1
|
Anastasia A, Formenti L, Ostano P, Minoli L, Resovi A, Morosi L, Fioravanti C, Micotti E, Matteo C, Scanziani E, Chiorino G, Giavazzi R, Ghilardi C, Belotti D. Stroma gene signature predicts responsiveness to chemotherapy in pancreatic ductal adenocarcinoma patient-derived xenograft models. Mol Oncol 2025; 19:1075-1091. [PMID: 39902502 PMCID: PMC11977644 DOI: 10.1002/1878-0261.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
Despite many efforts to understand the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) treatment resistance, there is still no reliable method for selecting patients who could benefit from standard pharmacological treatment. Here, four PDAC patient-derived xenografts (PDAC-PDXs) with different responses to gemcitabine plus nab-paclitaxel (nanoparticle albumin-bound paclitaxel) were studied to dissect the contribution of both tumor and host microenvironment to treatment response. PDAC-PDXs transplanted into the pancreas of immunodeficient mice retained the main genetic and histopathological characteristics of the original human tumors, including invasiveness and desmoplastic reaction. Response to chemotherapy was associated with a specific 294 stroma gene signature and was not due to the intrinsic responsiveness of tumor cells or differences in drug delivery. Human dataset analysis validated the expression of the 294 stroma gene signature in PDAC clinical samples, confirming PDAC-PDXs as a useful tool to study the biology of tumor-host interactions and to test drug efficacy. In summary, we identified a stroma gene signature that differentiates PDAC-PDXs that are responsive to gemcitabine plus Nab-paclitaxel treatment from those that are not, confirming the active role of the tumor microenvironment in the drug response.
Collapse
Affiliation(s)
- Alessia Anastasia
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Laura Formenti
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Paola Ostano
- Lab of Cancer GenomicsFondazione “Edo ed Elvo Tempia”BiellaItaly
| | - Lucia Minoli
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
- Department of Veterinary Medicine and Animal Sciences (DIVAS)University of Milan (Unimi)LodiItaly
| | - Andrea Resovi
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Lavinia Morosi
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
- Present address:
IRCCS Humanitas Research HospitalRozzanoItaly
| | - Claudia Fioravanti
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Edoardo Micotti
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Cristina Matteo
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UnimiMilanItaly
| | | | - Raffaella Giavazzi
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Carmen Ghilardi
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| | - Dorina Belotti
- Department of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamo and MilanItaly
| |
Collapse
|
2
|
Zimmerman SP, DeGraw LB, Counter CM. The essential clathrin adapter protein complex-2 is tumor suppressive specifically in vivo. Nat Commun 2025; 16:2254. [PMID: 40050266 PMCID: PMC11885535 DOI: 10.1038/s41467-025-57521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The microenvironment is a rich source of new cancer targets. We thus used a targeted single-guide RNA library to screen a panel of human pancreatic cancer lines for genes uniquely affecting tumorigenesis. Here we show inactivation of the Adapter Protein complex-2 of clathrin-mediated endocytosis reduces cell growth in vitro, but completely oppositely, promotes tumor growth in vivo. In culture, loss of the complex reduces transferrin endocytosis and iron import required for cell fitness. In tumors, alternative iron transport pathways allow pro-tumor effects of Adapter Protein complex-2 loss to manifest. In the most sensitive case, this is attributed to reprogramming the plasma membrane proteome, retaining integrins on the surface leading to Focal Adhesion Kinase phosphorylation and induction of proliferative signals. Adapter Protein complex-2 function in tumorigenesis is thus dependent upon the microenvironment, behaving as a common essential gene in culture via iron import, but as a tumor suppressor in tumors via integrin trafficking.
