis (DCA), and the aforementioned methods in both cohorts. RESULTS In this study, 223 patients (130 males; mean age ± SD: 52.6 ± 12 years) were divided into training (148) and internal validation (75) cohorts. Dual scans were classified based on NETPET scores (D1-D3). Single 68Ga-DOTANOC and 18F-FDG PET-CT scans were stratified into S1-S3 and F1-F3 based on SUVmax. The NETPET score-based grading system demonstrated the best OS and PFS prediction (C-index, 0.763 vs. 0.727 vs. 0.566). Nomograms for OS and PFS exhibited superior prognostic performance in both cohorts (all AUCs > 0.8). CONCLUSIONS New classification based on NETPET score predicts patient OS/PFS best. PET-CT-based nomograms show accurate OS/PFS forecasts.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Ruizhe Cui
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Qi Lin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Wei Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Bing Zhang
- Department of Nuclear Medicine, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China;
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou 510080, China; (Y.L.); (R.C.); (Z.W.); (Q.L.); (W.T.)
| |
Collapse
|
7
|
Bonazzi N, Fortunati E, Zanoni L, Argalia G, Calabrò D, Tabacchi E, Allegri V, Campana D, Andrini E, Lamberti G, Di Franco M, Casadei R, Ricci C, Mosconi C, Fanti S, Ambrosini V. Real-Life Use of [68Ga]Ga-DOTANOC PET/CT in Confirmed and Suspected NETs from a Prospective 5-Year Electronic Archive at an ENETS Center of Excellence: More Than 2000 Scans in More Than 1500 Patients. Cancers (Basel) 2024; 16:701. [PMID: 38398092 PMCID: PMC10886517 DOI: 10.3390/cancers16040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The recent introduction of novel treatments for advanced neuroendocrine tumors (NETs) and the well-established impact of clinical case discussion within dedicated multidisciplinary teams indicates the need to promote the centralization of rare diseases, such as NENs (neuroendocrine neoplasms). Data on the real-life use of and indications for [68Ga]Ga-DOTANOC PET/CT were collected from a prospective monocentric 5-year electronic archive including consecutive patients with confirmed and suspected NETs (September 2017 to May 2022). Overall, 2082 [68Ga]Ga-DOTANOC PET/CT scans (1685 confirmed NETs, 397 suspected NETs) were performed in 1537 patients. A high positivity rate was observed across different clinical settings (approximately 70%). Approximately 910/2082 scans were requested by the local oncology ward (851 confirmed NETs, 59 suspected NETs). The following observations were found: (i) the detection rate across all indications was 73.2% (higher for staging, peptide receptor radioligand therapy (PRRT) selection, and treatment response assessment); (ii) in suspected NETs, PET was more often positive when based on radiological findings. This systematic data collection in a high-volume diagnostic center represents a reliable cohort reflecting the global trends in the use of [68Ga]Ga-DOTANOC PET/CT for different clinical indications and primary tumor sites, but prompts the need for further multicenter data sharing in such a rare and slowly progressive disease setting.
Collapse
Affiliation(s)
- Norma Bonazzi
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
| | - Emilia Fortunati
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| | - Giulia Argalia
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
| | - Diletta Calabrò
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
| | - Elena Tabacchi
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| | - Vincenzo Allegri
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| | - Davide Campana
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.C.); (E.A.); (G.L.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Elisa Andrini
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.C.); (E.A.); (G.L.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Giuseppe Lamberti
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.C.); (E.A.); (G.L.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Martina Di Franco
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
| | - Riccardo Casadei
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (R.C.); (C.R.)
- Division of Pancreatic Surgery, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Ricci
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (R.C.); (C.R.)
- Division of Pancreatic Surgery, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Cristina Mosconi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.A.); (D.C.); (M.D.F.); (S.F.); (V.A.)
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (L.Z.); (E.T.); (V.A.)
| |
Collapse
|
8
|
Singh NK, Hage N, Ramamourthy B, Nagaraju S, Kappagantu KM. Nuclear Imaging Modalities in the Diagnosis and Management of Thyroid Cancer. Curr Mol Med 2024; 24:1091-1096. [PMID: 37724677 DOI: 10.2174/1566524023666230915103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
In this review we have brought forward various nuclear imaging modalities used in the diagnosis, staging, and management of thyroid cancer. Thyroid cancer is the most common endocrine malignancy, accounting for approximately 3% of all new cancer diagnoses. Nuclear imaging plays an important role in the evaluation of thyroid cancer, and the use of radioiodine imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the management of this disease. Radioiodine imaging involves the use of Iodine-123 [I-123] or Iodine-131 [I-131] to evaluate thyroid function and detect thyroid cancer. I-123 is a gamma-emitting isotope that is used in thyroid imaging to evaluate thyroid function and detect thyroid nodules. I-131 is a beta-emitting isotope that is used for the treatment of thyroid cancer. Radioiodine imaging is used to detect the presence of thyroid nodules and evaluate thyroid function. FDG imaging is a PET imaging modality that is used to evaluate the metabolic activity of thyroid cancer cells. FDG is a glucose analogue that is taken up by cells that are metabolically active, such as cancer cells. FDG PET/CT can detect primary thyroid cancer and metastatic disease, including lymph nodes and distant metastases. FDG PET/CT is also used to monitor treatment response and detect the recurrence of thyroid cancer. Somatostatin receptor imaging involves the use of radiolabeled somatostatin analogues to detect neuroendocrine tumors, including thyroid cancer. Radiolabeled somatostatin analogues, such as Indium-111 octreotide or Gallium-68 DOTATATE, are administered to the patient, and a gamma camera is used to detect areas of uptake. Somatostatin receptor imaging is highly sensitive and specific for the detection of metastatic thyroid cancer. A comprehensive search of relevant literature was done using online databases of PubMed, Embase, and Cochrane Library using the keywords "thyroid cancer," "nuclear imaging," "radioiodine imaging," "FDG PET/CT," and "somatostatin receptor imaging" to identify relevant studies to be included in this review. Nuclear imaging plays an important role in the diagnosis, staging, and management of thyroid cancer. The use of radioiodine imaging, thyroglobulin imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the evaluation of thyroid cancer. With further research and development, nuclear imaging techniques have the potential to improve the diagnosis and management of thyroid cancer and other endocrine malignancies.
Collapse
Affiliation(s)
- Namit Kant Singh
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Neemu Hage
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Balaji Ramamourthy
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Sushmitha Nagaraju
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Krishna Medha Kappagantu
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| |
Collapse
|
9
|
Al-Muqbel K, Alardah H, Al-Smadi R, Al-Khatib S, Abughanmi R. Cervical Ganglioneuroblastoma Diagnosed by 68Ga-DOTATOC PET/CT in a Child with Opsoclonus Myoclonus Syndrome. J Nucl Med Technol 2023; 51:337-338. [PMID: 37586852 DOI: 10.2967/jnmt.123.265776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
We performed a 68Ga-DOTATOC PET/CT scan on a 25-mo-old female patient who presented with opsoclonus myoclonus ataxia syndrome and had negative initial anatomic imaging. The scan showed a somatostatin receptor-overexpressing cervical tumor in favor of a cervical neuroendocrine tumor, with subsequent histopathologic findings of ganglioneuroblastoma.
Collapse
Affiliation(s)
- Kusai Al-Muqbel
- Department of Radiology and Nuclear Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza Alardah
- Department of Radiology and Nuclear Medicine, Jordan University of Science and Technology, Irbid, Jordan;
| | - Ruba Al-Smadi
- Department of Radiology and Nuclear Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sohaib Al-Khatib
- Department of Pathology, Jordan University of Science and Technology, Irbid, Jordan; and
| | - Raya Abughanmi
- Department of Neurosurgery, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Halfdanarson TR, Mallak N, Paulson S, Chandrasekharan C, Natwa M, Kendi AT, Kennecke HF. Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers (Basel) 2023; 15:4836. [PMID: 37835530 PMCID: PMC10571645 DOI: 10.3390/cancers15194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Radioligand therapy (RLT) with [177Lu]Lu-DOTA-TATE is a standard of care for adult patients with somatostatin-receptor (SSTR)-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Taking advantage of this precision nuclear medicine approach requires diligent monitoring and surveillance, from the use of diagnostic SSTR-targeted radioligand imaging for the selection of patients through treatment and assessments of response. Published evidence-based guidelines assist the multidisciplinary healthcare team by providing acceptable approaches to care; however, the sheer heterogeneity of GEP-NETs can make these frameworks difficult to apply in individual clinical circumstances. There are also contradictions in the literature regarding the utility of novel approaches in monitoring and surveilling patients with GEP-NETs receiving RLT. This article discusses the emerging evidence on imaging, clinical biochemistry, and tumor assessment criteria in the management of patients receiving RLT for GEP-NETs; additionally, it documents our own best practices. This allows us to offer practical guidance on how to effectively implement monitoring and surveillance measures to aid patient-tailored clinical decision-making.
