1
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Increased keratinocyte activity and PIEZO1 signaling contribute to paclitaxel-induced mechanical hypersensitivity. Sci Transl Med 2024; 16:eadn5629. [PMID: 39661703 DOI: 10.1126/scitranslmed.adn5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy. We found that keratinocyte inhibition by either optogenetic or chemogenetic methods largely alleviated paclitaxel-induced mechanical hypersensitivity across acute and persistent time points from 2 days through 3 weeks. Furthermore, we found that paclitaxel exposure sensitized mouse and human keratinocytes to mechanical stimulation and enhanced currents of PIEZO1, a mechanosensitive channel highly expressed in keratinocytes. Deletion of PIEZO1 from keratinocytes alleviated paclitaxel-induced mechanical hypersensitivity in mice. These findings suggest that nonneuronal cutaneous cells contribute substantially to neuropathic pain and pave the way for the development of new pain relief strategies that target epidermal keratinocytes and PIEZO1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Montero P, Sanz C, Pérez-Fidalgo JA, Pérez-Leal M, Milara J, Cortijo J. Paclitaxel alters melanogenesis and causes pigmentation in the skin of gynecological cancer patients. Fundam Clin Pharmacol 2024; 38:183-191. [PMID: 37483143 DOI: 10.1111/fcp.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Paclitaxel (PTX) is a microtubule-stabilizing antineoplastic that has been shown to damage healthy tissues like the skin. Hyperpigmentation can be found among the adverse effects caused by PTX, but the literature is limited and the mechanisms driving PTX-induced pigmentary alterations are unknown. OBJECTIVES This study aimed to describe the pigmentary alterations caused by PTX and to determine the effects of PTX on melanocytes. METHODS Pigmentary skin alterations were measured in 20 gynecological cancer patients under PTX treatment by using specific probes, which determine the melanin index and the pigmentation level. Melanocytes were incubated with paclitaxel to analyze melanogenesis markers gene expression, melanin content, and transcription factors activation. RESULTS Paclitaxel induced alterations in the skin pigmentation with no visible clinical manifestations. Gynecological cancer patients under paclitaxel treatment had an increase in the melanin index and pigmentation levels. In vitro, PTX exposure to melanocytes increased the expression of melanogenesis markers, melanin content, and induced activation of ERK and MITF. CONCLUSIONS The results suggest that PTX alters pigmentation in patients with no clinically visible manifestations, and these alterations might be driven by its capacity to stimulate melanogenesis on melanocytes through the MITF activation pathway.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Celia Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Jose Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Martín Pérez-Leal
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
3
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Keratinocyte Piezo1 drives paclitaxel-induced mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571332. [PMID: 38168305 PMCID: PMC10760029 DOI: 10.1101/2023.12.12.571332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown if keratinocytes contribute to touch evoked pain and hypersensitivity following tissue injury. Here, we used inhibitory optogenetic and chemogenetic techniques to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapeutic treatment. We found that keratinocyte inhibition largely alleviates paclitaxel-induced mechanical hypersensitivity. Furthermore, we found that paclitaxel exposure sensitizes mouse and human keratinocytes to mechanical stimulation through the keratinocyte mechanotransducer Piezo1. These findings demonstrate the contribution of non-neuronal cutaneous cells to neuropathic pain and pave the way for the development of new pain-relief strategies that target epidermal keratinocytes and Piezo1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Santoyo-Garcia JH, Valdivia-Cabrera M, Ochoa-Villarreal M, Casasola-Zamora S, Ripoll M, Escrich A, Moyano E, Betancor L, Halliday KJ, Loake GJ, Rios-Solis L. Increased paclitaxel recovery from Taxus baccata vascular stem cells using novel in situ product recovery approaches. BIORESOUR BIOPROCESS 2023; 10:68. [PMID: 38647629 PMCID: PMC10991628 DOI: 10.1186/s40643-023-00687-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/16/2023] [Indexed: 04/25/2024] Open
Abstract
In this study, several approaches were tested to optimise the production and recovery of the widely used anticancer drug Taxol® (paclitaxel) from culturable vascular stem cells (VSCs) of Taxus baccata, which is currently used as a successful cell line for paclitaxel production. An in situ product recovery (ISPR) technique was employed, which involved combining three commercial macro-porous resin beads (HP-20, XAD7HP and HP-2MG) with batch and semi-continuous cultivations of the T. baccata VSCs after adding methyl jasmonate (Me-JA) as an elicitor. The optimal resin combination resulted in 234 ± 23 mg of paclitaxel per kg of fresh-weight cells, indicating a 13-fold improved yield compared to the control (with no resins) in batch cultivation. This resin treatment was further studied to evaluate the resins' removal capacity of reactive oxygen species (ROS), which can cause poor cell growth or reduce product synthesis. It was observed that the ISPR cultivations had fourfold less intracellular ROS concentration than that of the control; thus, a reduced ROS concentration established by the resin contributed to increased paclitaxel yield, contrary to previous studies. These paclitaxel yields are the highest reported to date using VSCs, and this scalable production method could be applied for a diverse range of similar compounds utilising plant cell culture.
Collapse
Affiliation(s)
- Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FB, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
| | - Marissa Valdivia-Cabrera
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Marisol Ochoa-Villarreal
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | | | - Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100, Montevideo, Uruguay
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Green Bioactives, Douglas House, Pentland Science Park, Midlothian, EH16 0PL, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FB, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Shinouchi R, Sasaki A, Takaki T, Tsuji M, Kiuchi Y, Nobe K. The effect of hand therapy on alleviating chemotherapy-induced peripheral neuropathy in a model mouse. Neurosci Lett 2023; 800:137138. [PMID: 36813075 DOI: 10.1016/j.neulet.2023.137138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The use of neurotoxic chemotherapeutic agents induces numbness in the limbs through chemotherapy-induced peripheral neuropathy (CIPN). Recently, we found that hand therapy involving finger massage improved mild to moderate numbness in CIPN patients. In this study, we behaviorally, physiologically, pathologically, and histologically investigated the mechanisms underlying hand therapy-induced numbness improvement in a CIPN model mouse. Hand therapy was performed for 21 days after the disease induction. Its effects were evaluated using mechanical and thermal thresholds and blood flow in the bilateral hind paw. Moreover, 14 days after the hand therapy was administered, we assessed the blood flow and conduction velocity in the sciatic nerve, the level of serum galectin-3, and the histological myelin and epidermis-related changes in the hindfoot tissue. Hand therapy significantly improved allodynia, hyperalgesia, blood flow, conduction velocity, serum galectin-3, and epidermal thickness in the CIPN model mouse. Furthermore, we observed the images of repairs of the myelin degeneration. Thus, we found that hand therapy could improve numbness in the CIPN model mouse and that it could help to repair peripheral nerves by promoting blood circulation in the limbs.
Collapse
Affiliation(s)
- Ryosuke Shinouchi
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Akiko Sasaki
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Takaki
- Section of Electron Microscopy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|