1
|
Troncoso-Afonso L, Henríquez-Banegas YM, Vinnacombe-Willson GA, Gutierrez J, Gallastegui G, Liz-Marzán LM, García-Astrain C. Using thiol-ene click chemistry to engineer 3D printed plasmonic hydrogel scaffolds for SERS biosensing. Biomater Sci 2025. [PMID: 40237173 PMCID: PMC12001321 DOI: 10.1039/d4bm01529k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
3D cell culture models allow the study of the biomolecular processes underlying pathophysiological conditions by mimicking tissues and organs. Despite significant progress in creating such 3D architectures, studying cell behaviour in these systems still poses some challenges due to their heterogeneity and complex geometry. In this context, surface-enhanced Raman spectroscopy (SERS) can be implemented for molecular detection in biological settings with high sensitivity. The incorporation of SERS sensors in 3D models can thus lead to powerful platforms to study cellular response to therapeutics, metabolic pathways, signaling, and cell-cell communication events. Here, we introduce a library of plasmonic hydrogels that can be orthogonally photo-crosslinked via thiol-ene click chemistry and identify the main physicochemical factors accounting for their SERS performance. Using hydrogel-forming polymers such as gelatin, alginate, and carboxymethylcellulose modified with complementary thiol and norbornene groups, we created hydrogels with tailored chemical backbones. We identified swelling, porosity, and chemical composition as crucial factors determining their potential to detect different molecules by SERS. We additionally assessed their biocompatibility and printability, to ensure that these hydrogels meet the requirements for their use as 3D cellular scaffolds, showing their potential for real-time and in situ detection of biorelevant metabolites.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Yolany M Henríquez-Banegas
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Gail A Vinnacombe-Willson
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Junkal Gutierrez
- Chemical and Environmental Engineering Department, Univeristy of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Gorka Gallastegui
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Abdessalam S, Hardy TJ, Pershina D, Yoon JY. A comparative review of organ-on-a-chip technologies for micro- and nanoplastics versus other environmental toxicants. Biosens Bioelectron 2025; 282:117472. [PMID: 40253802 DOI: 10.1016/j.bios.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
In recent years, organ-on-a-chip (OOC) technology has emerged as a groundbreaking platform to simulate complex physiological processes. Concurrently, the global presence of micro and nano-plastics (MNPs) in the environment and their ingestion has raised concerns about their impact on human health, specifically organs such as the lungs, liver, kidneys, and blood vessels. There is an added concern about their ability to cross even the blood-brain barrier (BBB). While numerous papers have been published assessing various environmental toxicants with OOCs, those for MNPs are relatively small. To ascertain current trends in methodologies and catalog the types of toxicants explored, we have gathered and analyzed papers that used OOCs to assess various environmental toxicants' impacts on these organs. Various platforms assessing MNPs were analyzed and compared to those for other environmental toxicants. Our results show that few articles have been published that used OOCs to assess MNPs' toxicity to human organs. Specifically, certain organs, such as the heart and skin, have little representation in this collection. OOC-based evaluation methods for MNP's toxicity have many advantages over the current methods - in vitro tests with 2D human cell cultures and animal studies - including lower cost, faster results, and greater physiological relevance. This review summarizes the current OOC techniques for assessing environmental toxicants and laboratory methods for evaluating MNPs' toxicity to humans. A systematic comparison of these methods provides a deeper understanding of the current techniques and suggests the optimized use of OOCs for assessing MNPs' and other pollutants' toxicity.
Collapse
Affiliation(s)
- Safiyah Abdessalam
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Trinity J Hardy
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Darya Pershina
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
3
|
Petrauskas V, Damaseviciute R, Gulla A. Pancreatic 3D Organoids and Microfluidic Systems-Applicability and Utilization in Surgery: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:623. [PMID: 40282914 PMCID: PMC12028617 DOI: 10.3390/medicina61040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Background: Pancreatic organoids are a rapidly advancing field of research with new discoveries being made every day. A literature review was performed to answer the question of how relevant 3D pancreatic organoids are for surgery. Materials and Methods: We started our investigation by identifying articles in PubMed within the last 5 years using the keywords (("pancreatic organoid", OR "organ-on-a-chip", OR "pancreatic chip" OR "3D culture methods") AND pancreatic surgery). Only English articles were included in this literature review. This literature review was performed in a non-systematic way; articles were chosen without a predetermined protocol of inclusion and were based on the aim of the review. Results and Conclusions: There are many promising innovations in the field of 3D cultures. Drug sensitivity testing in particular holds great potential for surgical application. For locally advanced PDAC, EUS-FNB obtained cancer tissue can be cultured as organoids, and after 4 weeks, neoadjuvant treatment could be adjusted for each patient individually. Utilizing this approach could increase the number of R0 resections and possibly cure the disease. Furthermore, microfluidic devices, as a platform for pancreatic islet pre-transplant evaluation or cultivation of beta cells derived from HiPSC in vitro, promise broad application of islet transplantation to T1DM patients in the near future.
