1
|
Westemeier-Rice ES, Winters MT, Rawson TW, Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B, Dziadowicz S, Yi W, Bobbala S, Hu G, Martinez I. Lnc-RAINY regulates genes involved in radiation susceptibility through DNA:DNA:RNA triplex-forming interactions and has tumor therapeutic potential in lung cancers. Noncoding RNA Res 2025; 12:152-166. [PMID: 40235937 PMCID: PMC11999364 DOI: 10.1016/j.ncrna.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 04/17/2025] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. Unfortunately, radiation resistance remains a major problem facing lung cancer patients. Recently, we identified a group of long non-coding RNAs (lncRNAs) known as linc-SPRY3 RNAs, expressed on the Y-chromosome, which play a role in radiation sensitivity by decreasing tumor burden in vitro and in vivo after radiation. In this study, we found that the linc-SPRY3 RNAs are one large lncRNA that we named Radiation Induced Y-chromosome linked long non-coding RNA (lnc-RAINY). Through ATAC-seq and immunoprecipitation experiments, we show that lnc-RAINY interacts with DNA in a triple helix to induce chromatin remodeling and gene expression. We also identified that lnc-RAINY regulates CDC6 and CDC25A expression affecting senescence induction, cell migration patterns, and cell cycle regulation. Furthermore, the administration of Lnc-RAINY encapsulated in FDA-approved nanoparticles into a lung cancer patient-derived xenograft model dramatically reduces tumor progression demonstrating therapeutic potential.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Kiran J. Patel
- West Virginia School of Medicine, West Virginia University, West Virginia, United States
| | - Olivia McHugh
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sierra Ward
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sarah McLaughlin
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Amanda Stewart
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Bishal Misra
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Weijun Yi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sharan Bobbala
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| |
Collapse
|
2
|
Madheswaran T, Chellappan DK, Lye FSN, Dua K. Recent advances in the use of liquid crystalline nanoparticles for non-small cell lung cancer treatment. Expert Opin Drug Deliv 2025:1-13. [PMID: 40022612 DOI: 10.1080/17425247.2025.2474693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) continues to pose a considerable health challenge with few therapeutic alternatives. Liquid crystalline nanoparticles (LCN) are nanostructured drug delivery systems made of lipid-based amphiphilic materials that self-assemble into crystalline phases in aqueous environments. LCN have become a promising way to treat NSCLC owing to their specific properties that make them useful for targeted delivery and controlled drug release. AREAS COVERED The review provides a brief overview of the use of LCN in the treatment of NSCLC. It explores their composition, fabrication methods, and characterization processes. The article further addresses several nanoparticle-based approaches for the treatment of NSCLC. Ultimately, it underscores the promise of LCNs as a promising drug delivery system for NSCLC and discusses the obstacles and outlook in this field. EXPERT OPINION LCN represents a promising frontier in the treatment of NSCLC, offering several specific advantages over conventional therapies. Utilizing their intrinsic self-assembly characteristics, LCN provides meticulous control over drug encapsulation, release kinetics, and cellular absorption, which are crucial for improving therapy success. LCN also has the capability for co-delivery of various drugs, facilitating synergistic therapeutic benefits and addressing multidrug resistance, a prevalent issue in NSCLC treatment.
Collapse
Affiliation(s)
- Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
- Department of Life Sciences, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Fiona Sze Nee Lye
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Selangor, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Wang H, Liu C, Jiang C, Zhang Y, Zhao X, Jia Z, Huo J, Yang J. GRHL3 drives radiotherapy resistance and blocks the anti-tumor response of NK and CD4 + T cells in lung squamous cell carcinoma via RNF2. Biochem Pharmacol 2025; 233:116784. [PMID: 39880318 DOI: 10.1016/j.bcp.2025.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor. GRHL3 expression was overexpressed in radioresistant cells relative to parental cells, and the knockdown of GRHL3 conferred sensitivity to radioresistant LUSC cells, induced DNA damage, inhibited cell survival, and reduced tumor load in mice. GRHL3 promoted ring finger protein 2 (RNF2) transcription by binding to the RNF2 promoter. GRHL3 induced a radioresistant phenotype in parental cells and led to compromised anti-tumor immune responses of CD4+ T cells and NK cells. The GRHL3-promoted tumor progression was reversed by the knockdown of RNF2. The DNA methylation of GRHL3 was reduced in radioresistant cells. All in all, as GRHL3, helps LUSC cells escape from the immune surveillance and mediates radioresistance, it might be an attractive target for therapy-resistant LUSC.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai 054000 Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Chao Jiang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Yunjie Zhang
- Department of Surgical Oncology, Handan Central Hospital, Handan 056000 Hebei, PR China
| | - Xin Zhao
- School of Clinical Sciences, Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Zhongfei Jia
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jingchen Huo
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China.