Collapse
Affiliation(s)
| | - Nadine Mallak
- Division of Molecular Imaging and Therapy, Oregon Health and Science University, Portland, OR 97239, USA;
| | | | | | - Mona Natwa
- Langone Health, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|
11
|
Zhang JM, Zheng CW, Li XW, Fang ZY, Yu MX, Shen HY, Ji X. Typical Zollinger-Ellison syndrome-atypical location of gastrinoma and absence of hypergastrinemia: A case report and review of literature. World J Clin Cases 2023; 11:6223-6230. [PMID: 37731553 PMCID: PMC10507545 DOI: 10.12998/wjcc.v11.i26.6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Zollinger-Ellison syndrome (ZES) results from hypersecretion of gastrin from pancreatic or duodenal neuroendocrine tumors, commonly referred to as gastrinomas. The high levels of gastrin lead to a typical presentation involving watery diarrhea and multiple ulcers in the duodenum. Here, we have presented the rare case of a patient with ZES and absence of hypergastrinemia as well as an atypical location of gastrinoma. CASE SUMMARY A 72-year-old woman presented with the typical clinical manifestations of ZES, including upper abdominal pain, significant watery diarrhea, and acidic liquid vomitus. Surprisingly, however, she did not have an increased level of serum gastrin. In addition, there was no evidence of gastrinoma or any other ulcerogenic tumor. Esophagogastroduodenoscopy was conducted to examine the upper digestive tract. Revised diagnoses were considered, and an individualized treatment plan was developed. The patient responded to antacid medication while experiencing intermittent, recurring bouts of ZES. 18F-AlF-NOTA-octreotide positron emission tomography (18F-OC PET)/computed tomography (CT) helped locate the tumor. Postoperative pathology and immunohistochemistry results suggested that the tumor was a gastrinoma located at an unconventional site. CONCLUSION This present case study demonstrates the possibility of ZES-like manifestation in patients with absence of hypergastrinemia. 18F-OC PET/CT is a relatively new imaging technique that can be applied for diagnosing even tiny gastrinomas that are atypical in terms of location.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Chu-Wei Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Xiao-Wen Li
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Zhi-Yun Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Mu-Xin Yu
- College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Hai-Yan Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Xia Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
12
|
Fortunati E, Bonazzi N, Zanoni L, Fanti S, Ambrosini V. Molecular imaging Theranostics of Neuroendocrine Tumors. Semin Nucl Med 2023; 53:539-554. [PMID: 36623974 DOI: 10.1053/j.semnuclmed.2022.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/08/2023]
Abstract
Neuroendocrine neoplasms (NEN) are rare and heterogeneous tumors, originating mostly from the gastro-entero-pancreatic (GEP) tract followed by the lungs. Multidisciplinary discussion is mandatory for optimal diagnostic and therapeutic management. Well-differentiated NEN (NET) present a high expression of somatostatin receptors (SSTR) and can be studied with [68Ga]-DOTA-peptides ([68Ga]Ga-DOTANOC, [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE) PET/CT to assess disease extension and the eligibility for peptide receptor radionuclide therapy (PRRT). SSTR-analogues labelled with 90Y or 177Lu have been used since mid-90s for NET therapy. PRRT is now considered an effective and safe treatment option for SSTR-expressing NET: following the approval of 177Lu-DOTATATE by FDA and EMA, PRRT is now part of the therapeutic algorithms of the main scientific societies. New strategies to improve PRRT efficacy and to reduce its toxicity are under evaluation (eg, personalization of treatment schemes, the selection of the most suitable patients, improvement of response assessment criteria, optimization of treatment sequencing, feasibility of PRRT-retreatment, combination of PRRT with other treatments options). Recently, several emerging radiopharmaceuticals showed encouraging results for both imaging and therapy (eg, SSTR-analogues labelled with 18F, SSTR-antagonists for both diagnosis and therapy, alpha-labelling for therapy, radiopharmaceuticals binding to new cellular targets). Aim of this review is to focus on current knowledge and to outline emerging perspectives for NEN's diagnosis and therapy.
