1
|
Zolfi E, Khaleghi Mehr F, Emtiazi N, Moradi Y. A review of the carcinogenic potential of human papillomavirus (HPV) in urological cancers. Virol J 2025; 22:53. [PMID: 40022189 PMCID: PMC11871667 DOI: 10.1186/s12985-025-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Direct skin-to-skin contact during intimate sexual contact with a human papillomavirus (HPV)-positive individual is often the cause of HPV infection. In addition, many studies have been written up to date that look at the role of HPV in the growth of other types of tumors. Not all urological cancers are associated with HPV. However, penile cancer (PC) is often caused by HPV, especially high-risk types. HPV-16 has been the most frequent (68.3%), followed by HPV-6 (8.1%) and HPV-18 (6.9%). An increased risk of getting certain types of urinary cancers like prostate, bladder, testicular, and kidney has also been linked to these infections. Additionally, HPV may play a part in continuous inflammation and cancer progression in different organs and tissues. So, making HPV vaccine programs available to more people of the male sex around the world could significantly lower the number of urinary cancers caused by HPV. The critical effects of HPV on different types of urologic cancers (UCs), such as testicular, prostate, penile, and kidney cancer, and the importance of HPV vaccination have been seen in this study.
Collapse
Affiliation(s)
- Ehsan Zolfi
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Khaleghi Mehr
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology Medicine, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ren H, Wang B, Wang L, Shi Y, Li R, Jiang C, Feng J, Wang J, Yao H, Lan L, Gao G, Li L, Xiang G, Xu F, Zheng X. Human cytomegalovirus UL82 promotes cell cycle progression of colorectal cancer by upregulating AGR2. Commun Biol 2025; 8:251. [PMID: 39962326 PMCID: PMC11833063 DOI: 10.1038/s42003-025-07674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The correlation between persistent human cytomegalovirus (HCMV) infection and poor prognosis in colorectal cancer (CRC) patients has garnered increasing attention. UL82 is a tegument protein of HCMV, and our previous research indicated that the presence of UL82 is significantly associated with reduced overall survival in CRC patients. However, the mechanism by which UL82 affects the prognosis of CRC patients remains unclear. In this study, we investigated the role of UL82 in CRC progression through both in vitro and in vivo experiments, and revealed its downstream regulatory pathways by integrating transcriptomics, metabolomics, and proteomics. Our findings first revealed that UL82 significantly promoted CRC cell proliferation by increasing the proportion of cells in the S phase of the cell cycle. Additionally, UL82 enhanced the expression of the oncogene AGR2, while knockdown of AGR2 abolished the proliferative effect of UL82. Interestingly, UL82 interacted with the transcription factor DDX5, which transcriptionally inhibited AGR2 expression. Furthermore, this UL82-AGR2 axis promoted nucleotide metabolism in CRC cells by enhancing the levels of nucleotide synthesis enzymes DTYMK, RRM2, and TYMS. In conclusion, our study suggests that the UL82/DDX5 complex may promote nucleotide metabolism and cell cycle progression of CRC by upregulating AGR2 and UL82 may serve as a potential prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Haitao Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhengjiang, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Bing Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Lanni Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Ye Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Ruini Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Chaoyi Jiang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Jingxin Feng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Jiahao Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Hanru Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhengjiang, China
| | - Guohui Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China
| | - Liyi Li
- General Surgery Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhengjiang, China
| | - Guangxin Xiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China.
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China.
| | - Feng Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China.
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China.
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhengjiang, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhengjiang, China.
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhengjiang, China.
| |
Collapse
|
3
|
Blanco R, Muñoz JP. HPV and HCMV in Cervical Cancer: A Review of Their Co-Occurrence in Premalignant and Malignant Lesions. Viruses 2024; 16:1699. [PMID: 39599814 PMCID: PMC11599080 DOI: 10.3390/v16111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Cervical cancer remains a significant global health concern, particularly in low- and middle-income countries. While persistent infection with high-risk human papillomavirus (HR-HPV) is essential for cervical cancer development, it is not sufficient on its own, suggesting the involvement of additional cofactors. The human cytomegalovirus (HCMV) is a widespread β-herpesvirus known for its ability to establish lifelong latency and reactivate under certain conditions, often contributing to chronic inflammation and immune modulation. Emerging evidence suggests that HCMV may play a role in various cancers, including cervical cancer, through its potential to influence oncogenic pathways and disrupt host immune responses. This review explores clinical evidence regarding the co-presence of HR-HPV and HCMV in premalignant lesions and cervical cancer. The literature reviewed indicates that HCMV is frequently detected in cervical lesions, particularly in those co-infected with HPV, suggesting a potential synergistic interaction that could enhance HPV's oncogenic effects, thereby facilitating the progression from low-grade squamous intraepithelial lesions (LSIL) to high-grade squamous intraepithelial lesions (HSIL) and invasive cancer. Although the precise molecular mechanisms were not thoroughly investigated in this review, the clinical evidence suggests the importance of considering HCMV alongside HPV in the management of cervical lesions. A better understanding of the interaction between HR-HPV and HCMV may lead to improved diagnostic, therapeutic, and preventive strategies for cervical cancer.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
4
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
6
|
Guyon J, Haidar Ahmad S, El Baba R, Le Quang M, Bikfalvi A, Daubon T, Herbein G. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31:1070-1080. [PMID: 38553638 PMCID: PMC11257955 DOI: 10.1038/s41417-024-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Collapse
Affiliation(s)
- Joris Guyon
- University of Bordeaux, INSERM U1312, BRIC, Bordeaux, France
- CHU Bordeaux, Department of Medical Pharmacology, Bordeaux, France
| | - Sandy Haidar Ahmad
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Ranim El Baba
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Georges Herbein
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France.
- CHU Besançon, Department of Virology, Besançon, France.
| |
Collapse
|
7
|
Rossi C, Inzani FS, Cesari S, Rizzo G, Paulli M, Pedrazzoli P, Lasagna A, Lucioni M. The Role of Oncogenic Viruses in the Pathogenesis of Sporadic Breast Cancer: A Comprehensive Review of the Current Literature. Pathogens 2024; 13:451. [PMID: 38921749 PMCID: PMC11206847 DOI: 10.3390/pathogens13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most common malignancy in the female sex; although recent therapies have significantly changed the natural history of this cancer, it remains a significant challenge. In the past decade, evidence has been put forward that some oncogenic viruses may play a role in the development of sporadic breast cancer; however, data are scattered and mostly reported as sparse case series or small case-control studies. In this review, we organize and report current evidence regarding the role of high-risk human papillomavirus, mouse mammary tumor virus, Epstein-Barr virus, cytomegalovirus, bovine leukemia virus, human polyomavirus 2, and Merkel cell polyomavirus in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chiara Rossi
- Section of Anatomic Pathology, Cerba HealthCare Lombardia, 20139 Milan, Italy
| | - Frediano Socrate Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Stefania Cesari
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Gianpiero Rizzo
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Lucioni
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| |
Collapse
|
8
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
9
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
El Baba R, Herbein G. EZH2-Myc Hallmark in Oncovirus/Cytomegalovirus Infections and Cytomegalovirus' Resemblance to Oncoviruses. Cells 2024; 13:541. [PMID: 38534385 PMCID: PMC10970056 DOI: 10.3390/cells13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
11
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
12
|
Heng E, Thanedar S, Heng HH. The Importance of Monitoring Non-clonal Chromosome Aberrations (NCCAs) in Cancer Research. Methods Mol Biol 2024; 2825:79-111. [PMID: 38913304 DOI: 10.1007/978-1-0716-3946-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, Stanford, CA, USA
| | - Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|