| |
Collapse
|
4
|
Dai Y, He J, Zhou Y, Yu Y, Hui H, Guo L, Yin H. Constructing a highly sensitive duplex immunoassay using AuNPs and AgNPs as nanolabels for investigating the epithelial-mesenchymal transition occurring on circulating tumor cells with lung cancer patients. Biosens Bioelectron 2025; 270:116947. [PMID: 39561553 DOI: 10.1016/j.bios.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Transformation of epithelial to mesenchymal (EMT) is an important event in the process of tumor initiation, invasion and metastasis. Circulating tumor cells (CTCs) are one kind of important markers in the field of liquid tumor biopsy, whose number and phenotype represent the occurrence and progression of tumors. Therefore, it is our interest to investigate the epithelial mesenchymal transition process occurring on the surface of CTCs. Herein in this work, two proteins of E-cadherin (E-cad) and N-cadherin (N-cad) were selected as representative proteins of EMT process. To achieve simultaneous analysis of E-cad and N-cad on the surface of rare CTCs, we designed a duplex and portable immunosensor using AuNPs and AgNPs as nanolabels to amplify the immunoreaction signals. The dual channel immunosensor not only exhibited good electrochemical responses for recombinant E-cad and N-cad as low as 0.1 ng/mL and 0.05 ng/mL, respectively, but also showed good linear correlations with different numbers of phenotypic CTCs (10-500 cells/10 μL). The above strategy was further employed to inspect the occurrence of EMT on CTCs surface, which displayed a high consistence with other molecular biological characterizations. Finally, this immunoassay was successfully applied to inspect the correlations of numbers, phenotype of CTCs, as well as E-cad and N-cad expressions on these CTCs in bloods of NSCLC patients with disease stage.
Collapse
Affiliation(s)
- Yunuo Dai
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Jie He
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Yun Zhou
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, PR China
| | - Hui Hui
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Lin Guo
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Haitao Yin
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 University Road, Xuzhou, 221002, Jiangsu, PR China.
| |
Collapse
|
5
|
Nisar H, Brauny M, Labonté FM, Schmitz C, Konda B, Hellweg CE. DNA Damage and Inflammatory Response of p53 Null H358 Non-Small Cell Lung Cancer Cells to X-Ray Exposure Under Chronic Hypoxia. Int J Mol Sci 2024; 25:12590. [PMID: 39684302 DOI: 10.3390/ijms252312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hypoxia-induced radioresistance limits therapeutic success in cancer. In addition, p53 mutations are widespread in tumors including non-small cell lung carcinomas (NSCLCs), and they might modify the radiation response of hypoxic tumor cells. We therefore analyzed the DNA damage and inflammatory response in chronically hypoxic (1% O2, 48 h) p53 null H358 NSCLC cells after X-ray exposure. We used the colony-forming ability assay to determine cell survival, γH2AX immunofluorescence microscopy to quantify DNA double-strand breaks (DSBs), flow cytometry of DAPI-stained cells to measure cell cycle distribution, ELISAs to quantify IL-6 and IL-8 secretion in cell culture supernatants, and RNA sequencing to determine gene expression. Chronic hypoxia increased the colony-forming ability and radioresistance of H358 cells. It did not affect the formation or resolution of X-ray-induced DSBs. It reduced the fraction of cells undergoing G2 arrest after X-ray exposure and delayed the onset of G2 arrest. Hypoxia led to an earlier enhancement in cytokines secretion rate after X-irradiation compared to normoxic controls. Gene expression changes were most pronounced after the combined exposure to hypoxia and X-rays and pertained to senescence and different cell death pathways. In conclusion, hypoxia-induced radioresistance is present despite the absence of functional p53. This resistance is related to differences in clonogenicity, cell cycle regulation, cytokine secretion, and gene expression under chronic hypoxia, but not to differences in DNA DSB repair kinetics.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Melanie Brauny
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science & Faculty of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Frederik M Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Christine E Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
6
|
Chou KN, Park DJ, Hori YS, Persad AR, Chuang C, Emrish SC, Ustrzynski L, Tayag A, Kumar K, Usoz M, Mendoza M, Rahimy E, Pollom E, Soltys SG, Lai SW, Chang SD. Primary Stereotactic Body Radiotherapy for Spinal Bone Metastases From Lung Adenocarcinoma. Clin Lung Cancer 2024; 25:e337-e347. [PMID: 38897849 DOI: 10.1016/j.cllc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aimed to assess the results of primary stereotactic body radiotherapy (SBRT) for spinal bone metastases (SBM) originating from lung adenocarcinoma (ADC). We considered the revised Tokuhashi score (rTS), Spinal Instability Neoplastic Score (SINS), and genetic characteristics. METHODS We examined adult patients with lung ADC who underwent primary SBRT (using the CyberKnife System) for SBM between March 2012 and January 2023. RESULTS We analyzed data from 99 patients, covering 152 SBM across 194 vertebrae. The overall local control (LC) rate was 77.6% for SBM from lung ADC, with a LC rate of 90.7% at 1 year. The median period for local progression (LP) occurrence was recorded at 10.0 (3-52) months. Additionally, Asian patients demonstrated higher LC rates than White patients. Utilizing the rTS and SINS as predictive tools, we revealed that a poor survival prognosis and an unstable spinal structure were associated with increased rates of LP. Furthermore, the presence of osteolytic bone destructions and pain complaints were significantly correlated with the occurrence of LP. In the cohort of this study, 108 SBM underwent analysis to determine the expression levels of programmed cell death ligand 1 (PD-L1). Additionally, within this group, 60 showed mutations in the epidermal growth factor receptor (EGFR) alongside PD-L1 expression. Nevertheless, these genetic differences did not result in statistically significant differences in the LC rate. CONCLUSION The one-year LC rate for primary SBRT targeting SBM from lung ADC stood at 90.7%, particularly with the use of the CyberKnife System. Patients achieving LC exhibited significantly longer survival times compared to those with LP.