Collapse
Affiliation(s)
- Emilia Fortunati
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Norma Bonazzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Grawe F, Rosenberger N, Ingenerf M, Beyer L, Eschbach R, Todica A, Seidensticker R, Schmid-Tannwald C, Cyran CC, Ricke J, Bartenstein P, Auernhammer CJ, Ruebenthaler J, Fabritius MP. Diagnostic performance of PET/CT in the detection of liver metastases in well-differentiated NETs. Cancer Imaging 2023; 23:41. [PMID: 37098632 PMCID: PMC10131442 DOI: 10.1186/s40644-023-00556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The aim of this retrospective study was to compare the diagnostic accuracy of somatostatin receptor (SSR)-PET/CT to liver MRI as reference standard in the evaluation of hepatic involvement in neuroendocrine tumors (NET). METHODS An institutional database was screened for "SSR" imaging studies between 2006 and 2021. 1000 NET Patients (grade 1/2) with 2383 SSR-PET/CT studies and matching liver MRI in an interval of +3 months were identified. Medical reports of SSR-PET/CT and MRI were retrospectively evaluated regarding hepatic involvement and either confirmed by both or observed in MRI but not in SSR-PET/CT (false-negative) or in SSR-PET but not in MRI (false-positive). RESULTS Metastatic hepatic involvement was reported in 1650 (69.2%) of the total 2383 SSR-PET/CT imaging studies, whereas MRI detected hepatic involvement in 1685 (70.7%) cases. There were 51 (2.1%) false-negative and 16 (0.7%) false-positive cases. In case of discrepant reports, MRI and PET/CT were reviewed side by side for consensus reading. SSR-PET/CT demonstrated a sensitivity of 97.0% (95%CI: 96.0%, 97.7%), a specificity of 97.7% (95%CI: 96.3%, 98.7%), a PPV of 99.0% (95%CI: 98.4%, 99.4%) and NPV of 93.0% (95%CI: 91.0, 94.8%) in identifying hepatic involvement. The most frequent reason for false-negative results was the small size of lesions with the majority < 0.6 cm. CONCLUSION This study confirms the high diagnostic accuracy of SSR-PET/CT in the detection of hepatic involvement in NET patients based on a patient-based analysis of metastatic hepatic involvement with a high sensitivity and specificity using liver MRI imaging as reference standard. However, one should be aware of possible pitfalls when a single imaging method is used in evaluating neuroendocrine liver metastases in patients.
Collapse
Affiliation(s)
- Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Natalie Rosenberger
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ralf Eschbach
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
14
|
Ladrière T, Faudemer J, Levigoureux E, Peyronnet D, Desmonts C, Vigne J. Safety and Therapeutic Optimization of Lutetium-177 Based Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15041240. [PMID: 37111725 PMCID: PMC10145759 DOI: 10.3390/pharmaceutics15041240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using Lutetium-177 (177Lu) based radiopharmaceuticals has emerged as a therapeutic area in the field of nuclear medicine and oncology, allowing for personalized medicine. Since the first market authorization in 2018 of [¹⁷⁷Lu]Lu-DOTATATE (Lutathera®) targeting somatostatin receptor type 2 in the treatment of gastroenteropancreatic neuroendocrine tumors, intensive research has led to transfer innovative 177Lu containing pharmaceuticals to the clinic. Recently, a second market authorization in the field was obtained for [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto®) in the treatment of prostate cancer. The efficacy of 177Lu radiopharmaceuticals are now quite well-reported and data on the safety and management of patients are needed. This review will focus on several clinically tested and reported tailored approaches to enhance the risk-benefit trade-off of radioligand therapy. The aim is to help clinicians and nuclear medicine staff set up safe and optimized procedures using the approved 177Lu based radiopharmaceuticals.
Collapse
Affiliation(s)
- Typhanie Ladrière
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Julie Faudemer
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Elise Levigoureux
- Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69677 Bron, France
| | - Damien Peyronnet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Cédric Desmonts
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- INSERM U1086, ANTICIPE, Normandy University, UNICAEN, 14000 Caen, France
| | - Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- PhIND, Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, INSERM U1237, Normandie Université, UNICAEN, 14000 Caen, France
| |
Collapse
|
15
|
Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review. J Clin Med 2023; 12:jcm12020717. [PMID: 36675645 PMCID: PMC9861419 DOI: 10.3390/jcm12020717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms with a wide spectrum of clinical behavior, from the long survival of well-differentiated NETs to the dismal prognosis of high-grade neuroendocrine carcinomas (NECs), being G3 NETs a recently recognized intermediate entity. While the role of chemotherapy is well established in NECs, data on NETs mostly derives from small studies, experts' opinions, and extrapolating results from small-cell lung cancer studies. This narrative review aims to summarize available evidence about the use of chemotherapy in the setting of G1-2 NETs and G3 NETs. We performed literature research in PubMed Library for all articles published up to September 2022 about the efficacy of chemotherapy in NETs. Treatment regimens with STZ-5FU, CAPTEM, and anti-metabolite-based treatment are the most active and tolerated in gastroenteropancreatic NETs (GEP-NETs) G1-G2, while platinum-based regimens (FOLFOX/XELOX) and TEM/CAPTEM showed the best activity in thoracic NETs. Solid evidence about chemotherapy efficacy in G3 NETs is still lacking. Literature data support the use of chemotherapy in low-intermediate grade NETs after the failure of other therapies or if tumor shrinkage is needed. Studies assessing G3 NETs independently from NECs are needed to better understand the role of chemotherapy in this setting.
