1
|
Yang T, Sun K, Peng F, Hao Y, Bai Q, Yu H, Xia Q. FADS1, a lipid metabolism-related diagnostic biomarker in KIRC. Discov Oncol 2025; 16:475. [PMID: 40189725 PMCID: PMC11973044 DOI: 10.1007/s12672-025-02255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC), the predominant subtype of renal cell carcinoma, poses significant health risks. The rapid progression and resistance to targeted therapies highlight the need for new tumor markers and therapeutic targets. FADS1, part of the fatty acid desaturase family, regulates fatty acid synthesis and participates in lipid metabolism. However, its role in KIRC is not well-studied. METHODS The study utilized bioinformatics analysis through the TCGA database and other platforms to identify FADS1 expression levels in KIRC. Twenty pairs of KIRC clinical tissue samples were used for qPCR verification. Meanwhile, eight pairs of KIRC clinical tissue samples were used for Western blot verification. Conduct statistical evaluation, including Wilcoxon rank sum test and Kaplan-Meier analysis, to explore the correlation between FADS1 expression and clinical pathological features and immune infiltration. In addition, in vitro experiments were conducted to confirm the biological function of FADS1. RESULTS The findings indicated that FADS1 is highly expressed in KIRC and contributes to tumor development. FADS1's role in lipid metabolism leads to lipid accumulation within tumor cells, which may influence the occurrence and progression of KIRC. TIMER analysis revealed a correlation between FADS1 expression and the infiltration levels of various immune cells, indicating its potential role in modulating immune characteristics. CONCLUSION FADS1 could serve as a prognostic biomarker associated with immunity in KIRC, highlighting its potential as a diagnostic and therapeutic target. The study underscores the importance of further research into FADS1's role in lipid metabolism and immune infiltration to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Tianmin Yang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Kai Sun
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Fan Peng
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yuhu Hao
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Qingjie Bai
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hanpu Yu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| |
Collapse
|
2
|
Niu Y, Zhou T, Li Y. Update on the Progress of Musashi-2 in Malignant Tumors. FRONT BIOSCI-LANDMRK 2025; 30:24928. [PMID: 39862069 DOI: 10.31083/fbl24928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 01/27/2025]
Abstract
Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors. In recent years, research on the MSI protein has advanced, and many novel viewpoints and drug resistance attempts have been derived; for example, tumor protein p53 mutations and MSI-binding proteins lead to resistance to protein arginine N-methyltransferase 5-targeted therapy in lymphoma patients. Moreover, the high expression of MSI2 in pancreatic cancer might suppress its development and progression. As a significant member of the MSI family, MSI2 is closely associated with multiple malignant tumors, including hematological disorders, common abdominal tumors, and other tumor types (e.g., glioblastoma, breast cancer). MSI2 is highly expressed in the majority of tumors and is related to a poor disease prognosis. However, its specific expression levels and regulatory mechanisms may differ based on the tumor type. This review summarizes the research progress related to MSI2 in recent years, including its occurrence, migration mechanism, and drug resistance, as well as the prospect of developing tumor immunosuppressants and biomarkers.
Collapse
Affiliation(s)
- Yiting Niu
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Yanjun Li
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Tian J, Gao J, Cheng C, Xu Z, Chen X, Wu Y, Fu G, Jin B. NOP2-mediated 5-methylcytosine modification of APOL1 messenger RNA activates PI3K-Akt and facilitates clear cell renal cell carcinoma progression. Int J Biol Sci 2024; 20:4853-4871. [PMID: 39309431 PMCID: PMC11414376 DOI: 10.7150/ijbs.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background: By regulating the functions of multiple RNAs, 5-methylcytosine (m5C) RNA methylation, particularly mediated by NOP2, is involved in tumorigenesis and developments. However, the specific functions and potential mechanisms of m5C, especially involving NOP2, in clear-cell renal cell carcinoma (ccRCC), remain unclear. Methods: NOP2 expression in cell lines and patient tissues was detected using western blotting, quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry. The biological effects of NOP2 on ccRCC cells were investigated through a series of in vitro and in vivo experiments. To explore the potential regulatory mechanisms by which NOP2 affects ccRCC progression, m5C bisulfite sequencing, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation (RIP/MeRIP) RT-qPCR assay, luciferase reporter assay, RNA stability assay, and bioinformatic analysis were performed. Results: NOP2 expression was significantly upregulated in ccRCC tissues and was associated with poor prognosis. Moreover, loss-of-function and gain-of-function assays demonstrated that NOP2 altered ccRCC cell proliferation, migration, and invasion. Mechanistically, NOP2 stimulated m5C modification of apolipoprotein L1 (APOL1) mRNA, and m5C reader YBX1 stabilized APOL1 mRNA through recognizing and binding to m5C site in the 3'-untranslated regions. Silencing APOL1 expression inhibited ccRCC cell proliferation in vitro and tumor formation in vivo. Furthermore, NOP2/APOL1 affected ccRCC progression via the PI3K-Akt signaling pathway. Conclusion: NOP2 functions as an oncogene in ccRCC by promoting tumor progression through the m5C-dependent stabilization of APOL1, which in turn regulates the PI3K-Akt signaling pathway, suggesting a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Junjie Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Cheng Cheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| |
Collapse
|
5
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, Ran L, Zhao H, Liang C, Wang X, Wang S, Li H, Ning H, Ran A, Li W, Wang Y, Xiao B. A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer 2024; 23:34. [PMID: 38360682 PMCID: PMC10870583 DOI: 10.1186/s12943-024-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, P.R. China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Cong Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Dawei Zhang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ling Wei
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Shiming Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China.
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
6
|
Lu L, Lei Y, Li Y, Wang L. LRP6 is a potential biomarker of kidney clear cell carcinoma related to prognosis and immune infiltration. Aging (Albany NY) 2024; 16:1484-1495. [PMID: 38226972 PMCID: PMC10866424 DOI: 10.18632/aging.205440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024]
Abstract
Renal cell carcinoma is the most common and most lethal genitourinary tumor. The causes of renal clear cell carcinoma are complex and the heterogeneity of the tumor tissue is high, so patient outcomes are not very satisfactory. Exploring biomarkers in the progression of renal clear cell carcinoma is crucial to improve the diagnosis and guide the treatment of renal clear cell carcinoma. LRP6 is a co-receptor of the Wnt/β-catenin signaling pathway, which is involved in cell growth, inflammation and cell transformation through activation of the Wnt/β-catenin signaling pathway. Abnormal expression of LRP6 is associated with the malignant phenotype, metastatic potential and poor prognosis of various tumors. In this study, we found that LRP6 was abnormally highly expressed in a variety of tumors and significantly correlated with microsatellite instability, tumor mutation burden, and immune cell infiltration and immune checkpoint expression in a variety of tumors. Moreover, we found that LRP6 was significantly associated with the prognosis of renal clear cell carcinoma. Further we found a significant correlation between LRP6 and the expression of m6A-related genes and ferroptosis-related genes. Finally, we also found a significant correlation between the expression of LRP6 and the sensitivity to common drugs used in kidney clear cell carcinoma treatment. These results suggest that LRP6 is likely to be a potential target for kidney clear cell carcinoma treatment.
Collapse
Affiliation(s)
- Liqun Lu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Lei
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanling Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
7
|
Schütz V, Lin H, Kaczorowski A, Zschäbitz S, Jäger D, Stenzinger A, Duensing A, Debus J, Hohenfellner M, Duensing S. Long-Term Survival of Patients with Stage T1N0M1 Renal Cell Carcinoma. Cancers (Basel) 2023; 15:5715. [PMID: 38136261 PMCID: PMC10741977 DOI: 10.3390/cancers15245715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) is among the most lethal urological malignancies. However, small, localized RCCs (≤7 cm, stage T1) have an excellent prognosis. There is a rare patient subgroup diagnosed with synchronous distant metastasis (T1N0M1), of which very little is known in terms of survival outcomes and underlying disease biology. Herein, we examined the long-term survival of 27 patients with clear cell RCC (ccRCC) stage T1N0M1 in comparison to 18 patients without metastases (T1N0M0). Tumor tissue was stained by immunohistochemistry for CD8+ tumor infiltrating lymphocytes (TILs). As expected, patients with stage T1N0M1 showed a significantly worse median cancer specific survival (CSS; 2.8 years) than patients with stage T1N0M0 (17.7 years; HR 0.077; 95% CI, 0.022-0.262). However, eight patients (29.6%) with ccRCC stage T1N0M1 survived over five years, and three of those patients (11.1%) survived over a decade. Some of these patients benefitted from an intensified, multimodal treatment including metastasis-directed therapy. The number of CD8+ TILs was substantially higher in stage T1N0M1 ccRCCs than in stage T1N0M0 ccRCCs, suggesting a more aggressive tumor biology. In conclusion, long-term survival is possible in patients with ccRCC stage T1N0M1, with some patients benefitting from an intensified, multimodal treatment approach.
Collapse
Affiliation(s)
- Viktoria Schütz
- Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Huan Lin
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Huang S, Cai C, Zhou K, Wang X, Wang X, Cen D, Weng G. Cuproptosis-related gene DLAT serves as a prognostic biomarker for immunotherapy in clear cell renal cell carcinoma: multi-database and experimental verification. Aging (Albany NY) 2023; 15:12314-12329. [PMID: 37938155 PMCID: PMC10683628 DOI: 10.18632/aging.205181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Renal clear cell carcinoma (ccRCC) is the most common type of renal cancer. Here we aim to explore the prognosis and immunotherapeutic value of copper death-related gene Dihydrolipoamide S-acetyltransferase (DLAT) in ccRCC. METHODS The mRNA and protein expressions and methylation level of DLAT, as well as the relation of DLAT to survival prognosis, clinical characteristics, biological function, and immune microenvironment and responses in patients with ccRCC were evaluated using multiple databases. In addition, 75 paired ccRCC tissue samples and 3 kinds of cell lines were tested for experimental validation. RESULTS Bioinformatics analysis of multiple databases, qRT-PCR, and western blot verified that DLAT expression in ccRCC was lower than that in paracancerous tissues. Patients with low expression of DLAT had a lower survival rate, worse clinical prognosis, stronger immune cell infiltration and expression of immunosuppressive points, and higher tumor immune dysfunction and exclusion (TIDE) scores. CONCLUSIONS DLAT was identified as an independent prognostic factor in ccRCC and was closely related to the prognosis and immune responses of patients with ccRCC.
Collapse
Affiliation(s)
- Shuaishuai Huang
- Department of Laboratory, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Congbo Cai
- Department of Laboratory, Ningbo Urology and Nephrology Hospital, Ningbo, China
- Department of Emergency, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Kena Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Wang
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Xue Wang
- Department of Laboratory, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Dong Cen
- Department of Laboratory, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Guobin Weng
- Department of Laboratory, Ningbo Urology and Nephrology Hospital, Ningbo, China
| |
Collapse
|
9
|
Campbell MT, Zhang T. Special Issue Editorial: Emerging Therapies in Renal Cell Carcinoma: The Road to a Cure? Cancers (Basel) 2023; 15:5262. [PMID: 37958435 PMCID: PMC10648402 DOI: 10.3390/cancers15215262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
In the past two decades, therapy development in the treatment of renal cell carcinoma has exploded [...].
Collapse
Affiliation(s)
- Matthew T. Campbell
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Tian Zhang
- Department of Internal Medicine—Hematology/Medical Oncology, University of Texas Southwestern, Dallas, TX 75235, USA;
| |
Collapse
|
10
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
11
|
Downstream Targets of VHL/HIF-α Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers (Basel) 2023; 15:cancers15041316. [PMID: 36831657 PMCID: PMC9953937 DOI: 10.3390/cancers15041316] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
The clear cell variant of renal cell carcinoma (ccRCC) is the most common renal epithelial malignancy and responsible for most of the deaths from kidney cancer. Patients carrying inactivating mutations in the Von Hippel-Lindau (VHL) gene have an increased proclivity to develop several types of tumors including ccRCC. Normally, the Hypoxia Inducible Factor alpha (HIF-α) subunits of the HIF heterodimeric transcription factor complex are regulated by oxygen-dependent prolyl-hydroxylation, VHL-mediated ubiquitination and proteasomal degradation. Loss of pVHL function results in elevated levels of HIF-α due to increased stability, leading to RCC progression. While HIF-1α acts as a tumor suppressor, HIF-2α promotes oncogenic potential by driving tumor progression and metastasis through activation of hypoxia-sensitive signaling pathways and overexpression of HIF-2α target genes. One strategy to suppress ccRCC aggressiveness is directed at inhibition of HIF-2α and the associated molecular pathways leading to cell proliferation, angiogenesis, and metastasis. Indeed, clinical and pre-clinical data demonstrated the effectiveness of HIF-2α targeted therapy in attenuating ccRCC progression. This review focuses on the signaling pathways and the involved genes (cyclin D, c-Myc, VEGF-a, EGFR, TGF-α, GLUT-1) that confer oncogenic potential downstream of the VHL-HIF-2α signaling axis in ccRCC. Discussed as well are current treatment options (including receptor tyrosine kinase inhibitors such as sunitinib), the medical challenges (high prevalence of metastasis at the time of diagnosis, refractory nature of advanced disease to current treatment options), scientific challenges and future directions.
Collapse
|
12
|
Copper Death Inducer, FDX1, as a Prognostic Biomarker Reshaping Tumor Immunity in Clear Cell Renal Cell Carcinoma. Cells 2023; 12:cells12030349. [PMID: 36766692 PMCID: PMC9913648 DOI: 10.3390/cells12030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Progress in the diagnosis and treatment of clear cell renal cell carcinoma (ccRCC) has significantly prolonged patient survival. However, ccRCC displays an extreme heterogenous characteristic and metastatic tendency, which limit the benefit of targeted or immune therapy. Thus, identifying novel biomarkers and therapeutic targets for ccRCC is of great importance. METHOD Pan cancer datasets, including the expression profile, DNA methylation, copy number variation, and single nucleic variation, were introduced to decode the aberrance of copper death regulators (CDRs). Then, FDX1 was systematically analyzed in ccRCC to evaluate its impact on clinical characteristics, prognosis, biological function, immune infiltration, and therapy response. Finally, in vivo experiments were utilized to decipher FDX1 in ccRCC malignancy and its role in tumor immunity. RESULT Copper death regulators were identified at the pancancer level, especially in ccRCC. FDX1 played a protective role in ccRCC, and its expression level was significantly decreased in tumor tissues, which might be regulated via CNV events. At the molecular mechanism level, FDX1 positively regulated fatty acid metabolism and oxidative phosphorylation. In addition, FDX1 overexpression restrained ccRCC cell line malignancy and enhanced tumor immunity by increasing the secretion levels of IL2 and TNFγ. CONCLUSIONS Our research illustrated the role of FDX1 in ccRCC patients' clinical outcomes and its impact on tumor immunity, which could be treated as a promising target for ccRCC patients.
Collapse
|
13
|
Identification and Validation of the Prognostic Panel in Clear Cell Renal Cell Carcinoma Based on Resting Mast Cells for Prediction of Distant Metastasis and Immunotherapy Response. Cells 2023; 12:cells12010180. [PMID: 36611973 PMCID: PMC9818872 DOI: 10.3390/cells12010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has a high metastatic rate, and its incidence and mortality are still rising. The aim of this study was to identify the key tumor-infiltrating immune cells (TIICs) affecting the distant metastasis and prognosis of patients with ccRCC and to construct a relevant prognostic panel to predict immunotherapy response. Based on ccRCC bulk RNA sequencing data, resting mast cells (RMCs) were screened and verified using the CIBERSORT algorithm, survival analysis, and expression analysis. Distant metastasis-associated genes were identified using single-cell RNA sequencing data. Subsequently, a three-gene (CFB, PPP1R18, and TOM1L1) panel with superior distant metastatic and prognostic performance was established and validated, which stratified patients into high- and low-risk groups. The high-risk group exhibited lower infiltration of RMCs, higher tumor mutation burden (TMB), and worse prognosis. Therapeutically, the high-risk group was more sensitive to anti-PD-1 and anti-CTLA-4 immunotherapy, whereas the low-risk group displayed a better response to anti-PD-L1 immunotherapy. Furthermore, two immune clusters revealing distinct immune, clinical, and prognosis heterogeneity were distinguished. Immunohistochemistry of ccRCC samples verified the expression patterns of the three key genes. Collectively, the prognostic panel based on RMCs is able to predict distant metastasis and immunotherapy response in patients with ccRCC, providing new insight for the treatment of advanced ccRCC.
Collapse
|