Collapse
Affiliation(s)
- Kuan-Nien Chou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA; Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Sara C Emrish
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Kiran Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Melissa Usoz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Maria Mendoza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Elham Rahimy
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Shiue-Wei Lai
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
7
|
Lei Z, He J, Yang H, Zhang L, Lai T, Zhou L, Tang Z, Sui J, Wu Y. Global profiling of transcriptome, proteome and 2-hydroxyisobutyrylome in radioresistant lung adenocarcinoma cell. BMC Genomics 2024; 25:923. [PMID: 39363283 PMCID: PMC11448304 DOI: 10.1186/s12864-024-10854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Radioresistance contributes to metastasis and recurrence in non-small cell lung cancer (NSCLC) patients. However, the underlying mechanism remains unclear. To provide novel clues, a complete multi-omics map of a radioresistant cancer cell line has been profiled. In this article, a lung adenocarcinoma cell line, radioresistant A549 (RA549), was generated by exposure to a series of irradiation. Subsequently, we adopted transcriptome, quantitative proteome and lysine 2-hydroxyisobutyrylome to construct a differential profile on the transcriptional to post-tanslational levels on A549 and RA549 cell lines, respectively. Our analysis revealed 920 significantly differentially expressed genes and 699 proteins. Furthermore, 2-hydroxyisobutyrylome identified 30,089 Khib modified sites on 4635 proteins, indicating that Khib modifications play vital role in regulating NSCLC radioresistance. Multi-omics combined analysis identified 19 significantly differentially expressed genes/proteins in total. Meanwhile, we found that EGFR, a well-known lung cancer-related receptor, was upregulated at both the protein and Khib modification levels in RA549. Further gain/loss of function experiments showed that Khib modified EGFR level positively correlates with NSCLC cell radioresistance. Taken together, our findings report that Khib-modified proteins enhanced resistance to radiation and represent promising therapeutic targets.
Collapse
Affiliation(s)
- Zheng Lei
- College of Medicine, Chongqing University, Chongqing, 400044, China
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jiang He
- College of Medicine, Chongqing University, Chongqing, 400044, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haonan Yang
- College of Medicine, Chongqing University, Chongqing, 400044, China
| | - Lu Zhang
- College of Medicine, Chongqing University, Chongqing, 400044, China
| | - Tangmin Lai
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Liu Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jiangdong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
8
|
Li L, Wang X, Jiang M, Li L, Wang D, Li Y. Advancements in a novel model of autophagy and immune network regulation in radioresistance of cancer stem cells. Biomed Pharmacother 2024; 179:117420. [PMID: 39255736 DOI: 10.1016/j.biopha.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Radiotherapy, a precise modality for treating malignant tumors, has undergone rapid advancements in primary and clinical research. The mechanisms underlying tumor radioresistance have become significant research. With the introduction and in-depth study of cancer stem cells (CSCs) theory, CSCs have been identified as the primary factor contributing to the development of tumor radioresistance. The "stemness" of CSCs is a biological characteristic of a small subset of cells within tumor tissues, characterized by self-renewal solid ability. This characteristic leads to resistance to radiotherapy, chemotherapy, and targeted therapies, driving tumor recurrence and metastasis. Another study revealed that cellular autophagy plays a pivotal role in maintaining the "stemness" of CSCs. Autophagy is a cellular mechanism that degrades proteins and organelles to generate nutrients and energy in response to stress. This process maintains cellular homeostasis and contributes to CSCs radioresistance. Furthermore, ionizing radiation (IR) facilitates epithelial-to-mesenchymal transition (EMT), vascular regeneration, and other tumor processes by influencing the infiltration of M2-type tumor-associated macrophages (TAMs). IR promotes the activation of the classical immunosuppressive "switch," PD-1/PD-L1, which diminishes T-cell secretion, leading to immune evasion and promoting radioresistance. Interestingly, recent studies have found that the immune pathway PD-1/PD-L1 is closely related to cellular autophagy. However, the interrelationships between immunity, autophagy, and radioresistance of CSCs and the regulatory mechanisms involved remain unclear. Consequently, this paper reviews recent research to summarize these potential connections, aiming to establish a theoretical foundation for future studies and propose a new model for the network regulation of immunity, autophagy, and radioresistance of tumor cells.
Collapse
Affiliation(s)
- Leyao Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Mei Jiang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yajun Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Ding W, Bao S, Zhao Q, Hao W, Fang K, Xiao Y, Lin X, Zhao Z, Xu X, Cui X, Yang X, Yao L, Jin H, Zhang K, Guo J. Blocking ACSL6 Compromises Autophagy via FLI1-Mediated Downregulation of COLs to Radiosensitize Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403202. [PMID: 39206814 PMCID: PMC11516120 DOI: 10.1002/advs.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide. Radiotherapy is the main component of LC treatment; however, its efficacy is often limited by radioresistance development, resulting in unsatisfactory clinical outcomes. Here, we found that LC radiosensitivity is up-regulated by decreased expression of long-chain acyl-CoA synthase 6 (ACSL6) after irradiation. Deletion of ACSL6 results in significant elevation of Friend leukemia integration 1 transcription factor (FLI1) and a marked decline of collagens (COLs). Blocking of ACSL6 impairs the tumor growth and upregulates FLI1, which reduces the levels of COLs and compromises irradiation-induced autophagy, leading to considerable therapeutic benefits during radiotherapy. Moreover, the direct interaction between ACSL6 and FLI1 and engagement between FLI1 and COLs indicates the involvement of the ACSL6-FLI1-COL axis. Finally, the potently adjusted autophagy flux reduces its otherwise contributive capability in surviving irradiation stress and leads to satisfactory radiosensitization for LC radiotherapy. These results demonstrate that enhanced ACSL6 expression promotes the aggressive performance of irradiated LC through increased FLI1-COL-mediated autophagy flux. Thus, the ACSL6-FLI1-Col-autophagy axis may be targeted to enhance the radiosensitivity of LC and improve the management of LC in radiotherapy.