Collapse
|
16
|
Hofland J, Brabander T, Verburg FA, Feelders RA, de Herder WW. Peptide Receptor Radionuclide Therapy. J Clin Endocrinol Metab 2022; 107:3199-3208. [PMID: 36198028 PMCID: PMC9693835 DOI: 10.1210/clinem/dgac574] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/19/2022]
Abstract
The concept of using a targeting molecule labeled with a diagnostic radionuclide for using positron emission tomography or single photon emission computed tomography imaging with the potential to demonstrate that tumoricidal radiation can be delivered to tumoral sites by administration of the same or a similar targeting molecule labeled with a therapeutic radionuclide termed "theranostics." Peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs (SSAs) is a well-established second/third-line theranostic treatment for somatostatin receptor-positive well-differentiated (neuro-)endocrine neoplasms (NENs). PRRT with 177Lu-DOTATATE was approved by the regulatory authorities in 2017 and 2018 for selected patients with low-grade well-differentiated gastroenteropancreatic (GEP) NENs. It improves progression-free survival as well as quality of life of GEP NEN patients. Favorable symptomatic and biochemical responses using PRRT with 177Lu-DOTATATE have also been reported in patients with functioning metastatic GEP NENs like metastatic insulinomas, Verner Morrison syndromes (VIPomas), glucagonomas, and gastrinomas and patients with carcinoid syndrome. This therapy might also become a valuable therapeutic option for inoperable low-grade bronchopulmonary NENs, inoperable or progressive pheochromocytomas and paragangliomas, and medullary thyroid carcinomas. First-line PRRT with 177Lu-DOTATATE and combinations of this therapy with cytotoxic drugs are currently under investigation. New radiolabeled somatostatin receptor ligands include SSAs coupled with alpha radiation emitting radionuclides and somatostatin receptor antagonists coupled with radionuclides.
Collapse
Affiliation(s)
- Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology & Nuclear Medicine, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Correspondence: Wouter W. de Herder, MD, PhD, Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Fine GC, Covington MF, Koppula BR, Salem AE, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology-VI. Primary Cutaneous Cancer, Sarcomas and Neuroendocrine Tumors. Cancers (Basel) 2022; 14:2835. [PMID: 35740501 PMCID: PMC9221374 DOI: 10.3390/cancers14122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
PET-CT is an advanced imaging modality with many oncologic applications, including staging, therapeutic assessment, restaging and surveillance for recurrence. The goal of this series of six review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for specific oncologic indications, the potential pitfalls and nuances that characterize these applications, and guidelines for image interpretation. Tumor-specific clinical information and representative PET-CT images are provided. The current, sixth article in this series addresses PET-CT in an evaluation of aggressive cutaneous malignancies, sarcomas and neuroendocrine tumors. A discussion of the role of FDG PET for all types of tumors in these categories is beyond the scope of this review. Rather, this article focuses on the most common malignancies in adult patients encountered in clinical practice. It also focuses on Food and Drug Agency (FDA)-approved and clinically available radiopharmaceuticals rather than research tracers or those requiring a local cyclotron. This information will serve as a guide to primary providers for the appropriate role of PET-CT in managing patients with cutaneous malignancies, sarcomas and neuroendocrine tumors. The nuances of PET-CT interpretation as a practical guide for imaging providers, including radiologists, nuclear medicine physicians and their trainees, are also addressed.
Collapse
Affiliation(s)
- Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
- Faculty of Medicine, Department of Radiodiagnosis and Intervention, Alexandria University, Alexandria 21526, Egypt
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
| |
Collapse
|