Collapse
Affiliation(s)
- Vidas Petrauskas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-01131 Vilnius, Lithuania
| | - Ryte Damaseviciute
- Center of Visceral Medicine and Translational Research, Faculty of Medicine, Vilnius University, LT-01131 Vilnius, Lithuania
| | - Aiste Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-01131 Vilnius, Lithuania
- Center of Visceral Medicine and Translational Research, Faculty of Medicine, Vilnius University, LT-01131 Vilnius, Lithuania
- Department of Surgery, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
4
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2025; 60:101036. [PMID: 39567282 PMCID: PMC11825288 DOI: 10.1016/j.dmpk.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding its neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUD using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUD in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Na YJ, Choi KJ, Jung WH, Park SB, Koh B, Hoe KL, Kim KY. Development of 3D Muscle Cell Culture-Based Screening System for Metabolic Syndrome Drug Research. Tissue Eng Part C Methods 2025; 31:53-64. [PMID: 39912898 DOI: 10.1089/ten.tec.2024.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Developing effective drug screening methods for type 2 diabetes requires physiologically relevant models. Traditional 2D cell cultures have limitations in replicating in vivo conditions, leading to challenges in assessing drug efficacy. To overcome these issues, we developed a 3D artificial muscle model that induces insulin resistance, a hallmark of type 2 diabetes. Using C2C12 myoblasts cultured in a scaffold of 1% alginate and 1 mg/mL collagen type 1, we optimized conditions for differentiation and structural stability. Insulin resistance was induced using palmitic acid (PA), and glucose uptake was assessed using the fluorescent glucose analog 2-NBDG. The 3D model demonstrated superior glucose uptake responses compared with 2D cultures, with a threefold increase in insulin-stimulated glucose uptake on days 4 and 8 of differentiation. Induced insulin resistance was observed with 0.1 mM PA, which maintained cell viability and differentiation capacity. The model was validated through comparative drug screening using rosiglitazone and metformin, as well as 165 candidate compounds provided by Korea Chemical Bank. Drug screening revealed that three out of five hit compounds identified in both 2D and 3D models exhibited greater efficacy in 3D cultures, with results consistent with ex vivo assays using mouse soleus muscle. This model closely mimics in vivo conditions, offering a robust platform for type 2 diabetes drug discovery while supporting ethical research practices.
Collapse
Affiliation(s)
- Yoon-Ju Na
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Kyoung Jin Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Won Hoon Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Byumseok Koh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| |
Collapse
|
6
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
7
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
8
|
Xu H, Wen J, Yang J, Zhou S, Li Y, Xu K, Li W, Li S. Tumor-microenvironment-on-a-chip: the construction and application. Cell Commun Signal 2024; 22:515. [PMID: 39438954 PMCID: PMC11515741 DOI: 10.1186/s12964-024-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, despite the vast amounts of time and money invested in cancer treatment, cancer remains one of the primary threats to human life. The primary factor contributing to the low treatment efficacy is cancer heterogeneity. The unclear molecular mechanisms underlying tumorigenesis, coupled with the complexity of human physiology, and the inability of animal models to accurately replicate the human tumor microenvironment, pose significant hurdles in the development of novel cancer therapies. Tumor-microenvironment-on-chip (TMOC) represents a research platform that integrates three-dimensional cell culture with microfluidic systems, simulating the essential components and physiological traits of the in vivo tumor microenvironment. It offers a dynamic setting within the chip system to study tumor progression, potentially heralding a breakthrough in cancer research. In this review, we will summarize the current advancements in this platform, encompassing various types of TMOCs and their applications in different types of cancer. From our perspective, the TMOC platform necessitates enhanced integration with tissue engineering techniques and microphysiological environments before it can evolve into a more refined preclinical model for cancer research.
Collapse
Affiliation(s)
- Hanzheng Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiangtao Wen
- Linfen People's Hospital, The Seventh Clinical School of Shanxi Medical University, Shanxi, 041000, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Shufen Zhou
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Sen Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
9
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
10
|
Badea MA, Balas M, Ionita D, Dinischiotu A. Carbon nanotubes conjugated with cisplatin activate different apoptosis signaling pathways in 2D and 3D-spheroid triple-negative breast cancer cell cultures: a comparative study. Arch Toxicol 2024; 98:2843-2866. [PMID: 38739308 PMCID: PMC11324667 DOI: 10.1007/s00204-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 μg/mL), CDDP (0.158-1.26 μg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663, Bucharest, Romania
| | - Mihaela Balas
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania.
| | - Daniela Ionita
- Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Dinischiotu
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
11
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
12
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2024; 58:101031. [PMID: 39146603 DOI: 10.1016/j.dmpk.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States.
| |
Collapse
|
13
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
14
|
Iachettini S, Biroccio A, Zizza P. Therapeutic Use of G4-Ligands in Cancer: State-of-the-Art and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:771. [PMID: 38931438 PMCID: PMC11206494 DOI: 10.3390/ph17060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
G-quadruplexes (G4s) are guanine-rich non-canonical secondary structures of nucleic acids that were identified in vitro almost half a century ago. Starting from the early 1980s, these structures were also observed in eukaryotic cells, first at the telomeric level and later in regulatory regions of cancer-related genes, in regulatory RNAs and within specific cell compartments such as lysosomes, mitochondria, and ribosomes. Because of the involvement of these structures in a large number of biological processes and in the pathogenesis of several diseases, including cancer, the interest in G4 targeting has exponentially increased in the last few years, and a great number of novel G4 ligands have been developed. Notably, G4 ligands represent a large family of heterogeneous molecules that can exert their functions by recognizing, binding, and stabilizing G4 structures in multiple ways. Regarding anti-cancer activity, the efficacy of G4 ligands was originally attributed to the capability of these molecules to inhibit the activity of telomerase, an enzyme that elongates telomeres and promotes endless replication in cancer cells. Thereafter, novel mechanisms through which G4 ligands exert their antitumoral activities have been defined, including the induction of DNA damage, control of gene expression, and regulation of metabolic pathways, among others. Here, we provided a perspective on the structure and function of G4 ligands with particular emphasis on their potential role as antitumoral agents. In particular, we critically examined the problems associated with the clinical translation of these molecules, trying to highlight the main aspects that should be taken into account during the phases of drug design and development. Indeed, taking advantage of the successes and failures, and the more recent technological progresses in the field, it would be possible to hypothesize the development of these molecules in the future that would represent a valid option for those cancers still missing effective therapies.
Collapse
Affiliation(s)
| | | | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS—Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Roma, Italy; (S.I.); (A.B.)
| |
Collapse
|
15
|
da Costa Sousa MG, Vignolo SM, Franca CM, Mereness J, Alves Fraga MA, Silva-Sousa AC, Benoit DSW, Bertassoni LE. Engineering models of head and neck and oral cancers on-a-chip. BIOMICROFLUIDICS 2024; 18:021502. [PMID: 38464668 PMCID: PMC10919958 DOI: 10.1063/5.0186722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Head and neck cancers (HNCs) rank as the sixth most common cancer globally and result in over 450 000 deaths annually. Despite considerable advancements in diagnostics and treatment, the 5-year survival rate for most types of HNCs remains below 50%. Poor prognoses are often attributed to tumor heterogeneity, drug resistance, and immunosuppression. These characteristics are difficult to replicate using in vitro or in vivo models, culminating in few effective approaches for early detection and therapeutic drug development. Organs-on-a-chip offer a promising avenue for studying HNCs, serving as microphysiological models that closely recapitulate the complexities of biological tissues within highly controllable microfluidic platforms. Such systems have gained interest as advanced experimental tools to investigate human pathophysiology and assess therapeutic efficacy, providing a deeper understanding of cancer pathophysiology. This review outlines current challenges and opportunities in replicating HNCs within microphysiological systems, focusing on mimicking the soft, glandular, and hard tissues of the head and neck. We further delve into the major applications of organ-on-a-chip models for HNCs, including fundamental research, drug discovery, translational approaches, and personalized medicine. This review emphasizes the integration of organs-on-a-chip into the repertoire of biological model systems available to researchers. This integration enables the exploration of unique aspects of HNCs, thereby accelerating discoveries with the potential to improve outcomes for HNC patients.
Collapse
Affiliation(s)
| | | | | | - Jared Mereness
- Departments of Biomedical Engineering and Dermatology and Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Ave, Rochester, New York 14642, USA
| | | | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo. Av. do Café - Subsetor Oeste—11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil
| | | | | |
Collapse
|
16
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
17
|
Stavrou M, Phung N, Grimm J, Andreou C. Organ-on-chip systems as a model for nanomedicine. NANOSCALE 2023; 15:9927-9940. [PMID: 37254663 PMCID: PMC10619891 DOI: 10.1039/d3nr01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomedicine is giving rise to increasing numbers of successful drugs, including cancer treatments, molecular imaging agents, and novel vaccine formulations. However, traditionally available model systems offer limited clinical translation and, compared to the number of preclinical studies, the approval rate of nanoparticles (NPs) for clinical use remains disappointingly low. A new paradigm of modeling biological systems on microfluidic chips has emerged in the last decade and is being gradually adopted by the nanomedicine community. These systems mimic tissues, organs, and diseases like cancer, on devices with small physical footprints and complex geometries. In this review, we report studies that used organ-on-chip approaches to study the interactions of NPs with biological systems. We present examples of NP toxicity studies, studies using biological NPs such as viruses, as well as modeling biological barriers and cancer on chip. Organ-on-chip systems present an exciting opportunity and can provide a renewed direction for the nanomedicine community.
Collapse
Affiliation(s)
- Marios Stavrou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| | - Ngan Phung
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Jan Grimm
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Chrysafis Andreou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| |
Collapse
|
18
|
Tumor Models and Drug Targeting In Vitro—Where Are We Today? Where Do We Go from Here? Cancers (Basel) 2023; 15:cancers15061768. [PMID: 36980654 PMCID: PMC10046516 DOI: 10.3390/cancers15061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide [...]
Collapse
|