1
|
Parisi C, Longobardi G, Graziano ACE, Fraix A, Conte C, Quaglia F, Sortino S. A molecular dyad delivered by biodegradable polymeric nanoparticles for combined PDT and NO-PDT in cancer cells. Bioorg Chem 2022; 128:106050. [PMID: 35907377 DOI: 10.1016/j.bioorg.2022.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
The design, synthesis, photochemical properties, and biological evaluation of a novel molecular dyad with double photodynamic action and its formulation within biodegradable polymeric nanoparticles (NPs) are reported. A BODIPY-based singlet oxygen (1O2) photosensitizer (PS) and a nitric oxide (NO) photodonor (NOPD) based on an amino-nitro-benzofurazan moiety have been covalently joined in a new molecular dyad, through a flexible alkyl spacer. Excitation of the dyad with visible light in the range 400-570 nm leads to the concomitant generation of the cytotoxic 1O2 and NO with effective quantum yields, being ΦΔ = 0.49 ± 0.05 and ΦNO = 0.18 ± 0.01, respectively. Besides, the non-fluorescent NOPD unit becomes highly fluorescent after the NO release, acting as an optical reporter for the NO photogenerated. The dyad is not soluble in water medium but can be effectively entrapped in water-dispersible, biodegradable polymeric NPs made of mPEG-PCL, ca. 66 nm in diameter. The polymeric nano-environment affects in an opposite way the photochemical performances of the dyad, reducing ΦΔ to 0.16 ± 0.02 and increasing ΦNO to 0.92 ± 0.03, respectively. The NPs effectively deliver the photoactive cargo into the cytoplasm of HepG2 hepatocellular carcinoma cells. A remarkable level of cell mortality is observed for the loaded NPs at very low concentrations of the dyad (1-5 µM) and very low light doses (≤0.8 J cm-2) more likely as the result of the combined photodynamic action of 1O2 and NO.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Giuseppe Longobardi
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Adriana C E Graziano
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy.
| |
Collapse
|
2
|
Mahnashi MH, El-Senduny FF, Alshahrani MA, Abou-Salim MA. Design, Synthesis, and Biological Evaluation of a Novel VEGFR-2 Inhibitor Based on a 1,2,5-Oxadiazole-2-Oxide Scaffold with MAPK Signaling Pathway Inhibition. Pharmaceuticals (Basel) 2022; 15:246. [PMID: 35215358 PMCID: PMC8880564 DOI: 10.3390/ph15020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Over the past few decades, the development of broad-spectrum anticancer agents with anti-angiogenic activity has witnessed considerable progress. In this study, a new series of pyrazolo[3,4-d]pyrimidines based on a phenylfuroxan scaffold were designed, synthesized, and evaluated, in terms of their anticancer activities. NCI-60 cell one-dose screening revealed that compounds 12a-c and 14a had the best MGI%, among the tested compounds. The target fluorinated compound 12b, as the most active one, showed better anticancer activity compared to the reference drug sorafenib, with IC50 values of 11.5, 11.6, and 13 µM against the HepG-2, A2780CP, and MDA-MB-231 cell lines, respectively. Furthermore, compound 12b (IC50 = 0.092 µM) had VEGFR-2-inhibitory activity comparable to that of the standard inhibitor sorafenib (IC50 = 0.049 µM). Furthermore, the ability of compound 12b in modulating MAPK signaling pathways was investigated. It was found to decrease the level of total ERK and its phosphorylated form, as well as leading to the down-regulation of metalloproteinase MMP-9 and the over-expression of p21 and p27, thus leading to subG1 cell-cycle arrest and, thus, the induction of apoptosis. Additionally, compound 12b decreased the rate of wound healing in the absence of serum, in comparison to DMSO-treated cells, providing a significant impact on metastasis inhibition. The quantitative RT-PCR results for E-cadherin and N-cadherin showed lower