Collapse
Affiliation(s)
- Wen Ding
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Shijun Bao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Qingwei Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Wei Hao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Kai Fang
- Department of Medicine CollegeJiangnan UniversityWuxiJiangsu214000P. R. China
| | - Yanlan Xiao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiaoting Lin
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Zhemeng Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyi Xu
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- College of Basic MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyue Cui
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiwen Yang
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Liuhuan Yao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Hai Jin
- Department of Cardiothoracic SurgeryChanghai HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Kun Zhang
- Department of Laboratory Medicine and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Jiaming Guo
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| |
Collapse
|
10
|
Calderon-Aparicio A, He J, Simone NL. S6K1 Controls DNA Damage Signaling Modulated by the MRN Complex to Induce Radioresistance in Lung Cancer. Int J Mol Sci 2024; 25:10461. [PMID: 39408794 PMCID: PMC11477310 DOI: 10.3390/ijms251910461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Radiation is a mainstay of lung cancer treatment; however, resistance frequently develops. Identifying novel therapeutic targets to increase radiation sensitivity is crucial. S6K1 is a serine/threonine kinase known to regulate protein translation which is associated with radioresistance, but the mechanisms involved are unknown. We proposed to determine whether S6K1 promotes radioresistance by regulating DNA repair in lung cancer. Colony formation, protein expression and proliferation were assessed. S6K1 was modulated pharmacologically by either PF-4708671 or genetically by Crispr-Cas9. Higher radioresistance levels in lung cancer cells were associated with lower phosphoactivation of MRN complex members, a key activator of radiation-induced DNA repair signaling. We also found lower levels of p-ATM, a target of the MRN complex, in more radioresistant cells, which was associated with a lower expression of γ-H2AX cafter radiation. Further, genetic and pharmacological S6K1 targeting sensitized lung cancer cells to low doses of radiation (p ≤ 0.01). Additionally, S6K1-/- deletion increased the phosphoactivation of MRN complex members, indicating that S6K1 itself can shut down DNA damage regulated by MRN signaling. This is the first report showing that S6K1 inhibition radiosensitizes lung cancer cells by decreasing MRN complex-regulated DNA repair signaling. Future studies should evaluate the role of S6K1 as a target to overcome radioresistance.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
11
|
Semerci Sevimli T, Sevimli M, Ghorbani A, Şahintürk V, Qomi Ekenel E, Ertem T, Demir Cevizlidere B, Altuğ B, Tomsuk Ö, Uysal O, Güneş Bağış S, Avci H, Çemrek F, Ahmadova Z. The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6791-6802. [PMID: 38536434 PMCID: PMC11422429 DOI: 10.1007/s00210-024-03062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 09/25/2024]
Abstract
Targeting lung cancer stem cells (LC-SCs) for metastasis may be an effective strategy against lung cancer. This study is the first on epithelial-mesenchymal transition (EMT) properties of boric acid (BA) in LC-SCs. LC-SCs were isolated using the magnetic cell sorting (MACS) method. Tumor-sphere formation and flow cytometry confirmed CSC phenotype. The cytotoxic effect of BA was measured by MTT analysis, and the effect of BA on EMT was examined by migration analysis. The expression levels of ZEB1, SNAIL1, ITGA5, CDH1, ITGB1, VIM, COL1A1, and LAMA5 genes were analyzed by RT-qPCR. E-cadherin, Collagen-1, MMP-3, and Vimentin expressions were analyzed immunohistochemically. Boric acid slightly reduced the migration of cancer cells. Increased expression of transcription factor SNAIL (p < 0.001), but not ZEB1, was observed in LC-SCs. mRNA expression levels of ITGB1 (p < 0.01), ITGA5 (p < 0.001), COL1A1 (p < 0.001), and LAMA5 (p < 0.001) increased; CDH1 and VIM decreased in LC-SCs. Moreover, while E-cadherin (p < 0.001) and Collagen-1 (p < 0.01) immunoreactivities significantly increased, MMP-3 (p < 0.001) and Vimentin (p < 0.01) immunoreactivities decreased in BA-treated LC-SCs. To conclude, the current study provided insights into the efficacy and effects of BA against LC-SCs regarding proliferation, EMT, and cell death for future studies.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Aynaz Ghorbani
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Emilia Qomi Ekenel
- Graduate School of İnformatics, Middle East Technical University, Ankara, Turkey
| | - Tuğba Ertem
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Bahar Demir Cevizlidere
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Burcugül Altuğ
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Özlem Tomsuk
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Onur Uysal
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Sibel Güneş Bağış
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Hüseyin Avci
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Fatih Çemrek
- Department of Statistics, Faculty of Science and Letters, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Zarifa Ahmadova
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| |
Collapse
|
12
|
Liu H, Wang Q, Lan W, Liu D, Huang J, Yao J. Radiosensitization effect of quinoline-indole-schiff base derivative 10E on non-small cell lung cancer cells in vitro and in tumor xenografts. Invest New Drugs 2024; 42:405-417. [PMID: 38880855 DOI: 10.1007/s10637-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Hongwei Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Qianqian Wang
- West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wanying Lan
- Guixi Community Health Center of the Chengdu Hi-Tech Zone, Chengdu, 610000, China