Collapse
Affiliation(s)
- Seth P Zimmerman
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Lili B DeGraw
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Shadman H, Gomrok S, Litle C, Cheng Q, Jiang Y, Huang X, Ziebarth JD, Wang Y. A machine learning-based investigation of integrin expression patterns in cancer and metastasis. Sci Rep 2025; 15:5270. [PMID: 39939698 PMCID: PMC11821851 DOI: 10.1038/s41598-025-89497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Integrins, a family of transmembrane receptor proteins, are well known to play important roles in cancer development and metastasis. However, a comprehensive understanding of these roles has not been achieved due to the complex relationships between specific integrins, cancer types, and the stages of cancer progression. Publicly accessible repositories from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) projects provide rich datasets for exploring these relationships using machine learning (ML). In this study, integrin RNA-Seq expression data of ~ 8 healthy tissues in GTEx and corresponding tumors in TCGA were selected. Integrin expression was used to train ML models to distinguish between different healthy tissues, solid tumors, as well as normal and tumor samples from the same tissue type. These ML models can classify samples by tissue origin or disease status with high accuracy, and the integrins essential to these classifiers were identified. In some cases, the expression of only one or two integrins was needed to classify tissue type, tumor type or disease status with accuracy > 0.9. For example, expression of ITGA7 alone can distinguish healthy and cancerous breast tissue. Additionally, integrin co-expression networks in healthy and cancerous breast tissues were compared and were found to change significantly from healthy to cancer, indicating changes in functional involvement of integrins due to cancer. Integrin expression in metastatic tumors were further examined using data from the AURORA project for Metastatic Breast Cancer (MBC), and several integrins such as ITGAD, ITGA4, ITGAL, and ITGA11 were found to have significantly lower expression in metastases than in primary tumors.
Collapse
Affiliation(s)
- Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Saghar Gomrok
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Christopher Litle
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Qianyi Cheng
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Yu Jiang
- School of Public Health, The University of Memphis, Memphis, TN, 38152, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Jesse D Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
4
|
Nguyen H, Luong NH, Peil JK, Tong Y, Mitchell DK, Fishel ML, Lin CC. Fast-Relaxing Hydrogels Promote Pancreatic Adenocarcinoma Cell Aggressiveness through Integrin β1 Signaling. Biomacromolecules 2025; 26:1098-1110. [PMID: 39841789 PMCID: PMC11817685 DOI: 10.1021/acs.biomac.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD. Controlling the thiol-norbornene cross-linking afforded tunable stiffness, whereas increasing PHD content led to hydrogels with PDAC-mimicking fast stress relaxation. In vitro studies, including proliferation, morphology, and mRNA-sequencing, showed that fast-relaxing hydrogels supported PDAC cell proliferation, epithelial-mesenchymal transition (EMT), and integrin β1 activation. Blocking integrin β1 in vitro led to upregulating EMT markers in both slow and fast-relaxing hydrogels. However, this strategy profoundly impacted tumor growth rate and reduced tumor size but did not alter metastasis patterns in an orthotopic mouse model. This suggests a need to further evaluate the antitumor effect of integrin β1 blockade.
Collapse
Affiliation(s)
- Han Nguyen
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Ngoc Ha Luong
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Jacqueline K. Peil
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
| | - Yan Tong
- Department
of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Dana K. Mitchell
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L. Fishel
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
- Department
of Pharmacology and Toxicology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
5
|
Wang Z, Wang W, Luo Q, Song G. High matrix stiffness accelerates migration of hepatocellular carcinoma cells through the integrin β1-Plectin-F-actin axis. BMC Biol 2025; 23:8. [PMID: 39789506 PMCID: PMC11721467 DOI: 10.1186/s12915-025-02113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear. In this study, we aimed to investigate whether plectin responds to variations in ECM stiffness and to explore its involved molecular mechanisms in regulating HCC cell migration. RESULTS Our results showed that, when compared with control group (7 kPa), high ECM stiffness (53 kPa) boosts HCC cell migration by upregulating plectin and integrin β1 expression and increasing F-actin polymerization. Knockdown of integrin β1 negated the high stiffness-upregulated plectin expression. Furthermore, reducing either plectin or integrin β1 levels, or using latrunculin A, effectively prevented the high ECM stiffness-induced F-actin polymerization and HCC cell migration. CONCLUSIONS These findings demonstrate that integrin β1-plectin-F-actin axis is necessary for high matrix stiffness-driven migration of HCC cells, and provide evidence for the critical role of plectin in mechanotransduction in HCC cells.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Wenbin Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2025; 32:43-59. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
