1
|
Algul S, Ozcelik O. Comprehensive review of animal models in diabetes research using chemical agents. Lab Anim 2025:236772241296199. [PMID: 39817399 DOI: 10.1177/00236772241296199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.This review focuses on animal models of diabetes induced by chemical agents, which are essential tools for understanding disease mechanisms, investigating complications, and testing antidiabetic drugs. Models include those caused by streptozotocin (STZ), alloxan, ferric nitrilotriacetate (Fe-NTA), dithizone, and anti-insulin serum.Streptozotocin (STZ)-induced diabetes models create type 1 and 2 diabetes by destroying pancreatic beta cells. The combination of STZ with nicotinamide mimics type 2 diabetes phenotypes. Alloxan induces a hyperglycemic state by causing free radical formation that selectively destroys pancreatic beta cells. Fe-NTA and dithizone also create diabetes models by damaging pancreatic beta cells. Anti-insulin serum models induce insulin resistance and hyperglycemia by generating antibodies against insulin receptors, leading to a condition similar to type 1 diabetes.Each model has unique characteristics that make it suitable for different aspects of diabetes research. These models are used to understand the pathogenesis of diabetes, develop new treatment strategies, and evaluate the efficacy of potential drugs.
Collapse
Affiliation(s)
- Sermin Algul
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Physiology, Van, Turkey
| | - Oguz Ozcelik
- Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey
| |
Collapse
|
2
|
Hiratsuka T, Yoshizawa A, Endo T, Yamamoto T, Toyokuni S, Tsuruyama T. Formalin-Fixed Paraffin-Embedded Proteomics of Malignant Mesothelioma and New Candidate Biomarkers Thioredoxin and Superoxide Dismutase 2 for Immunohistochemistry. J Transl Med 2024; 104:100299. [PMID: 38013118 DOI: 10.1016/j.labinv.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
The pathogenesis of malignant mesothelioma (MM) has been extensively investigated, focusing on stress derived from reactive oxygen species. We aimed to identify diagnostic biomarkers of MM by analyzing proteins in formalin-fixed paraffin-embedded specimens using liquid chromatography-mass spectrometry. We extracted proteins from formalin-fixed paraffin-embedded sections of MM tissues (n = 7) and compared their profiles with those of benign mesothelial tissues (n = 4) and alveolar tissue (n = 1). Proteomic data were statistically assessed and profiled using principal component analysis. We were successful in the classification of MM and healthy tissue. The levels of superoxide dismutase 2 (SOD2), an enzyme that converts superoxide anion into oxygen and hydrogen peroxide, and thioredoxin (TXN), which plays a crucial role in reducing disulfide bonds in proteins, primarily contributed to the classification. Other redox-related proteins, such as pyruvate dehydrogenase subunit X, and ceruloplasmin also contributed to the classification. Protein-protein interaction analysis demonstrated that these proteins play essential roles in MM pathogenesis. Immunohistochemistry revealed that TXN levels were significantly lower, whereas SOD2 levels were significantly higher in MM and lung cancer tissues than in controls. Proteomic profiling suggested that MM tissues experienced increased exposure to hydrogen peroxide and other reactive oxygen species. Combining immunohistochemistry for TXN and SOD2 allows for differentiation among MM, lung cancer, and control tissues; hence, TXN and SOD2 may be promising MM biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Takuya Hiratsuka
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Tatsuya Endo
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Takushi Yamamoto
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan; Tazuke Kofukai Medical Research Institute Kitano Hospital, Ohgimachi, Osaka, Japan.
| |
Collapse
|
3
|
Okazaki Y. Iron from the gut: the role of divalent metal transporter 1. J Clin Biochem Nutr 2024; 74:1-8. [PMID: 38292117 PMCID: PMC10822759 DOI: 10.3164/jcbn.23-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
4
|
Borko V, Friganović T, Weitner T. Preparation and characterization of iron(III) nitrilotriacetate complex in aqueous solutions for quantitative protein binding experiments. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6499-6513. [PMID: 37966722 DOI: 10.1039/d3ay01261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Various preparations of iron(III) nitrilotriacetate (FeNTA) solution reported in the literature lack a comprehensive method for accurate determination of FeNTA concentration and often result in unstable solutions. A detailed procedure for the preparation of FeNTA solution is presented that includes the standardization of both components of the chelate. The standardization of the components allowed the accurate determination of the molar absorption coefficients for the calculation of the FeNTA concentration in two different buffers at pH 5.6 and 7.4. The variation of pH in this range or ionic strength in the range from 0 M to 3 M (KCl) has little effect on the value of the molar absorption coefficient. The precise concentrations of all species involved in the equilibria between Fe and NTA were determined in the pH range 2-12 using the Jenkins-Traub algorithm to solve the 5th-order polynomial in Microsoft Excel. In view of the experimental observations and the calculated distribution of species, the stability of FeNTA solutions may be affected by the Fe : NTA ratio and the total concentrations, with dilute solutions and those with an excess of NTA over Fe showing higher stability.