| | - Duanya Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Jinhua, 321004, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
13
|
Wang Y, Zhao Z, Wang W, Xue H. Safety and efficacy of CT-guided percutaneous radiofrequency ablation for non-small cell lung cancer: a single-center, single-arm analysis. Lasers Med Sci 2024; 39:199. [PMID: 39078465 DOI: 10.1007/s10103-024-04153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent malignant tumor, and the commonly treatment modalities include surgery, radiotherapy, chemotherapy, etc. Currently, CT-guided percutaneous radiofrequency ablation (RFA) for the treatment of cancers has been widely performed. This study aimed to evaluate the safety and efficacy of this therapy in NSCLC patients. Thirty-five NSCLC patients were enrolled in this study and all received CT-guided percutaneous RFA therapy. The outcome measures included the changes in forced respiratory volume in the first second (FEV1), total lung volume (TLC), lesion size and computed tomography (CT) values of the region of interest (ROI) before and after treatment. The main efficacy measures comprised complete tumor ablation and local recurrence after initial treatment, as well as the objective response rate (ORR) and disease control rate (DCR) after 6 months of treatment. After receiving CT-guided percutaneous RFA therapy, the target lesion was effectively controlled and CT values gradually decreased. Besides, no significant changes were observed in the patient's lung function, postoperative complications were experienced by a total of 10 patients, primarily including pneumothorax, infection, lung hollowing. Fortunately, all these complications were successfully managed with appropriate treatment. Following the initial RFA treatment, 31 patients (88.57%) achieved complete ablation, while 6 patients experienced local recurrence. After 6 months of treatment, the ORR and DCR were found to be 68.57% and 82.86% respectively. CT-guided percutaneous RFA has demonstrated favorable safety and efficacy in the treatment of patients with NSCLC at different stages, which represented a promising therapeutic modality.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Respiratory Medicine, The First People's Hospital of Pinghu, No. 500, Sangang Road, Tanghu Street, Pinghu, 314200, Zhejiang, China
| | - Zhengyu Zhao
- Department of Respiratory Medicine, The First People's Hospital of Pinghu, No. 500, Sangang Road, Tanghu Street, Pinghu, 314200, Zhejiang, China
| | - Wenmin Wang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, 314006, China
| | - Hedong Xue
- Department of Respiratory Medicine, The First People's Hospital of Pinghu, No. 500, Sangang Road, Tanghu Street, Pinghu, 314200, Zhejiang, China.
| |
Collapse
|
14
|
Otani Y, Katayama H, Zhu Y, Huang R, Shigehira T, Shien K, Suzawa K, Yamamoto H, Shien T, Toyooka S, Fujimura A. Adrenergic microenvironment driven by cancer-associated Schwann cells contributes to chemoresistance in patients with lung cancer. Cancer Sci 2024; 115:2333-2345. [PMID: 38676373 PMCID: PMC11247558 DOI: 10.1111/cas.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rongsheng Huang
- Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Takafumi Shigehira
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
15
|
Rai A, Patwardhan RS, Jayakumar S, Pachpatil P, Das D, Panigrahi GC, Gota V, Patwardhan S, Sandur SK. Clobetasol propionate, a Nrf-2 inhibitor, sensitizes human lung cancer cells to radiation-induced killing via mitochondrial ROS-dependent ferroptosis. Acta Pharmacol Sin 2024; 45:1506-1519. [PMID: 38480835 PMCID: PMC11192725 DOI: 10.1038/s41401-024-01233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/24/2024] [Indexed: 06/23/2024]
Abstract
Combining radiotherapy with Nrf-2 inhibitor holds promise as a potential therapeutic strategy for radioresistant lung cancer. Here, the radiosensitizing efficacy of a synthetic glucocorticoid clobetasol propionate (CP) in A549 human lung cancer cells was evaluated. CP exhibited potent radiosensitization in lung cancer cells via inhibition of Nrf-2 pathway, leading to elevation of oxidative stress. Transcriptomic studies revealed significant modulation of pathways related to ferroptosis, fatty acid and glutathione metabolism. Consistent with these findings, CP treatment followed by radiation exposure showed characteristic features of ferroptosis in terms of mitochondrial swelling, rupture and loss of cristae. Ferroptosis is a form of regulated cell death triggered by iron-dependent ROS accumulation and lipid peroxidation. In combination with radiation, CP showed enhanced iron release, mitochondrial ROS, and lipid peroxidation, indicating ferroptosis induction. Further, iron chelation, inhibition of lipid peroxidation or scavenging mitochondrial ROS prevented CP-mediated radiosensitization. Nrf-2 negatively regulates ferroptosis through upregulation of antioxidant defense and iron homeostasis. Interestingly, Nrf-2 overexpressing A549 cells were refractory to CP-mediated ferroptosis induction and radiosensitization. Thus, this study identified anti-psoriatic drug clobetasol propionate can be repurposed as a promising radiosensitizer for Keap-1 mutant lung cancers.
Collapse
Affiliation(s)
- Archita Rai
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Pradnya Pachpatil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Bio Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Dhruv Das
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Girish Ch Panigrahi
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Vikram Gota
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Kolokotroni E, Abler D, Ghosh A, Tzamali E, Grogan J, Georgiadi E, Büchler P, Radhakrishnan R, Byrne H, Sakkalis V, Nikiforaki K, Karatzanis I, McFarlane NJB, Kaba D, Dong F, Bohle RM, Meese E, Graf N, Stamatakos G. A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-In Component Models of a Cancer Digital Twin. J Pers Med 2024; 14:475. [PMID: 38793058 PMCID: PMC11122096 DOI: 10.3390/jpm14050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.