8
|
Ahmadi Jazi S, Tajik F, Rezagholizadeh F, Taha SR, Shariat Zadeh M, Bouzari B, Madjd Z. Higher Expression of Talin-1 is Associated With Less Aggressive Tumor Behavior in Pancreatic Cancer. Appl Immunohistochem Mol Morphol 2024; 32:425-435. [PMID: 39258796 DOI: 10.1097/pai.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Talin-1 is one of the major scaffold proteins in focal adhesions playing a vital role in cell migration, metastasis, and cancer progression. Although studies regarding the importance of Talin-1 in cancer have rapidly developed, its prognostic and diagnostic value still remain unsatisfying in pancreatic cancer (PC). Therefore, the present study aims to investigate the expression, clinical significance, as well as the prognostic and diagnostic value of Talin-1 in different types of PC. Bioinformatic analysis was applied to determine the clinical importance and biological role of Talin-1 expression in PC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of Talin-1 were evaluated in tissue microarrays (TMAs) of 190 PC samples including 170 pancreatic ductal adenocarcinoma (PDAC), and 20 pancreatic neuroendocrine tumors (PNET), along with 24 adjacent normal tissues using immunohistochemistry (IHC). The results indicated that the expression of Talin-1 was upregulated in tumor cells compared with adjacent normal tissues. A statistically significant association was observed between the higher cytoplasmic expression of Talin-1 and lower histologic grade ( P <0.001) in PDAC samples. Further, our findings indicated an inverse significant correlation between cytoplasmic expression of Talin-1 and recurrence ( P =0.014) in PNET samples. No significant association was observed between the cytoplasmic expression of Talin-1 and survival outcomes as well as diagnostic accuracy. In conclusion, our observations demonstrated that a higher cytoplasmic level of Talin-1 protein was significantly associated with less aggressive tumor behaviors in PC samples. Nevertheless, further investigations are required to explore the prognostic plus diagnostic value, and mechanism of action of Talin-1 in pancreatic cancer.
Collapse
Affiliation(s)
- Samira Ahmadi Jazi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Shadman H, Gomrok S, Cheng Q, Jiang Y, Huang X, Ziebarth JD, Wang Y. A Machine Learning-Based Investigation of Integrin Expression Patterns in Cancer and Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613933. [PMID: 39386595 PMCID: PMC11463510 DOI: 10.1101/2024.09.19.613933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background Integrins, a family of transmembrane receptor proteins, play complex roles in cancer development and metastasis. These roles could be better delineated through machine learning of transcriptomic data to reveal relationships between integrin expression patterns and cancer. Methods We collected publicly available RNA-Seq integrin expression from 8 healthy tissues and their corresponding tumors, along with data from metastatic breast cancer. We then used machine learning methods, including t-SNE visualization and Random Forest classification, to investigate changes in integrin expression patterns. Results Integrin expression varied across tissues and cancers, and between healthy and cancer samples from the same tissue, enabling the creation of models that classify samples by tissue or disease status. The integrins whose expression was important to these classifiers were identified. For example, ITGA7 was key to classification of breast samples by disease status. Analysis in breast tissue revealed that cancer rewires co-expression for most integrins, but the co-expression relationships of some integrins remain unchanged in healthy and cancer samples. Integrin expression in primary breast tumors differed from their metastases, with liver metastasis notably having reduced expression. Conclusions Integrin expression patterns vary widely across tissues and are greatly impacted by cancer. Machine learning of these patterns can effectively distinguish samples by tissue or disease status.
Collapse
|
10
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Guinn S, Kinny-Köster B, Tandurella JA, Mitchell JT, Sidiropoulos DN, Loth M, Lyman MR, Pucsek AB, Zabransky DJ, Lee JW, Kartalia E, Ramani M, Seppälä TT, Cherry C, Suri R, Zlomke H, Patel J, He J, Wolfgang CL, Yu J, Zheng L, Ryan DP, Ting DT, Kimmelman A, Gupta A, Danilova L, Elisseeff JH, Wood LD, Stein-O’Brien G, Kagohara LT, Jaffee EM, Burkhart RA, Fertig EJ, Zimmerman JW. Transfer Learning Reveals Cancer-Associated Fibroblasts Are Associated with Epithelial-Mesenchymal Transition and Inflammation in Cancer Cells in Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:1517-1533. [PMID: 38587552 PMCID: PMC11065624 DOI: 10.1158/0008-5472.can-23-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.