Collapse
Affiliation(s)
- Valentina Borko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| | - Tomislav Friganović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| | - Tin Weitner
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
5
|
Song SH, Han D, Park K, Um JE, Kim S, Ku M, Yang J, Yoo TH, Yook JI, Kim NH, Kim HS. Bone morphogenetic protein-7 attenuates pancreatic damage under diabetic conditions and prevents progression to diabetic nephropathy via inhibition of ferroptosis. Front Endocrinol (Lausanne) 2023; 14:1172199. [PMID: 37293506 PMCID: PMC10244744 DOI: 10.3389/fendo.2023.1172199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Background Approximately 30% of diabetic patients develop diabetic nephropathy, a representative microvascular complication. Although the etiological mechanism has not yet been fully elucidated, renal tubular damage by hyperglycemia-induced expression of transforming growth factor-β (TGF-β) is known to be involved. Recently, a new type of cell death by iron metabolism called ferroptosis was reported to be involved in kidney damage in animal models of diabetic nephropathy, which could be induced by TGF-β. Bone morphogenetic protein-7 (BMP7) is a well-known antagonist of TGF-β inhibiting TGF-β-induced fibrosis in many organs. Further, BMP7 has been reported to play a role in the regeneration of pancreatic beta cells in diabetic animal models. Methods We used protein transduction domain (PTD)-fused BMP7 in micelles (mPTD-BMP7) for long-lasting in vivo effects and effective in vitro transduction and secretion. Results mPTD-BMP7 successfully accelerated the regeneration of diabetic pancreas and impeded progression to diabetic nephropathy. With the administration of mPTD-BMP7, clinical parameters and representative markers of pancreatic damage were alleviated in a mouse model of streptozotocin-induced diabetes. It not only inhibited the downstream genes of TGF-β but also attenuated ferroptosis in the kidney of the diabetic mouse and TGF-β-stimulated rat kidney tubular cells. Conclusion BMP7 impedes the progression of diabetic nephropathy by inhibiting the canonical TGF-β pathway, attenuating ferroptosis, and helping regenerate diabetic pancreas.
Collapse
Affiliation(s)
- Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kyeonghui Park
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jo Eun Um
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Seonghun Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Okazaki Y, Hino K. Iron and Cancer: A Special Issue. Cancers (Basel) 2023; 15:cancers15072097. [PMID: 37046758 PMCID: PMC10093076 DOI: 10.3390/cancers15072097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Iron is an essential element for all organisms, and iron-containing proteins play critical roles in cellular functions [...]
Collapse
|
8
|
Okazaki Y, Ito N, Tanaka H, Hori M, Toyokuni S. Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH. Free Radic Res 2022; 56:595-606. [PMID: 36519277 DOI: 10.1080/10715762.2022.2157272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-thermal plasma (NTP) induces the generation of reactive oxygen species (ROS) and reactive nitrogen species, such as hydroxyl radicals (•OH), hydrogen peroxide (H2O2), singlet oxygen, superoxide, ozone, and nitric oxide, at near-physiological temperatures. These molecules promote blood coagulation, wound healing, disinfection, and selective cancer cell death. Based on these evidences, clinical trials of NTP have been conducted for treating chronic wounds and head and neck cancers. Although clinical applications have progressed, the stoichiometric quantification of NTP-induced ROS remains unclear in the liquid phase in the presence of FeCl2 or FeCl3 in combination with biocompatible reducing agents, which may modulate the final biological effects of NTP. In this study, we employed electron paramagnetic resonance spectroscopy to quantify ROS using spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and H2O2, using luminescent probe in the presence of FeCl2 or FeCl3. NTP-induced DMPO-OH levels were elevated 10-100 µM FeCl2 or 500 and 1000 µM FeCl3. NTP-induced DMPO-OH with 10 µM FeCl2 or FeCl3 was significantly scavenged by ascorbate, α-tocopherol, dithiothreitol, reduced glutathione, or oxidized glutathione, whereas dehydroascorbate was ineffective in 2 mM DMPO. NTP-induced H2O2 was significantly degraded by 100 µM FeCl2 and FeCl3 in an iron-dependent manner. Meanwhile, decomposition of H2O2 by catalase decayed DMPO-OH efficiently in the presence of iron, indicating iron causes DMPO-OH production and degradation simultaneously. These results suggest that NTP-induced DMPO-OH is generated by the H2O2-consuming, iron-dependent Fenton reaction and ferryl intermediates. The potential iron-mediated ROS production by NTP is also discussed to clarify the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanami Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Kawabata T. Iron-Induced Oxidative Stress in Human Diseases. Cells 2022; 11:cells11142152. [PMID: 35883594 PMCID: PMC9324531 DOI: 10.3390/cells11142152] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is responsible for the regulation of several cell functions. However, iron ions are catalytic and dangerous for cells, so the cells sequester such redox-active irons in the transport and storage proteins. In systemic iron overload and local pathological conditions, redox-active iron increases in the human body and induces oxidative stress through the formation of reactive oxygen species. Non-transferrin bound iron is a candidate for the redox-active iron in extracellular space. Cells take iron by the uptake machinery such as transferrin receptor and divalent metal transporter 1. These irons are delivered to places where they are needed by poly(rC)-binding proteins 1/2 and excess irons are stored in ferritin or released out of the cell by ferroportin 1. We can imagine transit iron pool in the cell from iron import to the export. Since the iron in the transit pool is another candidate for the redox-active iron, the size of the pool may be kept minimally. When a large amount of iron enters cells and overflows the capacity of iron binding proteins, the iron behaves as a redox-active iron in the cell. This review focuses on redox-active iron in extracellular and intracellular spaces through a biophysical and chemical point of view.
Collapse
Affiliation(s)
- Teruyuki Kawabata
- Department of Applied Physics, Postgraduate School of Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|