Collapse
Affiliation(s)
- Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| | - Daniel Abler
- Department of Oncology, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Alokendra Ghosh
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Eleftheria Tzamali
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - James Grogan
- Irish Centre for High End Computing, University of Galway, H91 TK33 Galway, Ireland;
| | - Eleni Georgiadi
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
- Biomedical Engineering Department, University of West Attica, 12243 Egaleo, Greece
| | | | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK;
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Katerina Nikiforaki
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Ioannis Karatzanis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | | | - Djibril Kaba
- Department of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
| | - Feng Dong
- Department of Computer & Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK;
| | - Rainer M. Bohle
- Department of Pathology, Saarland University, 66421 Homburg, Germany;
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany;
| | - Norbert Graf
- Department of Paediatric Oncology and Haematology, Saarland University, 66421 Homburg, Germany;
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| |
Collapse
|
17
|
Li J, Zong Y, Tuo Z, Liu J, Liu J. The role of RASA2 in predicting radioresistance in lung cancer through regulation of p53. Transl Lung Cancer Res 2024; 13:587-602. [PMID: 38601440 PMCID: PMC11002505 DOI: 10.21037/tlcr-24-160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Background One of the most common causes of lung cancer relapse after clinical treatment is radioresistance. However, the mechanism underlying radioresistance remains unclear. In this study, we investigated the role of Ras p21 protein activator (RASA2) in non-small cell lung cancer (NSCLC). Methods The messenger RNA (mRNA) of RASA2 was tested via reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of cancer tissues from patients with NSCLC. Computed tomography (CT) and bioluminescent imaging (BLI) were used to monitor the tumor growth of patients and orthotopic mice, respectively. Protein-protein interaction was quantified via immunoprecipitation and glutathione S transferase (GST) pulldown assay. Western blotting was used to evaluate the phosphorylation and ubiquitination level of p53. Results The results indicated a negative correlation between the mRNA expression levels of RASA2 in tumor tissues with patients' response to radiotherapy. Patients with a high expression of RASA2 had a lower objective response rate (ORR) after 1 month of radiotherapy than patients with low expression of RASA2 after 1 month of radiotherapy. In terms of mechanism, we proved that RASA2 can directly bind to p53 to promote the phosphorylation of p53, which inhibits its transcriptional activity and further promotes its degradation through the ubiquitin/proteasome pathway. In this process, the apoptosis of tumor cells is inhibited due to impaired p53 surveillance, which leads to radioresistance. Conclusions Our results demonstrate that RASA2 negatively regulates p53 in cancer cells and therefore promotes radioresistance, providing a new predictive biomarker and a potential therapeutic target for radioresistance.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhan Tuo
- Department of Radiology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Xia X, Ge Y, Ge F, Gu P, Liu Y, Li P, Xu P. MAP4 acts as an oncogene and prognostic marker and affects radioresistance by mediating epithelial-mesenchymal transition in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:88. [PMID: 38341398 PMCID: PMC10858930 DOI: 10.1007/s00432-024-05614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To explore the effect of microtubule-associated protein 4 (MAP4) on lung adenocarcinoma cells in vitro and evaluate its prognostic value. Radioresistance, indicated by reduced efficiency of radiotherapy, is a key factor in treatment failure in lung adenocarcinoma (LADC). This study aims to explore the primary mechanism underlying the relationship between MAP4 and radiation resistance in lung adenocarcinoma. METHODS We analysed the expression of MAP4 in lung adenocarcinoma by real-time quantitative polymerase chain reaction (RT‒qPCR), immunohistochemistry (IHC) and bioinformatics online databases, evaluated the prognostic value of MAP4 in lung adenocarcinoma and studied its relationship with clinicopathological parameters. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis identified independent prognostic factors associated with lung adenocarcinoma that were used to construct a nomogram, internal validation was performed. We then evaluated the accuracy and clinical validity of the model using a receiver operating characteristic (ROC) curve, time-dependent C-index analysis, a calibration curve, and decision curve analysis (DCA). Scratch assays and transwell assays were used to explore the effect of MAP4 on the migration and invasion of lung adenocarcinoma cells. Bioinformatics analysis, RT‒qPCR, Cell Counting Kit-8 (CCK-8) assays and Western blot experiments were used to study the relationship between MAP4, epithelial-mesenchymal transition (EMT) and radiation resistance in lung adenocarcinoma. RESULTS MAP4 expression in lung adenocarcinoma tissues was significantly higher than that in adjacent normal lung tissues. High expression of MAP4 is associated with poorer overall survival (OS) in patients with lung adenocarcinoma. Univariate Cox regression analysis showed that pT stage, pN stage, TNM stage and MAP4 expression level were significantly associated with poorer OS in LADC patients. Multivariate Cox regression analysis and LASSO regression analysis showed that only the pT stage and MAP4 expression level were associated with LADC prognosis. The nomogram constructed based on the pT stage and MAP4 expression showed good predictive accuracy. ROC curves, corrected C-index values, calibration curves, and DCA results showed that the nomogram performed well in both the training and validation cohorts and had strong clinical applicability. The results of in vitro experiments showed that the downregulation of MAP4 significantly affected the migration and invasion of lung adenocarcinoma cells. MAP4 was strongly correlated with EMT-related markers. Further studies suggested that the downregulation of MAP4 can affect the viability of lung adenocarcinoma cells after irradiation and participate in the radiation resistance of lung adenocarcinoma cells by affecting EMT. CONCLUSION MAP4 is highly expressed in lung adenocarcinoma; it may affect prognosis by promoting the migration and invasion of cancer cells. We developed a nomogram including clinical factors and MAP4 expression that can be used for prognosis prediction in patients with lung adenocarcinoma. MAP4 participates in radiation resistance in lung adenocarcinoma by regulating the radiation-induced EMT process. MAP4 may serve as a biomarker for lung adenocarcinoma prognosis evaluation and as a new target for improving radiosensitivity.