expression of the neuronal N-cadherin and increased expression of epithelial E-cadherin, indicating the ability of 12b to suppress metastasis. Furthermore, 12b-treated HepG2 cells expressed a low level of anti-apoptotic BCL-2 and over-expressed proapoptotic Bax genes, respectively. Using the DAF-FM DA fluorescence probe, compound 12b produced NO intracellularly as efficiently as the reference drug JS-K. In silico molecular docking studies showed a structural similarity through an overlay of 12b with sorafenib. Interestingly, the drug-likeness properties of compound 12b met the expectations of Pfizer's rule for the design of new drug candidates. Therefore, this study presents a novel anticancer lead compound that is worthy of further investigation and activity improvement.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Fardous F. El-Senduny
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Mahrous A. Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
3
|
Fahey JM, Girotti AW. The Negative Impact of Cancer Cell Nitric Oxide on Photodynamic Therapy. Methods Mol Biol 2022; 2451:21-31. [PMID: 35505007 DOI: 10.1007/978-1-0716-2099-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that low-flux nitric oxide (NO) in tumors produced mainly by inducible nitric oxide synthase (iNOS/NOS2) can signal for angiogenesis, inhibition of apoptosis, and promotion of cell growth, migration, and invasion. Studies in the authors' laboratory have revealed that iNOS-derived NO in various cancer cell types elicits resistance to cytotoxic photodynamic therapy (PDT) and moreover endows PDT-surviving cells with more aggressive proliferation and migration/invasion. In this chapter, we describe how cancer cell iNOS/NO in vitro can be monitored in different PDT model systems (e.g., a targeted cell-bystander cell model) and how pharmacologic interference with basal and PDT-upregulated iNOS/NO can significantly improve PDT outcomes.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Osaki T, Kunisue N, Ota U, Imazato H, Ishii T, Takahashi K, Ishizuka M, Tanaka T, Okamoto Y. Mechanism of Differential Susceptibility of Two (Canine Lung Adenocarcinoma) Cell Lines to 5-Aminolevulinic Acid-Mediated Photodynamic Therapy. Cancers (Basel) 2021; 13:cancers13164174. [PMID: 34439326 PMCID: PMC8391456 DOI: 10.3390/cancers13164174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive treatment for malignant tumors. Protoporphyrin IX (PpIX), derived from 5-aminolevulinic acid (5-ALA) as the prodrug, is one of the photosensitizers used in PDT. Recently, we reported a significant difference in response to 5-ALA-mediated PDT treatment in two canine primary lung adenocarcinoma cell lines (sensitive to PDT: HDC cells, resistant to PDT: LuBi cells). This study aimed to examine the difference in cytotoxicity of 5-ALA-mediated PDT in these cells. Although intracellular PpIX levels before irradiation were similar between HDC and LuBi cells, the percentage of ROS-positive cells and apoptotic cells in LuBi cells treated with 5-ALA-mediated PDT was significantly lower than that in HDC cells treated with 5-ALA-mediated PDT. A high dosage of the NO donor, DETA NONOate, significantly increased the cytotoxicity of 5-ALA-mediated PDT against LuBi cells. These results suggest that the sensitivity of 5-ALA-mediated PDT might be correlated with NO.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
- Correspondence: ; Tel.: +81-857-31-5434
| | - Narumi Kunisue
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Hideo Imazato
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Takuya Ishii
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Kiwamu Takahashi
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Masahiro Ishizuka
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan; (N.K.); (U.O.); (H.I.); (T.I.); (K.T.); (M.I.)
| | - Tohru Tanaka
- Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan;
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan;
| |
Collapse
|
5
|
Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho. Photodiagnosis Photodyn Ther 2021; 34:102306. [PMID: 33901692 DOI: 10.1016/j.pdpdt.2021.102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has become an advantageous therapeutic approach for the treatment of select cancers and microbial infections. PDT generates toxic reactive oxygen species as an end product of the interaction between the photosensitizer and light with an appropriate wavelength. Toluidine blue ortho is a photosensitizer that is commonly used in the photodynamic treatment of bacterial infection and a promising photosensitizer for cancer treatment. This study aims to evaluate the potential photo-cytotoxicity of toluidine blue ortho-mediated photodynamic therapy on PC-3 prostate cancer cells. METHODS In this study toluidine blue ortho-mediated photodynamic therapy was assessed on PC-3 cancer cells with various photosensitizer concentrations and light energy densities of the 655-nm diode laser. MTT analysis was used for the determination of the cytotoxicity on the cells and viability/cytotoxicity assay was used for live/dead cell staining after the applications. The mechanism of this application was further analyzed with the determination of intracellular reactive oxygen species and nitric oxide release. RESULTS The light applications and the photosensitizer alone did not inhibit the cell viability of PC-3 cells. 20 J/cm2 laser energy density together with 100 μM photosensitizer concentration resulted in maximum cancer cell death with a rate of approximately 89 %. The level of intracellular reactive oxygen species increased with the increasing parameters of the applications that resulted in more cell death. CONCLUSION This study showed the successful anticancer activity of toluidine blue ortho upon irradiation with 655 nm of laser light against PC-3 cancer cells and it was mediated with the production of reactive oxygen species.
Collapse
|
6
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
7
|
Laszló IP, Laszló MR, Toma V, Baldea I, Olteanu D, David L, Moldovan B, Ion RM, Moldovan R, Filip GA, Kacso G, Cainap C, Clichici S, Muresan A. The in vivo modulatory effects of Cornus mas extract on photodynamic therapy in experimental tumors. Photodiagnosis Photodyn Ther 2020; 30:101656. [PMID: 31926344 DOI: 10.1016/j.pdpdt.2020.101656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
8
|
Girotti AW. Nitric Oxide-Mediated Resistance to Antitumor Photodynamic Therapy. Photochem Photobiol 2020; 96:500-505. [PMID: 31545517 PMCID: PMC7085955 DOI: 10.1111/php.13163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
As an antitumor modality based on sensitizer photoexcitation by tumor-directed light, photodynamic therapy (PDT) has the advantage of being site-specific compared with conventional chemotherapy or radiotherapy. Like these other therapies, however, PDT is often limited by pre-existing or acquired resistance. One type of resistance, discovered in the author's laboratory, involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) in tumor cells. Using human breast, prostate and brain cancer cell lines, we have shown that iNOS is dramatically upregulated after a moderate PDT challenge sensitized by 5-aminolevulinic acid-induced protoporphyrin IX. The elevated NO not only elicited a greater resistance to cell photokilling, but also an increase in the growth and migration/invasion rate of surviving cells. Greater iNOS/NO-based resistance was also demonstrated at the in vivo level using a breast tumor xenograft model. More recent studies have shown that NO from PDT-targeted cells can stimulate a progrowth/promigration response in non-targeted bystander cells. These novel effects of NO, their negative impact on PDT efficacy and possible mitigation thereof by anti-iNOS/NO pharmacologic agents will be discussed.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548
| |
Collapse
|
9
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
10
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Shi X, Zhan Q, Li Y, Zhou L, Wei S. Multiple Functions Integrated inside a Single Molecule for Amplification of Photodynamic Therapy Activity. Mol Pharm 2020; 17:190-201. [PMID: 31804837 DOI: 10.1021/acs.molpharmaceut.9b00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) can play both prosurvival and prodeath roles in photodynamic therapy (PDT). The generation efficiency of peroxynitrite anions (ONOO-), by NO and superoxide anions (O2•-), significantly influenced the outcome. Reports indicated that such efficiency is closely related to the distance between NO and O2•-. Thus, in this manuscript, l-arginine (Arg) ethyl ester-modified zinc phthalocyanine (Arg-ZnPc) was designed and synthesized as a photosensitizer (PS) and NO donor. Post light irradiation, the guanido of Arg-ZnPc can be effectively oxidized by the generated reactive oxygen species (ROS) in the PDT process to release NO. Such a strategy could ensure O2•- and NO generation in the same place at the same time to guarantee effective ONOO- formation. In addition, NO has other multiple synergistic cancer treatment functions, including tumor tissue vasodilatation for drug extravasation promotion, P-glycoprotein (P-gp) downregulation for drug efflux inhibition, and glutathione depletion for cancer cell endogenous antioxidant defense destruction. In vitro and in vivo results indicated that the effective ONOO- formation and multiple functions of Arg-ZnPc could synergistically enhance its PDT activity and ensure satisfactory cancer treatment outcome.
Collapse
Affiliation(s)
- Xianqing Shi
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Qichen Zhan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Yanqing Li
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry , Nanjing Normal University , Nanjing , Jiangsu 210023 , China.,School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng , Jiangsu 224051 , China
| |
Collapse
|
12
|
Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M, Gorska-Ponikowska M. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019; 93:102-114. [PMID: 31541733 DOI: 10.1016/j.niox.2019.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Przychodzen
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Michal Wozniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
13
|
Afrasiabi S, Pourhajibagher M, Bahador A. The Photomodulation Activity of Metformin Against Oral Microbiome. J Lasers Med Sci 2019; 10:241-250. [PMID: 31749953 PMCID: PMC6817791 DOI: 10.15171/jlms.2019.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Periodontitis is one of the most common inflammatory diseases of the periodontium, which results in the inflammatory destruction of supporting structures around teeth and is closely associated with the development of systemic disease. Due to a wide variety of antibiotic resistance periodontopathic bacteria, photodynamic therapy (PDT) is a non-invasive adjunctive therapeutic modality that is capable of destroying the whole range of microbes. Metformin (Metf) is an antidiabetic drug, and recent studies suggest that cancer patients who receive Metf and are exposed to radiotherapy and chemotherapy show better outcomes. Our surveys in this review introduce Metf as a potent stimulus in increasing the efficacy of PDT in the induction of destruction in microbial cells.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Huang X, Pan Q, Mao Z, Zhang R, Ma X, Xi Y, You H. Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes. Inflammation 2018; 41:562-568. [PMID: 29243030 DOI: 10.1007/s10753-017-0712-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease frequently seen in the elderly population. Sinapic acid (SA), a commonly found phenolic acid, has been pharmacologically evaluated for its anti-inflammation effects in various studies. To explore its potential therapeutic role for OA, rat chondrocytes were treated with IL-1β (10 ng/ml) with different concentrations of SA in vitro. Our study revealed that SA could inhibit the IL-1β-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with these findings, the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (Cox)-2 could also be downregulated by SA. Moreover, SA could also suppress the IL-1β-induced expression of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) in chondrocytes. Furthermore, our data found that SA could suppress the IL-1β-induced mitogen-activated protein kinase (MAPK) pathway activation. In general, this paper elucidates that sinapic acid inhibits the IL-1β-induced inflammation via MAPK pathways and may be a good agent for the treatment of OA.