Collapse
Affiliation(s)
- Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Benedict Kinny-Köster
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, New York University Grossman School of Medicine, New York, NY
| | - Joseph A. Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dimitrios N. Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melissa R. Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra B. Pucsek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel J. Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jae W. Lee
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Emma Kartalia
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mili Ramani
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Toni T. Seppälä
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
| | - Christopher Cherry
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
| | - Reecha Suri
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haley Zlomke
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jignasha Patel
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David P. Ryan
- The Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David T. Ting
- The Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alec Kimmelman
- Department of Radiation Oncology at New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Anuj Gupta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jennifer H. Elisseeff
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Genevieve Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Burkhart
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
12
|
Fei Y, Wu Y, Chen L, Yu H, Pan L. Comprehensive pan-carcinoma analysis of ITGB1 distortion and its potential clinical significance for cancer immunity. Discov Oncol 2024; 15:47. [PMID: 38402311 PMCID: PMC10894187 DOI: 10.1007/s12672-024-00901-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
The human protein-coding gene ITGB1 (Integrin 1), also known as CD29, has a length of 58048 base pairs. The Integrin family's most prevalent subunit, it participates in the transmission of numerous intracellular signaling pathways. A thorough examination of ITGB1's functions in human malignancies, however, is inadequate and many of their relationships to the onset and development of human cancers remain unknown. In this work, we examined ITGB1's role in 33 human cancers. Finally, a multi-platform analysis revealed that three of the 33 malignancies had significantly altered ITGB1 expression in tumor tissues in comparison to normal tissues. In addition, it was discovered through survival analysis that ITGB1 was a stand-alone prognostic factor in a number of cancers. ITGB1 expression was linked to immune cell infiltration in colon cancer, according to an investigation of immune infiltration in pan-cancer. In the gene co-expression research, ITGB1 showed a positive connection with the majority of the cell proliferation and EMT indicators, indicating that ITGB1 may have an essential function in controlling cancer metastasis and proliferation. Our pan-cancer analysis of ITGB1 gives evidence in favor of a further investigation into its oncogenic function in various cancer types.
Collapse
Affiliation(s)
- Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiashan Hospital Affiliated of Jiaxing University, Jiashan, Zhejiang, China.
| | - Yulun Wu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Huan Yu
- The Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Aziz MH, Saida L, van Eijck CHJ, Mustafa DAM. Overexpression of the adhesion signaling pathway is linked to short-term survival in pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:62-65. [PMID: 37957065 DOI: 10.1016/j.pan.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is known for its unfavorable prognosis. Gaining insights into the molecular mechanisms that contribute to its progression is crucial for developing effective therapies. In this study, our objective was to investigate the molecular pathways associated with short-term survival in patients with PDAC. METHODS Immune profiles were analyzed from both long-term survivors (n = 10) and short-term survivors (n = 10) after surgical resection. Pathway scores were calculated to compare the two groups. RESULTS The "Adhesion" pathway emerged as the most significant pathway, exhibiting a notably higher score in the samples of short-term survivors (P < 0.009). Within this pathway, significant findings were observed in genes related to integrins and CEACAM. CONCLUSION The role of integrins in the tumor microenvironment of pancreatic cancer is of utmost importance, as they are found to be overexpressed in short-term survivors. These findings provide valuable insights into the underlying biology of PDAC and have potential implications for the development of therapeutic strategies.
Collapse
Affiliation(s)
- M H Aziz
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - L Saida
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - C H J van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - D A M Mustafa
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
14
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
15
|
Liu Z, Ji P, Liu H, Yu L, Zhang SM, Liu P, Zhang XZ, Luo GF, Shang Z. FNIII14 Peptide-Enriched Membrane Nanocarrier to Disrupt Stromal Barriers through Reversing CAFs for Augmenting Drug Penetration in Tumors. NANO LETTERS 2023; 23:9963-9971. [PMID: 37729438 DOI: 10.1021/acs.nanolett.3c02983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Given the key roles of cancer associated fibroblasts (CAFs) in shaping tumor stroma, this study shows a CAF-associated ITGB1-inactivating peptide-enriched membrane nanodelivery system (designated as PMNPs-D) to simultaneously target CAFs and tumor cells for boosted chemotherapy through promoted drug perfusion. In the structure of PMNPs-D, the PLGA-based inner core is loaded with the chemotherapeutic drug doxorubicin, and the outer surface is cloaked by hybrid biomembranes with the insertion of integrin β1 (ITGB1) inhibiting peptide (i.e., FNIII14). After prolonged blood circulation and actively targeting in tumor sites, PMNPs-D can respond to CAF-overexpressed fibroblast activation protein-α (FAP-α) to trigger the release of FNIII14, which will bind to ITGB1 and inhibit CAFs' biological function in producing the stromal matrix, thereby loosening the condensed stromal structure and enhancing the permeability of nanotherapeutics in tumors. As a result, this tailor-designed nanosystem shows substantial tumor inhibition and metastasis retardation in aggressive adenoid cystic carcinoma (ACC) tumor-harboring mice.
