1
|
Zhou H, Xiao J, Cheng Q, Wang W, Peng H, Lin X, Chen J, Wang X. Metformin inhibits migration and epithelial-to-mesenchymal transition in non-small cell lung cancer cells through AMPK-mediated GDF15 induction. Eur J Pharmacol 2024; 985:177127. [PMID: 39528101 DOI: 10.1016/j.ejphar.2024.177127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Wen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
2
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Advances in Anti-Cancer Drug Development: Metformin as Anti-Angiogenic Supplemental Treatment for Glioblastoma. Int J Mol Sci 2024; 25:5694. [PMID: 38891882 PMCID: PMC11171521 DOI: 10.3390/ijms25115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
According to the WHO 2016 classification, glioblastoma is the most prevalent primary tumor in the adult central nervous system (CNS) and is categorized as grade IV. With an average lifespan of about 15 months from diagnosis, glioblastoma has a poor prognosis and presents a significant treatment challenge. Aberrant angiogenesis, which promotes tumor neovascularization and is a prospective target for molecular target treatment, is one of its unique and aggressive characteristics. Recently, the existence of glioma stem cells (GSCs) within the tumor, which are tolerant to chemotherapy and radiation, has been linked to the highly aggressive form of glioblastoma. Anti-angiogenic medications have not significantly improved overall survival (OS), despite various preclinical investigations and clinical trials demonstrating encouraging results. This suggests the need to discover new treatment options. Glioblastoma is one of the numerous cancers for which metformin, an anti-hyperglycemic medication belonging to the Biguanides family, is used as first-line therapy for type 2 diabetes mellitus (T2DM), and it has shown both in vitro and in vivo anti-tumoral activity. Based on these findings, the medication has been repurposed, which has shown the inhibition of many oncopromoter mechanisms and, as a result, identified the molecular pathways involved. Metformin inhibits cancer cell growth by blocking the LKB1/AMPK/mTOR/S6K1 pathway, leading to selective cell death in GSCs and inhibiting the proliferation of CD133+ cells. It has minimal impact on differentiated glioblastoma cells and normal human stem cells. The systematic retrieval of information was performed on PubMed. A total of 106 articles were found in a search on metformin for glioblastoma. Out of these six articles were Meta-analyses, Randomized Controlled Trials, clinical trials, and Systematic Reviews. The rest were Literature review articles. These articles were from the years 2011 to 2024. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on metformin use in the treatment of glioblastoma were searched on clinicaltrials.gov. In this article, we examine and evaluate metformin's possible anti-tumoral effects on glioblastoma, determining whether or not it may appropriately function as an anti-angiogenic substance and be safely added to the treatment and management of glioblastoma patients.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| | - Hadeel M. Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| | - Tania M. Aguilar
- College of Medicine at Chicago, University of Illinois, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (S.S.)
| |
Collapse
|
3
|
Deng C, Xiong L, Chen Y, Wu K, Wu J. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC Pulm Med 2023; 23:360. [PMID: 37749553 PMCID: PMC10521546 DOI: 10.1186/s12890-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Metformin is the most frequently prescribed medication for the treatment of type II diabetes mellitus and has played an anti-tumor potential in a variety of cancer types. Metformin can inhibit the growth of many cancer cells through various mechanisms, including ferroptosis. However, it is still unclear whether metformin can induce ferroptosis in lung cancer. METHODS This study evaluated the anti-tumor effect of metformin by detecting the levels of oxidative stress factors, the levels of ferrous ions, and the expression of ferroptosis-related genes in A549 and H1299 lung cancer cell lines treated with or without metformin. RESULTS The results showed that metformin treatment increased the levels of MDA, ROS and iron ions, while decreased the levels of GSH, T-SOD and CAT. Meanwhile, metformin treatment reduced the protein expression levels of Gpx4 and SLC7A11, Nrf2 and HO-1, while the addition of ferroptosis inhibitor ferrostatin-1 reversed the reduction. CONCLUSIONS These results demonstrated that metformin exerts anti-tumor effects by inducing ferroptosis through the Nrf2/HO-1 signaling pathway in lung cancer cells, providing a theoretical basis for drug therapy of lung cancer patients.
Collapse
Affiliation(s)
- Chengmin Deng
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Lin Xiong
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yang Chen
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kaifeng Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Han R, Li J, Wang Y, He T, Zheng J, He Y. Low BMI patients with advanced EGFR mutation-positive NSCLC can get a better outcome from metformin plus EGFR-TKI as first-line therapy: A secondary analysis of a phase 2 randomized clinical trial. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:119-124. [PMID: 39170825 PMCID: PMC11332817 DOI: 10.1016/j.pccm.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 08/23/2024]
Abstract
Background The synergistic association between metformin and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has been confirmed in in vitro studies. It is still controversial which patients can benefit from metformin plus EGFR-TKIs treatment. Body mass index (BMI) was proved to be independently associated with prolonged progression-free survival (PFS) and overall survival (OS). This study aimed to investigate whether BMI is associated with the synergistic effect of metformin and EGFR-TKIs in advanced EGFR mutation (EGFRm)-positive non-small cell lung cancer (NSCLC) among nondiabetic Asian population. Methods We performed a post hoc analysis of a prospective, double-blind phase II randomized clinical trial (COAST, NCT01864681), which enrolled 224 patients without diabetes with treatment-naïve stage IIIB-IV EGFRm NSCLC. We stratified patients into those with a high BMI (≥24 kg/m2) and those with a low BMI (<24 kg/m2) to allow an analysis of the difference in PFS and OS between the two groups. The PFS and OS were analyzed using Kaplan-Meier curves, and the differences between groups were compared using log-rank test. Results In the univariate analysis, patients who had a high BMI (n = 56) in the gefitinib + metformin group (n = 28) did not have a better PFS (8.84 months vs. 11.67 months; P = 0.351) or OS (15.58 months vs. 24.36 months; P = 0.095) than those in the gefitinib + placebo group (n = 28). Similar results were also observed in the low-BMI groups. Strikingly, in the metformin plus gefitinib group, patients who had low BMI (n = 69) showed significantly better OS than those with high BMI (24.89 months [95% CI, 20.68 months-not reached] vs. 15.58 months [95% CI, 13.78-31.53 months]; P = 0.007), but this difference was not observed in PFS (10.78 months vs. 8.84 months; P = 0.285). Conclusions Our study showed that nondiabetic Asian advanced NSCLC patients with EGFR mutations who have low BMI seem to get better OS from metformin plus EGFR-TKI treatment.
Collapse
Affiliation(s)
| | | | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tingting He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
5
|
Verma S, Chitikela S, Singh V, Khurana S, Pushpam D, Jain D, Kumar S, Gupta Y, Malik PS. A phase II study of metformin plus pemetrexed and carboplatin in patients with non-squamous non-small cell lung cancer (METALUNG). Med Oncol 2023; 40:192. [PMID: 37261532 DOI: 10.1007/s12032-023-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Immune checkpoint inhibitors (ICIs) ± chemotherapy is the standard treatment for driver mutation-negative non-small cell lung cancer (NSCLC). However, accessibility to ICIs in LMICs is limited due to high cost, and platinum-based chemotherapy remains the mainstay of treatment. Metformin has anticancer properties, and studies suggest synergism between metformin and pemetrexed. Based on preclinical evidence, this combination may be more beneficial for STK11-mutated NSCLC, a subgroup, inherently resistant to ICIs. In this Simon two-stage, single-arm phase 2 trial, we investigated metformin with pemetrexed-carboplatin (PC) in patients with treatment-naive stage IV non-squamous NSCLC. The primary outcome was 6-month progression-free survival (PFS) rate. Secondary outcomes were safety, overall survival (OS), overall response rate (ORR), proportion of STK11 mutation, and effect of STK11 mutation on 6-month PFS rate. The study was terminated for futility after interim analysis. The median follow-up was 34.1 months. The 6-month PFS rate was 28% (95% CI 12.4-0.46). The median PFS and OS were 4.5 (95% CI 2.2-6.1) and 7.4 months (95% CI 5.3-15.3), respectively. The ORR was 72%. Gastrointestinal toxicities were the most common. No grade 4/5 toxicities were reported. Targeted sequencing was possible in nine cases. Two patients had STK11 mutation and a poor outcome (PFS < 12 weeks). We could not demonstrate the benefit of metformin with CP in terms of improvement in 6-month PFS rate; however, the combination was safe (CTRI/2019/02/017815).
Collapse
Affiliation(s)
- S Verma
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - S Chitikela
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - V Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - S Khurana
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - D Pushpam
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - D Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - S Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Y Gupta
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
| | - P S Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
- Department of Medical Oncology, Dr.B.R.A.I.R.C.H., All India Institute of Medical Sciences, Room 245, New Delhi, India.
| |
Collapse
|
6
|
Chen WJ, Huang SY, Chen YW, Liu YF, Huang RFS. Dietary Folate Deficiency Promotes Lactate Metabolic Disorders to Sensitize Lung Cancer Metastasis through MTOR-Signaling-Mediated Druggable Oncotargets. Nutrients 2023; 15:nu15061514. [PMID: 36986244 PMCID: PMC10052195 DOI: 10.3390/nu15061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Lactate metabolism plays a pivotal role in cancers but is often overlooked in lung cancer (LC). Folate deficiency has been linked to lung cancer development, but its impact on lactate metabolism and cancer malignancy is unclear. To investigate this, mice were fed either a folate-deficient (FD) or control diet and intrapleurally implanted with lung cancer cells pre-exposed to FD growth medium. Results showed that FD promoted lactate over-production and the formation of tumor oncospheroids (LCSs) with increased metastatic, migration, and invasion potential. Mice implanted with these cells and fed an FD diet developed hyperlactatemia in blood and lungs. This coincided with increased expression of hexokinase 2 (HK2), lactate dehydrogenase (LDH), and decreased expression of pyruvate dehydrogenase (PDH). Pre-treatment of the FD-LCS-implanted mice with the mTORC1 inhibitor, rapamycin, and the anti-metabolic drug metformin abolished FD/LCS-activated mTORC1 and its targets including HIF1α, HK2, LDH, and monocarboxylate transporters (MCT1 and MCT4), which coincided with the reduction in lactate disorders and prevention of LC metastasis. The findings suggest that dietary FD promotes lactate metabolic disorders that sensitize lung cancer metastasis through mTOR-signaling-mediated targets.
Collapse
Affiliation(s)
- Wan-Jing Chen
- Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Su-Yu Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yi-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yi-Fang Liu
- Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Rwei-Fen S Huang
- Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
7
|
A Novel Combination of Sotorasib and Metformin Enhances Cytotoxicity and Apoptosis in KRAS-Mutated Non-Small Cell Lung Cancer Cell Lines through MAPK and P70S6K Inhibition. Int J Mol Sci 2023; 24:ijms24054331. [PMID: 36901764 PMCID: PMC10001819 DOI: 10.3390/ijms24054331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Novel inhibitors of KRAS with G12C mutation (sotorasib) have demonstrated short-lasting responses due to resistance mediated by the AKT-mTOR-P70S6K pathway. In this context, metformin is a promising candidate to break this resistance by inhibiting mTOR and P70S6K. Therefore, this project aimed to explore the effects of the combination of sotorasib and metformin on cytotoxicity, apoptosis, and the activity of the MAPK and mTOR pathways. We created dose-effect curves to determine the IC50 concentration of sotorasib, and IC10 of metformin in three lung cancer cell lines; A549 (KRAS G12S), H522 (wild-type KRAS), and H23 (KRAS G12C). Cellular cytotoxicity was evaluated by an MTT assay, apoptosis induction through flow cytometry, and MAPK and mTOR pathways were assessed by Western blot. Our results showed a sensitizing effect of metformin on sotorasib effect in cells with KRAS mutations and a slight sensitizing effect in cells without K-RAS mutations. Furthermore, we observed a synergic effect on cytotoxicity and apoptosis induction, as well as a notable inhibition of the MAPK and AKT-mTOR pathways after treatment with the combination, predominantly in KRAS-mutated cells (H23 and A549). The combination of metformin with sotorasib synergistically enhanced cytotoxicity and apoptosis induction in lung cancer cells, regardless of KRAS mutational status.
Collapse
|
8
|
Impact of Type 2 Diabetes Mellitus on the Prognosis of Non-Small Cell Lung Cancer. J Clin Med 2022; 12:jcm12010321. [PMID: 36615124 PMCID: PMC9821111 DOI: 10.3390/jcm12010321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is the most common metabolic disease and is characterized by sustained hyperglycemia. The impact of T2DM on the survival of lung cancer patients remains controversial. The aim of this study was to investigate the associations of type 2 diabetes with lung cancer mortality. METHODS From January 2019 to January 2020, 228 patients with non-small cell lung cancer (NSCLC) staging earlier than IIIA were included. RESULTS In our study, we found that the overall survival (OS) and progression-free survival (PFS) of lung cancer patients with diabetes was longer than non-diabetes group. Diagnosed T2DM was associated with the prognosis of lung cancer after adjusting for age and covariates. The association between T2DM and OS was influenced by age, stage of cancer and cancer treatment, as well as whether taking metformin was associated with the OS of lung cancer. However, with the adjustment for age and covariates, the relation trended to lose statistical significance. CONCLUSION T2DM is an independent prognostic factor for patients with NSCLC staging before IIIA. The patients with both NSCLC and T2DM trended to having a longer OS, possibly due to metformin.
Collapse
|
9
|
Li H, Yang D, Xu Z, Yang L, Lin J, Cai J, Yang L. Metformin Sensitizes Cisplatin-induced Apoptosis Through Regulating
Nucleotide Excision Repair Pathway In Cisplatin-resistant Human Lung
Cancer Cells. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer is a leading cause of cancer death globally. Platinum-based chemotherapeutic
medications are essential for treating advanced NSCLC, despite that drug resistance severely
limits its effectiveness.
Objective:
In this study, we investigated the cytotoxic effect of metformin on cisplatin-resistant NSCLC
cells (A549/DDP) and its potential mechanisms.
Methods:
Anti-lung cancer efficacy of metformin, cisplatin, and metformin combined with cisplatin was
examined in A549 and A549/DDP cells. The cell counting kit-8 (CCK-8) assay was applied for measuring
cell proliferation. CalcuSyn software was used to calculate the combination index and estimate the
synergistic effect of metformin and cisplatin on cell proliferation. The cell apoptosis was analyzed by
flow cytometry and the expression of apoptosis-related proteins, Bcl-2, Bax and caspase-3 were analyzed
using Western blot. Futhermore, the expression of key nucleotide excision repair (NER) proteins,
ERCC1, XPF, and XPA, was also analyzed using Western blot.
Results:
We found that metformin had dose-dependent antiproliferative effects on A549/DDP and A549
cells. The combination of metformin and cisplatin had higher effectiveness in inhibiting A549/DDP and
A549 cell growth than either of the two drugs alone. Flow cytometry analysis indicated that the combined
treatment could cause more cell apoptosis than the single-drug treatment. Consistently, the combined
treatment decreased the expression of Bcl-2 protein and elevated the expression of Bax, and cleaved
caspase-3 proteins. The expression level of ERCC1, XPF, and XPA proteins were lower in the combined
treatment than in either of metformin and cisplatin treatment alone.
Conclusions:
Our study suggested that metformin and cisplatin had synergistic antitumorigenic effects in
A549/DDP cells. The combination of cisplatin and metformin could be promising drug candidates to
sensitize cisplatin-induced apoptosis through regulating nucleotide excision repair pathways in lung cancer.
Collapse
Affiliation(s)
- Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Donghong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Liu Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jiong Lin
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jingyi Cai
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Li Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
10
|
Cruciani S, Garroni G, Pala R, Coradduzza D, Cossu ML, Ginesu GC, Capobianco G, Dessole S, Ventura C, Maioli M. Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte 2022; 11:356-365. [PMID: 35734882 PMCID: PMC9235891 DOI: 10.1080/21623945.2022.2085417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) represent an ideal stem cell population for regenerative medicine. ADSC adipogenic differentiation is controlled by the activation of a specific transcriptional program, including epigenetic factors and key adipogenic genes. Under certain conditioned media, ADSCs can differentiate into several phenotypes. We previously demonstrated that bioactive molecules could counteract lipid accumulation and regulate adipogenesis, acting on inflammation and vitamin D metabolism. In the present paper, we aimed at evaluating the effect of metformin and vitamin D in targeting ADSC differentiation towards an intermediate phenotype, as beige adipocytes. We exposed ADSCs to different conditioned media and then we evaluated the levels of expression of main markers of adipogenesis, aP2, LPL and ACOT2. We also analysed the gene and protein expression of thermogenic UCP1 protein, and the expression of PARP1 and the beige specific marker TMEM26. Our results showed a novel effect of metformin and vitamin D not only in inhibiting adipogenesis, but also in inducing a specific 'brown-like' phenotype. These findings pave the way for their possible application in the control of de novo lipogenesis useful for the prevention of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maria Laura Cossu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, Sassari, Italy
| | - Giorgio Carlo Ginesu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medical, Surgical and Experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Salvatore Dessole
- Department of Medical, Surgical and Experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Kim H, Kim D, Kim W, Kim E, Jang WI, Kim MS. The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice. Radiat Res 2022; 198:190-199. [DOI: 10.1667/rade-21-00231.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Hyunkyung Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dohyeon Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Wonwoo Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - EunJi Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
12
|
The Role of the Selected miRNAs as Diagnostic, Predictive and Prognostic Markers in Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12081227. [PMID: 36013176 PMCID: PMC9410235 DOI: 10.3390/jpm12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, overtaking colon, breast, and prostate cancer-related deaths. Due to the limited diagnostic possibilities, it is often diagnosed after it has reached an advanced stage. The delayed diagnosis significantly worsens the patient’s prognosis. In recent years, we have observed an increased interest in the use of microRNAs (miRNAs) as diagnostic, predictive, and prognostic markers in non-small-cell lung cancer (NSCLC). The abnormal expression levels of the miRNAs could be used to detect NSCLC in its early stages while it is still asymptomatic. This could drastically improve the clinical outcome. Furthermore, some miRNAs could serve as promising predictive and prognostic factors for NSCLC. Some of the currently available studies have shown a correlation between the miRNAs’ levels and the sensitivity of tumour cells to different treatment regimens. Analysing and modulating the miRNAs’ expression could be a way to predict and improve the treatment’s outcome.
Collapse
|
13
|
Feng SW, Chang PC, Chen HY, Hueng DY, Li YF, Huang SM. Exploring the Mechanism of Adjuvant Treatment of Glioblastoma Using Temozolomide and Metformin. Int J Mol Sci 2022; 23:ijms23158171. [PMID: 35897747 PMCID: PMC9330793 DOI: 10.3390/ijms23158171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is the most frequent and lethal primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40–50% of all primary malignant brain tumors, with an annual incidence of 3–6 cases per 100,000 population. Despite maximum treatment, patients only have a median survival time of 15 months. Metformin is a biguanide drug utilized as the first-line medication in treating type 2 diabetes. Recently, researchers have noticed that metformin can contribute to antineoplastic activity. The objective of this study is to investigate the mechanism of metformin as a potential adjuvant treatment drug in glioblastoma. Glioblastoma cell lines U87MG, LNZ308, and LN229 were treated with metformin, and several cellular functions and metabolic states were evaluated. First, the proliferation capability was investigated using the MTS assay and BrdU assay, while cell apoptosis was evaluated using the annexin V assay. Next, a wound-healing assay and mesenchymal biomarkers (N-cadherin, vimentin, and Twist) were used to detect the cell migration ability and epithelial–mesenchymal transition (EMT) status of tumor cells. Gene set enrichment analysis (GSEA) was applied to the transcriptome of the metformin-treated glioblastoma cell line. Then, DCFH-DA and MitoSOX Red dyes were used to quantify reactive oxygen species (ROS) in the cytosol and mitochondria. JC-1 dye and Western blotting analysis were used to evaluate mitochondrial membrane potential and biogenesis. In addition, the combinatory effect of temozolomide (TMZ) with metformin treatment was assessed by combination index analysis. Metformin could decrease cell viability, proliferation, and migration, increase cell apoptosis, and disrupt EMT in all three glioblastoma cell lines. The GSEA study highlighted increased ROS and hypoxia in the metformin-treated glioblastoma cells. Metformin increased ROS production, impaired mitochondrial membrane potential, and reduced mitochondrial biogenesis. The combined treatment of metformin and TMZ had U87 as synergistic, LNZ308 as antagonistic, and LN229 as additive. Metformin alone or combined with TMZ could suppress mitochondrial transcription factor A, Twist, and O6-methylguanine-DNA methyltransferase (MGMT) proteins in TMZ-resistant LN229 cells. In conclusion, our study showed that metformin decreased metabolic activity, proliferation, migration, mitochondrial biogenesis, and mitochondrial membrane potential and increased apoptosis and ROS in some glioblastoma cells. The sensitivity of the TMZ-resistant glioblastoma cell line to metformin might be mediated via the suppression of mitochondrial biogenesis, EMT, and MGMT expression. Our work provides new insights into the choice of adjuvant agents in TMZ-resistant GBM therapy.
Collapse
Affiliation(s)
- Shao-Wei Feng
- Department of Neurologic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (S.-W.F.); (D.-Y.H.)
| | - Pei-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsuan-Yu Chen
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Dueng-Yuan Hueng
- Department of Neurologic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (S.-W.F.); (D.-Y.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yao-Feng Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (Y.-F.L.); (S.-M.H.); Tel.: +886-2-8792-3100 (ext. 13958) (Y.-F.L.); +886-2-8792-3100 (ext. 18790) (S.-M.H.)
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (Y.-F.L.); (S.-M.H.); Tel.: +886-2-8792-3100 (ext. 13958) (Y.-F.L.); +886-2-8792-3100 (ext. 18790) (S.-M.H.)
| |
Collapse
|
14
|
Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals (Basel) 2022; 15:ph15070786. [PMID: 35890085 PMCID: PMC9318003 DOI: 10.3390/ph15070786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin has been under basic and clinical study as an oncological repurposing pharmacological agent for several years, stemming from observational studies which consistently evidenced that subjects who were treated with metformin had a reduced risk for development of cancer throughout their lives, as well as improved survival outcomes when diagnosed with neoplastic diseases. As a result, several basic science studies have attempted to dissect the relationship between metformin’s metabolic mechanism of action and antineoplastic cellular signaling pathways. Evidence in this regard was compelling enough that a myriad of randomized clinical trials was planned and conducted in order to establish the effect of metformin treatment for patients with diverse neoplasms, including lung cancer. As with most novel antineoplastic agents, early results from these studies have been mostly discouraging, though a recent analysis that incorporated body mass index may provide significant information regarding which patient subgroups might derive the most benefit from the addition of metformin to their anticancer treatment. Much in line with the current pipeline for anticancer agents, it appears that the benefit of metformin may be circumscribed to a specific patient subgroup. If so, addition of metformin to antineoplastic agents could prove one of the most cost-effective interventions proposed in the context of precision oncology. Currently published reviews mostly rely on a widely questioned mechanism of action by metformin, which fails to consider the differential effects of the drug in lean vs. obese subjects. In this review, we analyze the pre-clinical and clinical information available to date regarding the use of metformin in various subtypes of lung cancer and, further, we present evidence as to the differential metabolic effects of metformin in lean and obese subjects where, paradoxically, the obese subjects have reported more benefit with the addition of metformin treatment. The novel mechanisms of action described for this biguanide may explain the different results observed in clinical trials published in the last decade. Lastly, we present novel hypothesis regarding potential biomarkers to identify who might reap benefit from this intervention, including the role of prolyl hydroxylase domain 3 (PHD3) expression to modify metabolic phenotypes in malignant diseases.
Collapse
|
15
|
Barrios-Bernal P, Hernandez-Pedro N, Orozco-Morales M, Viedma-Rodríguez R, Lucio-Lozada J, Avila-Moreno F, Cardona AF, Rosell R, Arrieta O. Metformin Enhances TKI-Afatinib Cytotoxic Effect, Causing Downregulation of Glycolysis, Epithelial-Mesenchymal Transition, and EGFR-Signaling Pathway Activation in Lung Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15030381. [PMID: 35337178 PMCID: PMC8955777 DOI: 10.3390/ph15030381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The combination of metformin and TKIs for non-small cell lung cancer has been proposed as a strategy to overcome resistance of neoplastic cells induced by several molecular mechanisms. This study sought to investigate the effects of a second generation TKI afatinib, metformin, or their combination on three adenocarcinoma lung cancer cell lines with different EGFRmutation status. A549, H1975, and HCC827 cell lines were treated with afatinib, metformin, and their combination for 72 h. Afterwards, several parameters were assessed including cytotoxicity, interactions, apoptosis, and EGFR protein levels at the cell membrane and several glycolytic, oxidative phosphorylation (OXPHOS), and EMT expression markers. All cell lines showed additive to synergic interactions for the induction of cytotoxicity caused by the tested combination, as well as an improved pro-apoptotic effect. This effect was accompanied by downregulation of glycolytic, EMT markers, a significant decrease in glucose uptake, extracellular lactate, and a tendency towards increased OXPHOS subunits expression. Interestingly, we observed a better response to the combined therapy in lung cancer cell lines A549 and H1975, which normally have low affinity for TKI treatment. Findings from this study suggest a sensitization to afatinib therapy by metformin in TKI-resistant lung cancer cells, as well as a reduction in cellular glycolytic phenotype.
Collapse
Affiliation(s)
- Pedro Barrios-Bernal
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Norma Hernandez-Pedro
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Mario Orozco-Morales
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Rubí Viedma-Rodríguez
- Unidad de Morfología y Función, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico City 54090, Mexico;
| | - José Lucio-Lozada
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Federico Avila-Moreno
- Lung Diseases and Cancer Epigenomics Laboratory, Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico City 54090, Mexico;
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC/Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá 11001, Colombia;
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias I Pujol Research Institute and Hospital Campus Can Ruti, 8908 Badalona, Spain;
| | - Oscar Arrieta
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
- Correspondence:
| |
Collapse
|
16
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
17
|
Chen DH, Zhang JG, Wu CX, Li Q. Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Front Cell Dev Biol 2022; 9:778582. [PMID: 35004679 PMCID: PMC8728017 DOI: 10.3389/fcell.2021.778582] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.
Collapse
Affiliation(s)
- Da-Hong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Gang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Dong B, Wu C, Li SH, Huang L, Zhang C, Wu B, Sheng Y, Liu Y, Ye G, Qi Y. Correlation of m6A methylation with immune infiltrates and poor prognosis in non-small cell lung cancer via a comprehensive analysis of RNA expression profiles. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1465. [PMID: 34734017 PMCID: PMC8506701 DOI: 10.21037/atm-21-4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) is a common type of lung cancer with a poor prognosis. N6-methyladenosine (m6A) methylation, which is a reversible ribonucleic acid (RNA) modification, plays an important role in the occurrence and development of NSCLC. However, the potential effect of m6A methylation on immune infiltrates and prognosis remains unclear. Methods In this study, a weighted gene co-expression network analysis was used to screen out messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) that were co-expressed with m6A regulators. Additionally, 2 molecular subtypes (Clusters 1 and 2) were determined via consensus clustering. Subsequently, a prognostic risk model was constructed using both co-expressed mRNAs and ncRNAs. Based on the risk scores calculated by the prognostic model, the patients were divided into the high-risk group or low-risk group. Finally, the altered patterns of the tumor immune microenvironments (TIMEs) between the 2 stratification methods were thoroughly investigated, and a gene set enrichment analysis was conducted to further examine the potential mechanism. Results Patients in Cluster 1 had lower immunoscores, higher programmed death-ligand 1 (PD-L1) expression, and shorter overall survival (OS) compared to patients in Cluster 2. A further investigation based on the prognostic model revealed that the PD-L1 expression levels of patients in the high-risk group were significantly upregulated, and the immunoscores were lower than those in the low-risk group. The immune cells with a high infiltration in Cluster 1 showed a significant positive correlation with the risk score; those with low infiltration showed a significant negative correlation. The hallmarks of the Myelocytomatosis viral oncogene (MYC) targets, the second Gap/Mitosis (G2/M) checkpoint, E2 transcription Factor (E2F) targets, glycolysis, deoxyribonucleic acid (DNA) repair, and unfolded protein response were significantly enriched in Cluster 1, the low-immunoscore group, and the high-risk group. Conclusions This study revealed that m6A methylation is closely related to the poor prognosis of NSCLC patients via interference with the TIME, which suggests that m6A may play a role in optimizing individualized immunotherapy management and improving prognosis.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinliang Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Brancher S, Ribeiro AE, Toporcov TN, Weiderpass E. The role of metformin on lung cancer survival: the first systematic review and meta-analysis of observational studies and randomized clinical trials. J Cancer Res Clin Oncol 2021; 147:2819-2836. [PMID: 34264392 DOI: 10.1007/s00432-021-03728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To assess the effects of metformin use on lung cancer (LC) survival according to summarized results from observational studies (OBs) and randomized clinical trials (RCTs). METHODS We systematically searched electronic databases and, to our knowledge, for the first time, RCTs were included in a systematic review and meta-analysis about the role of metformin on LC survival. We carried out meta-analyses separately for OBs and RCTs. Analyses for overall survival (OS) concerning OBs were stratified by studies with and without time-dependent approach. Subgroup analyses were adopted for OBs to identify the sources of heterogeneity. Included studies were assessed for quality. RESULTS We identified ten OBs and four RCTs. For OBs, metformin use was associated with improved OS for LC patients. Only two studies used time-dependent approach in which a higher ratio was found when compared to the non-use of the time-dependent analysis in eight studies. OBs were classified as high quality but the risk of bias was "unclear" in eight OBs due to absence of the time-dependent analysis. For RCTs, metformin use was not beneficial for OS and neither for progression-free survival. Heterogeneous quality was found among RCTs. Sources of bias that could alter significantly the results or raise doubts were identified in RCTs. CONCLUSION Time-dependent analysis should be considered an appropriate strategy for OBs focused on the metformin use for LC patients' survival, and further studies applying this approach are required. More well-designed RCTs are needed to provide consistent results for the association between metformin use and LC survival.
Collapse
Affiliation(s)
- Suzan Brancher
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, Cerqueira César, São Paulo, SP, CEP 01246-904, Brazil.
| | - Ana Elisa Ribeiro
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Tatiana Natasha Toporcov
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo 715, Cerqueira César, São Paulo, SP, CEP 01246-904, Brazil
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
20
|
Incorporation of Sulfonamide Moiety into Biguanide Scaffold Results in Apoptosis Induction and Cell Cycle Arrest in MCF-7 Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115642. [PMID: 34073245 PMCID: PMC8198066 DOI: 10.3390/ijms22115642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.
Collapse
|
21
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
22
|
Zhang C, Le A. Diabetes and Cancer: The Epidemiological and Metabolic Associations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:217-227. [PMID: 34014546 PMCID: PMC9703197 DOI: 10.1007/978-3-030-65768-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diabetes mellitus, commonly known as diabetes, and cancer are two of the most common diseases plaguing the world today. According to the Centers for Disease Control and Prevention (CDC), there are currently more than 20 million people with diabetes in the United States [1]. According to the International Agency for Research on Cancer (IARC), there were around 18 million people diagnosed with cancer, with approximately ten million deaths globally in 2018 [2]. Given the prevalence and deadliness of diabetes and cancer, these two diseases have long been the focus of many researchers with the goal of improving treatment outcomes. While diabetes and cancer may seem to be two very different diseases at first glance, they share several similarities, especially regarding their metabolic characteristics. This chapter discusses the similarities and relationships between the metabolism of diabetes, especially type 2 diabetes (T2D), and cancer, including their abnormal glucose and amino acid metabolism, the contribution of hyperglycemia to oncogenic mutation, and the contribution of hyperinsulinemia to cancer progression. Investigating the metabolic interplay between diabetes and cancer in an effort to exploit this connection for cancer treatment has the potential to significantly improve clinical efficacy.
Collapse
|
23
|
Huang S, He T, Yang S, Sheng H, Tang X, Bao F, Wang Y, Lin X, Yu W, Cheng F, Lv W, Hu J. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl Lung Cancer Res 2020; 9:2337-2355. [PMID: 33489797 PMCID: PMC7815349 DOI: 10.21037/tlcr-20-1072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The therapeutic efficacy of cisplatin-based chemotherapy for non-small cell lung cancer (NSCLC) is limited by drug resistance. In NSCLC, hyperactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) counteracts oxidative stress to promote chemoresistance. Metformin-mediated downregulation of Nrf2 plays a pivotal role in overcoming drug resistance in NSCLC cells. Therefore, a deeper understanding of the molecular mechanisms of combination therapy and the role of Nrf2 in chemotherapeutic response is critical to clinical translation. Methods The effects of combination therapy with metformin and cisplatin on cell proliferation and apoptosis, intracellular reactive oxygen species (ROS) levels, and xenograft tumor formation were analyzed in NSCLC cells. