1
|
MILICA KONTIC, FILIP MARKOVIC. Use of DNA methylation patterns for early detection and management of lung cancer: Are we there yet? Oncol Res 2025; 33:781-793. [PMID: 40191732 PMCID: PMC11964873 DOI: 10.32604/or.2024.057231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
Detecting lung cancer early is crucial for improving survival rates, yet it remains a significant challenge due to many cases being diagnosed at advanced stages. This review aims to provide advances in epigenetics which have highlighted DNA methylation patterns as promising biomarkers for early detection, prognosis, and treatment response in lung cancer. Techniques like bisulfite conversion followed by PCR, digital droplet polymerase chain reaction, and next-generation sequencing are commonly used for detecting these methylation patterns, which occur early in the cancer development process and can be detected in non-invasive samples like blood and sputum. Key genes such as SHOX2 and RASSF1A have demonstrated high sensitivity and specificity in clinical studies, making them crucial for diagnostic purposes. However, several challenges remain to be overcome before these biomarkers can be widely adopted for use in clinical practice. Standardizing the assays and validating their effectiveness are critical steps. Additionally, integrating methylation biomarkers with existing diagnostic tools could significantly enhance the accuracy of lung cancer detection, providing a more comprehensive diagnostic approach. Although progress has been made in understanding and utilizing DNA methylation patterns for lung cancer detection, more research and extensive clinical trials are necessary to fully harness their potential. These efforts will help establish the robustness of methylation patterns as biomarkers and therapeutic targets, ultimately leading to better prevention, diagnosis, and treatment strategies for lung cancer. In conclusion, DNA methylation states represent a promising avenue for advancing early detection, accurate diagnosis, and management of lung cancer.
Collapse
Affiliation(s)
- KONTIC MILICA
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
- School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - MARKOVIC FILIP
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, 11000, Serbia
| |
Collapse
|
2
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Deshmukh S, Kelly C, Tinoco G. IDH1/2 Mutations in Cancer: Unifying Insights and Unlocking Therapeutic Potential for Chondrosarcoma. Target Oncol 2025; 20:13-25. [PMID: 39546097 DOI: 10.1007/s11523-024-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Chondrosarcomas, a rare form of bone sarcomas with multiple subtypes, pose a pressing clinical challenge for patients with advanced or metastatic disease. The lack of US Food and Drug Administration (FDA)-approved medications underscores the urgent need for further research and development in this area. Patients and their families face challenges as there are no systemic therapeutic options available with substantial effectiveness. A significant number (50-80%) of chondrosarcomas have a mutation in the isocitrate dehydrogenase (IDH) genes. This review focuses on IDH-mediated pathogenesis and recent pharmacological advances with novel IDH inhibitors, explores their potential therapeutic value, and proposes potential future avenues for clinical trials combining IDH inhibitors with other systemic agents for chondrosarcomas.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ciara Kelly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Ran K, Li Y, Zhang YM, Tang DY, Chen ZZ, Xu ZG, Zhang L, Wang BC, Huang JH. Discovery and optimization of novel 4-morpholinothieno[3,2-d]pyrimidine derivatives as potent BET inhibitors for cancer therapy. Bioorg Chem 2024; 153:107929. [PMID: 39509789 DOI: 10.1016/j.bioorg.2024.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
The identification of structurally novel and potently active BET inhibitors represents a significant advancement in the field of anticancer therapeutics. In the present investigation, leveraging the outcomes of previous screening endeavors, we successfully optimized and synthesized a novel series of bromodomain and extra-terminal (BET) inhibitors with a 4-morpholinothieno[3,2-d]pyrimidine structure. Among the synthesized compounds, compound 6c emerged as a promising candidate, exhibiting exceptional inhibitory activities against various BET isoform proteins, with IC50 values ranging from 3.3 to 42.0 nM. In cellular assays, compound 6c demonstrated robust antiproliferative effects in SU-DHL-4 cells, achieving an IC50 value of 8.6 ± 3.3 nM. Further mechanistic studies revealed that compound 6c effectively decreased the expression of c-Myc, a critical oncogenic driver regulated by the BET protein, and induced cell cycle arrest at the G1 phase, as well as cell apoptosis, in a dose-dependent manner. Moreover, in-silico prediction of the physiochemical and pharmacokinetic properties clarified that compound 6c has acceptable drug-like profiles. Taken these findings together, compound 6c represents a novel and potent BET inhibitor, thus positioning it as a promising candidate for subsequent pre-clinical evaluations in the realm of cancer therapy.
Collapse
Affiliation(s)
- Kai Ran
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China; Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China; Key Laboratory of Bio-theological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yi-Mei Zhang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, No. 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Bo-Chu Wang
- Key Laboratory of Bio-theological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| |
Collapse
|
5
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y, Feng J. Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci 2024; 14:143. [PMID: 39580422 PMCID: PMC11585172 DOI: 10.1186/s13578-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND B-cell non-Hodgkin lymphoma (B-NHL) is the most common type of lymphoma and is significantly heterogeneous among various subtypes. Despite of considerable advancements in treatment strategies for B-NHL, the prognosis of relapsed/refractory patients remains poor. MAIN TEXT It has been indicated that epigenetic dysregulation is critically associated with the pathogenesis of most hematological malignancies, resulting in the clinical targeting of epigenetic modifications. Bromodomain (BRD) proteins are essential epigenetic regulators which contain eight subfamilies, including BRD and extra-terminal domain (BET) family, histone acetyltransferases (HATs) and HAT-related proteins, transcriptional coactivators, transcriptional mediators, methyltransferases, helicases, ATP-dependent chromatin-remodeling complexes, and nuclear-scaffolding proteins. Most pre-clinical and clinical studies on B-NHL have focused predominantly on the BET family and the use of BET inhibitors as mono-treatment or co-treatment with other anti-tumor drugs. Furthermore, preclinical models of B-NHL have revealed that BET degraders are more active than BET inhibitors. Moreover, with the development of BET inhibitors and degraders, non-BET BRD protein inhibitors have also been designed and have shown antitumor activities in B-NHL preclinical models. This review summarized the mechanism of BRD proteins and the recent progress of BRD protein-related drugs in B-NHL. This study aimed to collect the most recent evidences and summarize possibility on whether BRD proteins can serve as therapeutic targets for B-NHL. CONCLUSION In summary, BRD proteins are critical epigenetic regulatory factors and may be potential therapeutic targets for B-NHL.
Collapse
Affiliation(s)
- Dan Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Sitong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bowen Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
6
|
Mishra A, Thakur A, Sharma R, Onuku R, Kaur C, Liou JP, Hsu SP, Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Expert Opin Drug Discov 2024; 19:1355-1381. [PMID: 39420580 DOI: 10.1080/17460441.2024.2409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
Collapse
Affiliation(s)
- Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Raphael Onuku
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
7
|
Nong T, Mehra S, Taylor J. Common Driver Mutations in AML: Biological Impact, Clinical Considerations, and Treatment Strategies. Cells 2024; 13:1392. [PMID: 39195279 PMCID: PMC11352998 DOI: 10.3390/cells13161392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Next-generation sequencing of samples from patients with acute myeloid leukemia (AML) has revealed several driver gene mutations in adult AML. However, unlike other cancers, AML is defined by relatively few mutations per patient, with a median of 4-5 depending on subtype. In this review, we will discuss the most common driver genes found in patients with AML and focus on the most clinically relevant ones that impact treatment strategies. The most common driver gene mutations in AML occur in NPM1 and FLT3, accounting for ~30% each. There are now targeted therapies being tested or already approved for these driver genes. Menin inhibitors, a novel targeted therapy that blocks the function of the menin protein, are in clinical trials for NPM1 driver gene mutant AML after relapse. A number of FLT3 inhibitors are now approved for FLT3 driver gene mutant AML in combination with chemotherapy in the frontline and also as single agent in relapse. Although mutations in IDH1/2 and TP53 only occur in around 10-20% of patients with AML each, they can affect the treatment strategy due to their association with prognosis and availability of targeted agents. While the impact of other driver gene mutations in AML is recognized, there is a lack of data on the actionable impact of those mutations.
Collapse
Affiliation(s)
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Viswanathan K, Hahn E, Dogan S, Weinreb I, Dickson BC, MacMillan C, Katabi N, Magliocca K, Ghossein R, Xu B. The histological spectrum and immunoprofile of head and neck NUT carcinoma: A multicentre series of 30 cases. Histopathology 2024; 85:317-326. [PMID: 38708903 PMCID: PMC11246813 DOI: 10.1111/his.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Head and neck nuclear protein of testis carcinoma (HN-NUT) is a rare form of carcinoma diagnosed by NUT immunohistochemistry positivity and/or NUTM1 translocation. Although the prototype of HN-NUT is a primitive undifferentiated round cell tumour (URC) with immunopositivity for squamous markers, it is our observation that it may assume variant histology or immunoprofile. METHODS We conducted a detailed clinicopathological review of a large retrospective cohort of 30 HN-NUT, aiming to expand its histological and immunohistochemical spectrum. RESULTS The median age of patients with HN-NUT was 39 years (range = 17-86). It affected the sinonasal tract (43%), major salivary glands (20%), thyroid (13%), oral cavity (7%), larynx (7%), neck (7%) and nasopharynx (3%). Although most cases of HN-NUT (63%) contained a component of primitive URC tumour, 53% showed other histological features and 37% lacked a URC component altogether. Variant histological features included basaloid (33%), differentiated squamous/squamoid (37%), clear cell changes (13%), glandular differentiation (7%) and papillary architecture (10%), which could co-exist. While most HN-NUT were positive for keratins, p63 and p40, occasional cases (5-9%) were entirely negative. Immunopositivity for neuroendocrine markers and thyroid transcription factor-1 was observed in 33 and 36% of cases, respectively. The outcome of HN-NUT was dismal, with a 3-year disease specific survival of 38%. CONCLUSIONS HN-NUT can affect individuals across a wide age range and arise from various head and neck sites. It exhibits a diverse spectrum of histological features and may be positive for neuroendocrine markers, potentially leading to underdiagnosis. A low threshold to perform NUT-specific tests is necessary to accurately diagnose HN-NUT.
Collapse
Affiliation(s)
- Kartik Viswanathan
- Department of Pathology, Emory University Hospital Midtown, Atlanta, GA, USA
| | - Elan Hahn
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly Magliocca
- Department of Pathology, Emory University Hospital Midtown, Atlanta, GA, USA
| | - Ronald Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
DU J, ZHANG X. [Research Progress on Pathogenesis and Treatment of NUT Carcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:466-470. [PMID: 39026498 PMCID: PMC11258642 DOI: 10.3779/j.issn.1009-3419.2024.101.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/20/2024]
Abstract
NUT carcinoma (nuclear protein in testis carcinoma) is a rare and highly invasive malignant tumor, which is most common in midline organs and lungs. The characteristic genetic change of NUT carcinoma is the rearrangement of NUT middle carcinoma family member 1 (NUTM1) gene. In this article, we will review the pathogenic mechanism of its most common fusion form, bromodomaincontaining protein 4 (BRD4)-NUTM1 fusion gene, and the progress in the research and development of targeting drugs.
.
Collapse
|
10
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
11
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
12
|
Luo J, Sanchez M, Lee E, Hertzler H, Luong N, Mazzola E, Finstein B, Tamen R, Brisbane G, Nguyen T, Paik PK, Chaft JE, Cheng ML, Khalil H, Piha-Paul SA, Sholl LM, Nishino M, Jänne PA, DuBois SG, Hanna GJ, Shapiro GI, French CA. Initial Chemotherapy for Locally Advanced and Metastatic NUT Carcinoma. J Thorac Oncol 2024; 19:829-838. [PMID: 38154515 PMCID: PMC11081848 DOI: 10.1016/j.jtho.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION NUT carcinoma (NC) is an underdiagnosed and aggressive poorly differentiated or squamous cell cancer. A subset of NC is sensitive to chemotherapy, but the optimal regimen is unknown. Experts have recommended platinum- and ifosfamide-based therapy based on case reports. METHODS Patients with pathologically confirmed NC with known survival outcomes after chemotherapy and consented to participate in a worldwide registry were studied. Results were summarized using descriptive methods. RESULTS The study included 118 patients with NC. Median age was 34 (range: 1-82) years, 39% were women, and 61% harbored a BRD4::NUTM1 fusion. Patients received platinum (74%) or ifosfamide (26%, including regimens with both, 13%). Of 62 patients with nonmetastatic disease, 40% had a thoracic primary. Compared with platinum-based chemotherapy, patients who received ifosfamide-based chemotherapy had nominally higher progression-free survival (12 mo: 59% [95% CI: 32-87] versus 37% [95% CI: 22-52], hazard ratio = 0.68 [0.32, 1.42], p = 0.3) but not overall survival (OS). Among the 56 patients with metastatic disease, 80% had a thoracic primary. Ifosfamide had an objective response rate (ORR) of 75% (six of eight) and platinum had an ORR of 31% (11 of 36). Nevertheless, there was no difference in progression-free survival or OS. The 3-year OS of the entire cohort was 19% (95% CI: 10%-28%). Of the 11 patients alive greater than 3 years, all presented with nonmetastatic and operable or resectable disease. CONCLUSION There is a numerically higher ORR for ifosfamide-based therapy compared with platinum-based therapy, with limited durability. OS at 3 years is only 19%, and development of effective therapies is an urgent unmet need for this patient population.
Collapse
Affiliation(s)
- Jia Luo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michelle Sanchez
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hans Hertzler
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bryanna Finstein
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rubii Tamen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gifty Brisbane
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul K Paik
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie E Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hassan Khalil
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Glenn J Hanna
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Cancer Therapeutic Innovation, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Jermakowicz AM, Kurimchak AM, Johnson KJ, Bourgain-Guglielmetti F, Kaeppeli S, Affer M, Pradhyumnan H, Suter RK, Walters W, Cepero M, Duncan JS, Ayad NG. RAPID resistance to BET inhibitors is mediated by FGFR1 in glioblastoma. Sci Rep 2024; 14:9284. [PMID: 38654040 PMCID: PMC11039727 DOI: 10.1038/s41598-024-60031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins are therapeutic targets in several cancers including the most common malignant adult brain tumor glioblastoma (GBM). Multiple small molecule inhibitors of BET proteins have been utilized in preclinical and clinical studies. Unfortunately, BET inhibitors have not shown efficacy in clinical trials enrolling GBM patients. One possible reason for this may stem from resistance mechanisms that arise after prolonged treatment within a clinical setting. However, the mechanisms and timeframe of resistance to BET inhibitors in GBM is not known. To identify the temporal order of resistance mechanisms in GBM we performed quantitative proteomics using multiplex-inhibitor bead mass spectrometry and demonstrated that intrinsic resistance to BET inhibitors in GBM treatment occurs rapidly within hours and involves the fibroblast growth factor receptor 1 (FGFR1) protein. Additionally, small molecule inhibition of BET proteins and FGFR1 simultaneously induces synergy in reducing GBM tumor growth in vitro and in vivo. Further, FGFR1 knockdown synergizes with BET inhibitor mediated reduction of GBM cell proliferation. Collectively, our studies suggest that co-targeting BET and FGFR1 may dampen resistance mechanisms to yield a clinical response in GBM.