Collapse
Affiliation(s)
- Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Lili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Pan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
17
|
Park SJ, Min HJ, Yoon C, Kim SH, Kim JH, Lee SY. Integrin β1 regulates the perineural invasion and radioresistance of oral squamous carcinoma cells by modulating cancer cell stemness. Cell Signal 2023; 110:110808. [PMID: 37481218 DOI: 10.1016/j.cellsig.2023.110808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Perineural invasion and radioresistance are the main determinants of treatment outcomes in oral squamous cell carcinoma (OSCC), but the exact mechanism is still unknown. We conducted an in vitro experiment to evaluate the role of integrin β1 (ITGB1) in the perineural invasion, radioresistance, and tumor aggressiveness of OSCC. Two OSCC cell lines (SCC25, SCC15) and radiation-induced radioresistant OSCC cell lines were used in this study. The expression of ITGB1 was compared between control radiosensitive and radioresistant OSCC cell lines. ITGB1 was inhibited by small hairpin RNA, and then the adhesion to neuronal cells, responsiveness to radiation, and aggressiveness of both OSCC cell lines were evaluated. Expression of ITGB1 and adhesion to neuronal cells were increased in radioresistant OSCC compared with control radiosensitive OSCC, and increased ITGB1 expression was more prominent in cancer stem cell-like cells. When the expression of ITGB1 was inhibited, the adhesion to neuronal cells, resistance to radiation, and invasion and migration of radioresistant OSCC were significantly reduced. Moreover, the expression of cancer stem cell markers and size of spheroid formations were also significantly attenuated by inhibiting ITGB1. These findings suggest that ITGB1 may be a significant contributor to perineural invasion and the maintenance of radioresistance in OSCC cells, and is associated with cancer stem cell-like cells. Furthermore, our results suggest a possible relationship between perineural invasion and radioresistance of OSCC. More detailed research is warranted to evaluate the role of ITGB1 as a novel emerging therapeutic target for radioresistant OSCC.
Collapse
Affiliation(s)
- Sung Joon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea.
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Changhwan Yoon
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Seong Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Jin Hyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Sei Young Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| |
Collapse
|
18
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
19
|
Benesch MGK, Wu R, Menon G, Takabe K. High beta integrin expression is differentially associated with worsened pancreatic ductal adenocarcinoma outcomes. Am J Cancer Res 2022; 12:5403-5424. [PMID: 36628277 PMCID: PMC9827087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Gopal Menon
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan,Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
20
|
Malsy M, Hofer V, Schmidbauer S, Graf B, Bundscherer A. Effects of Ketamine, S-Ketamine and MK 801 on Integrin Beta-3-mediated Cell Migration in Pancreatic Carcinoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:446-451. [PMID: 36777697 PMCID: PMC9910313 DOI: 10.26502/jcsct.5079183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies in humans. The main reason for its unfavourable prognosis is the combination of rapid tumour growth, early-onset metastasis and currently still inadequate diagnostic and therapeutic options. Thus, only very few patients are eligible for radical resection of the primary tumour as the only curative treatment option available so far. In the perioperative period, tumour progression and metastasis are facilitated by the activation of key signalling pathways and the altered regulation of transcription factors. Various tumour entities have shown increased expression of the integrin-3 receptor subunit, which correlates with more rapid tumour progression and metastasis through advanced migration, invasion and proliferation. The influence of perioperative medication and postoperative pain management remains unclear. To investigate the effects of ketamine, s-ketamine and MK 801 on integrin beta-3-mediated cell migration in pancreatic cancer cells in vitro. Methods The effects of ketamine, s-ketamine and MK 801 on integrin beta-3 expression were investigated with immunoblot. Cell migratory potentials were analysed using a Cell Migration Assay Kit with a Boyden chamber, in which cells migrate through a semipermeable membrane under different stimuli. Results Stimulation with ketamine and MK 801 significantly promoted migration in pancreatic cancer cells, increasing the expression of integrin beta-3. Conclusion Novel therapeutic approaches target the effective modulation of specific signalling and transcription pathways. The prerequisite for such 'target therapies' is comprehensive knowledge about the respective carcinogenesis. Further studies are required to identify the underlying disease mechanisms of pancreatic carcinoma.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | - Veronika Hofer
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | | | - Bernhard Graf
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | - Anika Bundscherer
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| |
Collapse
|