Collapse
Affiliation(s)
- Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Qiyong Pan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Zekai Mao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Xiaohu Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Yang Xi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Fraix A, Sortino S. Combination of PDT photosensitizers with NO photodononors. Photochem Photobiol Sci 2018; 17:1709-1727. [PMID: 30141820 DOI: 10.1039/c8pp00272j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Combination of photodynamic therapy (PDT) with other treatment modalities is emerging as one of the most suitable strategies to increase the effectiveness of therapeutic action on cancer and bacterial diseases and to minimize side effects. This approach aims at exploiting the additive/synergistic effects arising from multiple therapeutic species acting on different mechanistic pathways. The coupling of PDT with photocontrolled release of nitric oxide (NO) through the appropriate assembly of PDT photosensitizers (PSs) and NO photodonors (NOPDs) may open up intriguing avenues towards new and still underexplored multimodal therapies not based on "conventional" drugs but entirely controlled by light stimuli. In this contribution, we present an overview of the most recent advances in this field, illustrating several strategies to assemble PSs and NOPDs allowing them to operate independently without reciprocal interferences and describing the potential applications with particular emphasis on their impact in anticancer and antibacterial research.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| |
Collapse
|
16
|
Simanovich E, Brod V, Rahat MM, Rahat MA. Function of miR-146a-5p in Tumor Cells As a Regulatory Switch between Cell Death and Angiogenesis: Macrophage Therapy Revisited. Front Immunol 2018; 8:1931. [PMID: 29354134 PMCID: PMC5760497 DOI: 10.3389/fimmu.2017.01931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors survive and progress by evading killing mechanisms of the immune system, and by generating a tumor microenvironment (TME) that reprograms macrophages in situ to produce factors that support tumor growth, angiogenesis, and metastasis. We have previously shown that by blocking the translation of the enzyme inducible nitric oxide synthase (iNOS), miR-146a-5p inhibits nitric oxide (NO) production in a mouse renal carcinoma cell line (RENCA), thereby endowing RENCA cells with resistance to macrophage-induced cell death. Here, we expand these findings to the mouse colon carcinoma CT26 cell line and demonstrate that neutralizing miR-146a-5p's activity by transfecting both RENCA and CT26 cells with its antagomir restored iNOS expression and NO production and enhanced susceptibility to macrophage-induced cell death (by 48 and 25%, respectively, p < 0.001). Moreover, miR-146a-5p suppression simultaneously inhibited the expression of the pro-angiogenic protein EMMPRIN (threefolds, p < 0.001), leading to reduced MMP-9 and vascular endothelial growth factor secretion (twofolds and threefolds, respectively, p < 0.05), and reduced angiogenesis, as estimated by in vitro tube formation and scratch assays. When we injected tumors with pro-inflammatory-stimulated RAW 264.7 macrophages together with i.v. injection of the miR-146a-5p antagomir, we found inhibited tumor growth (sixfolds, p < 0.001) and angiogenesis (twofolds, p < 0.01), and increased apoptosis (twofolds, p < 0.01). This combination therapy increased nitrites and reduced TGFβ concentrations in tumor lysates, alleviated immune suppression, and allowed enhanced infiltration of cytotoxic CD8+ T cells. Thus, miR-146a-5p functions as a control switch between angiogenesis and cell death, and its neutralization can manipulate the crosstalk between tumor cells and macrophages and profoundly change the TME. This strategy can be therapeutically utilized in combination with the macrophage therapy approach to induce the immune system to successfully attack the tumor, and should be further explored as a new therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Maya M Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Rosin FCP, Teixeira MG, Pelissari C, Corrêa L. Resistance of oral cancer cells to 5‐ALA‐mediated photodynamic therapy. J Cell Biochem 2018; 119:3554-3562. [DOI: 10.1002/jcb.26541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Flávia Cristina P. Rosin
- Pathology DepartmentSchool of DentistryUniversity of São Paulo. Av Prof Lineu PrestesSão PauloBrazil
| | - Marina Gabriela Teixeira
- Pathology DepartmentSchool of DentistryUniversity of São Paulo. Av Prof Lineu PrestesSão PauloBrazil
| | - Cibele Pelissari
- Pathology DepartmentSchool of DentistryUniversity of São Paulo. Av Prof Lineu PrestesSão PauloBrazil
| | - Luciana Corrêa
- Pathology DepartmentSchool of DentistryUniversity of São Paulo. Av Prof Lineu PrestesSão PauloBrazil
| |
Collapse
|
18
|
Shafran Y, Zurgil N, Ravid-Hermesh O, Sobolev M, Afrimzon E, Hakuk Y, Shainberg A, Deutsch M. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis. Oncotarget 2017; 8:108890-108911. [PMID: 29312577 PMCID: PMC5752490 DOI: 10.18632/oncotarget.21610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence.
Collapse
Affiliation(s)
- Yana Shafran
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Naomi Zurgil
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Orit Ravid-Hermesh
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Maria Sobolev
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Elena Afrimzon
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yaron Hakuk
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| | - Asher Shainberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Mordechai Deutsch
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|