Collapse
Affiliation(s)
- Anna M Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Katherine J Johnson
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Florence Bourgain-Guglielmetti
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Simon Kaeppeli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Maurizio Affer
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Hari Pradhyumnan
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Robert K Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Winston Walters
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Maria Cepero
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
14
|
Li S, Zhang L, Wang L, Ji J, He J, Zheng X, Cao L, Li K. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs. Molecules 2024; 29:1784. [PMID: 38675604 PMCID: PMC11051887 DOI: 10.3390/molecules29081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Detecting the unintended adverse reactions of drugs (ADRs) is a crucial concern in pharmacological research. The experimental validation of drug-ADR associations often entails expensive and time-consuming investigations. Thus, a computational model to predict ADRs from known associations is essential for enhanced efficiency and cost-effectiveness. Here, we propose BiMPADR, a novel model that integrates drug gene expression into adverse reaction features using a message passing neural network on a bipartite graph of drugs and adverse reactions, leveraging publicly available data. By combining the computed adverse reaction features with the structural fingerprints of drugs, we predict the association between drugs and adverse reactions. Our models obtained high AUC (area under the receiver operating characteristic curve) values ranging from 0.861 to 0.907 in an external drug validation dataset under differential experiment conditions. The case study on multiple BET inhibitors also demonstrated the high accuracy of our predictions, and our model's exploration of potential adverse reactions for HWD-870 has contributed to its research and development for market approval. In summary, our method would provide a promising tool for ADR prediction and drug safety assessment in drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Cao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| |
Collapse
|
15
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
16
|
Herbison H, Davis S, Nickless D, Haydon A, Ameratunga M. Sustained Clinical Response to Immunotherapy Followed by BET Inhibitor in a Patient with Unresectable Sinonasal NUT Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:67-72. [PMID: 38327754 PMCID: PMC10846633 DOI: 10.36401/jipo-23-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 02/09/2024]
Abstract
NUT carcinomas (NCs) are a group of rare tumors that can occur anywhere in the body and are defined by the fusion of the nuclear protein in testis (NUTM1) resulting in increased transcription of proto-oncogenes. NCs have a poor prognosis that varies according to the site of origin with an urgent need to develop new treatment strategies. Case reports on immunotherapy in pulmonary NC have been published, and bromodomain and extraterminal (BET) inhibitors have shown activity in NC in phase I/II trials. We present the case of a 27-year-old woman with an unresectable sinonasal NC who had a sustained clinical response to both immunotherapy and BET inhibitor therapy. This is the first reported case of immunotherapy in sinonasal NC, and it highlights the different responses to a range of treatments including BET inhibitor therapy. This case supports the theory that NCs arising from different primary sites have differing prognoses.
Collapse
Affiliation(s)
- Harriet Herbison
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
| | - Sidney Davis
- Department of Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - David Nickless
- Department of Anatomical Pathology, Cabrini Pathology, Melbourne, Victoria, Australia
| | - Andrew Haydon
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Acharya A, Yadav M, Nagpure M, Kumaresan S, Guchhait SK. Molecular medicinal insights into scaffold hopping-based drug discovery success. Drug Discov Today 2024; 29:103845. [PMID: 38013043 DOI: 10.1016/j.drudis.2023.103845] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
In both academia and the pharmaceutical industry, innovative hypotheses, methodologies and technologies that can shorten the drug research and development, leading to higher success rates, are vital. In this review, we demonstrate how innovative variations of the scaffold-hopping strategy have been used to create new druggable molecular spaces, drugs, clinical candidates, preclinical candidates, and bioactive agents. We also analyze molecular modulations that enabled improvements of the pharmacodynamic (PD), physiochemical, and pharmacokinetic (PK) properties (P3 properties) of the drugs resulting from these scaffold-hopping strategies.
Collapse
Affiliation(s)
- Ayan Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mukul Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mithilesh Nagpure
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sanathanalaxmi Kumaresan
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India; National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sankar K Guchhait
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
18
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. The potential of BRD4 inhibition in tumour mechanosignaling. J Cell Mol Med 2023; 27:4215-4218. [PMID: 37994501 PMCID: PMC10746939 DOI: 10.1111/jcmm.18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biopathology, ‘Eginition’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
19
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
20
|
Rana M, Kansal RG, Bisunke B, Fang J, Shibata D, Bajwa A, Yang J, Glazer ES. Bromo- and Extra-Terminal Domain Inhibitors Induce Mitochondrial Stress in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2023; 22:936-946. [PMID: 37294884 PMCID: PMC10527726 DOI: 10.1158/1535-7163.mct-23-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFβ, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rita G. Kansal
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Bijay Bisunke
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Shibata
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evan S. Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
21
|
Harold C. All these screens that we've done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep 2023; 43:BSR20230631. [PMID: 37335083 PMCID: PMC10329186 DOI: 10.1042/bsr20230631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Ribosome biogenesis is the complex and essential process that ultimately leads to the synthesis of cellular proteins. Understanding each step of this essential process is imperative to increase our understanding of basic biology, but also more critically, to provide novel therapeutic avenues for genetic and developmental diseases such as ribosomopathies and cancers which can arise when this process is impaired. In recent years, significant advances in technology have made identifying and characterizing novel human regulators of ribosome biogenesis via high-content, high-throughput screens. Additionally, screening platforms have been used to discover novel therapeutics for cancer. These screens have uncovered a wealth of knowledge regarding novel proteins involved in human ribosome biogenesis, from the regulation of the transcription of the ribosomal RNA to global protein synthesis. Specifically, comparing the discovered proteins in these screens showed interesting connections between large ribosomal subunit (LSU) maturation factors and earlier steps in ribosome biogenesis, as well as overall nucleolar integrity. In this review, a discussion of the current standing of screens for human ribosome biogenesis factors through the lens of comparing the datasets and discussing the biological implications of the areas of overlap will be combined with a look toward other technologies and how they can be adapted to discover more factors involved in ribosome synthesis, and answer other outstanding questions in the field.
Collapse
Affiliation(s)
- Cecelia M. Harold
- Department of Genetics, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
22
|
Cheng ML, Huang Y, Luong N, LoPiccolo J, Nishino M, Sholl LM, Chirieac LR, Santucci AD, Rabin MS, Jänne PA, Coker S, Diamond JR, Hilton J, Shapiro GI, French CA. Exceptional Response to Bromodomain and Extraterminal Domain Inhibitor Therapy With BMS-986158 in BRD4-NUTM1 NUT Carcinoma Harboring a BRD4 Splice Site Mutation. JCO Precis Oncol 2023; 7:e2200633. [PMID: 37384867 PMCID: PMC10581614 DOI: 10.1200/po.22.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Michael L. Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jaclyn LoPiccolo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lucian R. Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alison D. Santucci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Boston Medical Center, Boston, MA
| | - Michael S. Rabin
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - John Hilton
- Division of Medical Oncology, Ottawa Hospital, Ottawa, ON
| | - Geoffrey I. Shapiro
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Christopher A. French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
24
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
25
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
26
|
Jiang H, Wang C, Hou Z, Wang Y, Qiao J, Li H. Case report: NUT carcinoma with MXI1::NUTM1 fusion characterized by abdominopelvic lesions and ovarian masses in a middle-aged female. Front Oncol 2022; 12:1091877. [PMID: 36741693 PMCID: PMC9890191 DOI: 10.3389/fonc.2022.1091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background Nuclear protein of the testis (NUT) carcinoma is a rare subset of poorly differentiated, highly aggressive malignancy defined by NUTM1 gene rearrangements. Only three NUT cases of probable ovarian origin have been reported. Case presentation We report a case of NUT carcinoma in a 53-year-old female who presented with extensive abdominopelvic lesions and bilateral ovarian masses suggestive of advanced ovarian cancer. This patient was admitted to our hospital due to abdominal pain and distension for over two months. Imaging examinations suggested a possible malignancy of bilateral adnexal origin. This patient first underwent diagnostic laparoscopy. After receiving neoadjuvant chemotherapy, she underwent cytoreductive surgery. Surgical pathology showed infiltration of monotonous round tumor cells with no apparent differentiation characteristics. Immunohistochemistry (IHC) revealed nuclear expression of the NUT protein. And MXI1::NUTM1 fusion was identified by next-generation sequencing (NGS). Herein, we introduce an unusual NUT carcinoma and describe the clinical, imaging, and pathological features. In addition, we briefly reviewed the published literature and discussed the possibility of primary gynecological NUT carcinoma. Conclusions Identifying a NUT carcinoma arising from the abdominopelvic cavity is essential, and we underscore the need for NUT testing in undifferentiated malignant neoplasms that appear in this clinical setting. Although it is unclear from which origin this tumor arose, proper classification is essential for treatment planning.
Collapse
Affiliation(s)
- Huahua Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zheng Hou
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Huajun Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|