Collapse
Affiliation(s)
- Xiaochun Xia
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Fanghong Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Pei Gu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuanyuan Liu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Peng Li
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, China.
| | - Pengqin Xu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| |
Collapse
|
19
|
Zhou Z, Zhang B, Deng Y, Deng S, Li J, Wei W, Wang Y, Wang J, Feng Z, Che M, Yang X, Meng J, Li Y, Hu Y, Sun Y, Wen L, Huang F, Sheng Y, Wan C, Yang K. FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J Exp Clin Cancer Res 2024; 43:34. [PMID: 38281999 PMCID: PMC10823633 DOI: 10.1186/s13046-024-02959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3β on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3β kinase to recognize and degrade IGF2BP2. CONCLUSIONS Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiacheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Lee JU, Kim SH, Lee SH, Ji MJ, Jin JA, So HJ, Song ML, Lee HK, Kang TW. Combinational Pulsing of TAAs Enforces Dendritic Cell-Based Immunotherapy through T-Cell Proliferation and Interferon-γ Secretion in LLC1 Mouse Model. Cancers (Basel) 2024; 16:409. [PMID: 38254898 PMCID: PMC10814594 DOI: 10.3390/cancers16020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
NSCLC, the most common type of lung cancer, is often diagnosed late due to minimal early symptoms. Its high risk of recurrence or metastasis post-chemotherapy makes DC-based immunotherapy a promising strategy, offering targeted cancer destruction, low side effects, memory formation, and overcoming the immune evasive ability of cancers. However, the limited response to DCs pulsed with single antigens remains a significant challenge. To overcome this, we enhanced DC antigen presentation by pulsing with TAAs. Our study focused on enhancing DC-mediated immune response specificity and intensity by combinatorial pulsing of TAAs, selected for their prevalence in NSCLC. We selected four types of TAAs expressed in NSCLC and pulsed DCs with the optimal combination. Next, we administered TAAs-pulsed DCs into the LLC1 mouse model to evaluate their anti-tumor efficacy. Our results showed that TAAs-pulsed DCs significantly reduced tumor size and promoted apoptosis in tumor tissue. Moreover, TAAs-pulsed DCs significantly increased total T cells in the spleen compared to the unpulsed DCs. Additionally, in vitro stimulation of splenocytes from the TAAs-pulsed DCs showed notable T-cell proliferation and increased IFN-γ secretion. Our findings demonstrate the potential of multiple TAA pulsing to enhance the antigen-presenting capacity of DCs, thereby strengthening the immune response against tumors.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Sang-Heon Kim
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Sung-Hoon Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Min-Jae Ji
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Jeong-Ah Jin
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Hyung-Joon So
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | | | - Hong-Ki Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
- EHLCell Clinic, Seoul 06029, Republic of Korea
| | - Tae-Wook Kang
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| |
Collapse
|
21
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
22
|
Li X, Liang Q, Zhou L, Deng G, Xiao Y, Gan Y, Han S, Liao J, Wang R, Qing X, Li W. Survivin degradation by bergenin overcomes pemetrexed resistance. Cell Oncol (Dordr) 2023; 46:1837-1853. [PMID: 37542022 DOI: 10.1007/s13402-023-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
23
|
Topkan E, Selek U, Pehlivan B, Kucuk A, Ozturk D, Ozdemir BS, Besen AA, Mertsoylu H. The Prognostic Value of the Novel Global Immune-Nutrition-Inflammation Index (GINI) in Stage IIIC Non-Small Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy. Cancers (Basel) 2023; 15:4512. [PMID: 37760482 PMCID: PMC10526430 DOI: 10.3390/cancers15184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND We sought to determine the prognostic value of the newly developed Global Immune-Nutrition-Inflammation Index (GINI) in patients with stage IIIC non-small cell lung cancer (NSCLC) who underwent definitive concurrent chemoradiotherapy (CCRT). METHODS This study was conducted on a cohort of 802 newly diagnosed stage IIIC NSCLC patients who underwent CCRT. The novel GINI created first here was defined as follows: GINI = [C-reactive protein × Platelets × Monocytes × Neutrophils] ÷ [Albumin × Lymphocytes]. The receiver operating characteristic (ROC) curve analysis was used to determine the optimal pre-CCRT GINI cut-off value that substantially interacts with the locoregional progression-free (LRPFS), progression-free (PFS), and overall survival (OS). RESULTS The optimal pre-CCRT GINI cutoff was 1562 (AUC: 76.1%; sensitivity: 72.4%; specificity: 68.2%; Youden index: 0.406). Patients presenting with a GINI ≥ 1562 had substantially shorter median LRPFS (13.3 vs. 18.4 months; p < 0.001), PFS (10.2 vs. 14.3 months; p < 0.001), and OS (19.1 vs. 37.8 months; p < 0.001) durations than those with a GINI < 1562. Results of the multivariate analysis revealed that the pre-CCRT GINI ≥ 1562 (vs. <1562), T4 tumor (vs. T3), and receiving only 1 cycle of concurrent chemotherapy (vs. 2-3 cycles) were the factors independently associated with poorer LRPS (p < 0.05 for each), PFS (p < 0.05 for each), and OS (p < 0.05 for each). CONCLUSION The newly developed GINI index efficiently divided the stage IIIC NSCLSC patients into two subgroups with substantially different median and long-term survival outcomes.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana 01120, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul 34349, Turkey;
| | - Ahmet Kucuk
- Clinic of Radiation Oncology, Mersin Education and Research Hospital, Mersin 33160, Turkey;
| | - Duriye Ozturk
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | | | - Ali Ayberk Besen
- Department of Medical Oncology, Medical Park Hospital, Adana 07160, Turkey;
| | - Huseyin Mertsoylu
- Department of Medical Oncology, Istinye University, Istanbul 34010, Turkey;
| |
Collapse
|
24
|
Nowak P, Bil-Lula I, Śliwińska-Mossoń M. A Cross-Talk about Radioresistance in Lung Cancer-How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. Int J Mol Sci 2023; 24:11206. [PMID: 37446385 DOI: 10.3390/ijms241311206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.
Collapse
Affiliation(s)
- Paulina Nowak
- Scientific Club of Specialized Biological Analyzes, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
25
|
Loh J, Low JL, Sachdeva M, Low PQ, Wong RSJ, Huang Y, Chia PL, Soo RA. Management of Oncogene Driven Locally Advanced Unresectable Non-small Cell Lung Cancer. Expert Rev Anticancer Ther 2023; 23:913-926. [PMID: 37551698 DOI: 10.1080/14737140.2023.2245140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The current standard of care of locally advanced non-small cell lung cancer (LA-NSCLC) is concurrent chemoradiation, followed by consolidation durvalumab. However, there is evidence that the efficacy of chemoradiation and also immunotherapy in many oncogene-positive LA-NSCLC are attenuated, and dependent on the subgroup. AREAS COVERED We will firstly review the outcomes of standard-of-care therapy in oncogene-driven LA-NSCLC. We looked at various oncogene driven subgroups and the tumor microenvironment that may explain differential response. Finally, we review the role of targeted therapy in the treatment of LA-NSCLC. EXPERT OPINION Each oncogene-positive subgroup should be treated as its own entity, and continued efforts should be undertaken to incorporate targeted therapy, which is likely to yield superior survival outcomes if trial design can be optimized and toxicities can be managed.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Jia Li Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Peter Qj Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Rachel Su Jen Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
26
|
Liu MH, Liu F, Ng TB, Liu ZK. New fungal protein from Pleurotus ferulae lanzi induces AMPK-mediated autophagy and G1-phase cell cycle arrest in A549 lung cancer cells. Int J Biol Macromol 2023; 244:125453. [PMID: 37330099 DOI: 10.1016/j.ijbiomac.2023.125453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
A new protein, designated PFAP, with activity against non-small cell lung cancer (NSCLC), was isolated from Pleurotus ferulae lanzi, a medicinal and edible mushroom. The purification method involved hydrophobic interaction chromatography on a HiTrap Octyl FF column and gel filtration on a Superdex 75 column. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single band with a molecular weight of 14.68 kDa. Following de novo sequencing and liquid chromatography-tandem mass spectrometry, PFAP was identified as a protein consisting of 135 amino acid residues, with a theoretical molecular weight of 14.81 kDa. Tandem mass tag (TMT)™-based quantitative proteomic analysis and western blotting revealed that AMP-activated protein kinase (AMPK) was significantly upregulated in NSCLC A549 cells, following PFAP treatment. The downstream regulatory factor mammalian target of rapamycin (mTOR) was suppressed, resulting in the activation of autophagy and upregulated expressions of P62, LC3 II/I, and other related proteins. PFAP blocked NSCLC A549 cells in the G1 phase of the cell cycle via upregulating P53 and P21, while subsequently downregulating the expression of cyclin-dependent kinases. PFAP suppresses tumour growth via the same mechanism in a xenograft mouse model in vivo. These results demonstrate that PFAP is a multifunctional protein with anti-NSCLC properties.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Zhao-Kun Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Transcriptome-Based Traits of Radioresistant Sublines of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24033042. [PMID: 36769365 PMCID: PMC9917840 DOI: 10.3390/ijms24033042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
28
|
Cunningham C, Bolcaen J, Bisio A, Genis A, Strijdom H, Vandevoorde C. Recombinant Endostatin as a Potential Radiosensitizer in the Treatment of Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:219. [PMID: 37259367 PMCID: PMC9961924 DOI: 10.3390/ph16020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, which is the leading cause of cancer-related deaths worldwide. Over the past decades, tumour angiogenesis has been intensely studied in the treatment of NSCLC due to its fundamental role in cancer progression. Several anti-angiogenic drugs, such as recombinant endostatin (RE), have been evaluated in several preclinical and clinical trials, with mixed and often disappointing results. However, there is currently an emerging interest in RE due to its ability to create a vascular normalization window, which could further improve treatment efficacy of the standard NSCLC treatment. This review provides an overview of preclinical and clinical studies that combined RE and radiotherapy for NSCLC treatment. Furthermore, it highlights the ongoing challenges that have to be overcome in order to maximize the benefit; as well as the potential advantage of combinations with particle therapy and immunotherapy, which are rapidly gaining momentum in the treatment landscape of NSCLC. Different angiogenic and immunosuppressive effects are observed between particle therapy and conventional X-ray radiotherapy. The combination of RE, particle therapy and immunotherapy presents a promising future therapeutic triad for NSCLC.
Collapse
Affiliation(s)
- Charnay Cunningham
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Amanda Genis
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Hans Strijdom
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
| |
Collapse
|
29
|
Zeng Z, Zhang J, Li J, Li Y, Huang Z, Han L, Xie C, Gong Y. SETD2 regulates gene transcription patterns and is associated with radiosensitivity in lung adenocarcinoma. Front Genet 2022; 13:935601. [PMID: 36035179 PMCID: PMC9399372 DOI: 10.3389/fgene.2022.935601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its prognosis remains unsatisfactory. Identification of epigenetic biomarkers associated with radiosensitivity is beneficial for precision medicine in LUAD patients. SETD2 is important in repairing DNA double-strand breaks and maintaining chromatin integrity. Our studies established a comprehensive analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-omics analysis revealed enhanced chromatin accessibility and gene transcription by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), we found that SETD2-associated positive transcription patterns were associated with DNA damage responses. SETD2 knockdown significantly upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover, SETD2 was a favorably prognostic factor whose effects were antagonized by the m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising epigenetic biomarker in LUAD patients.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|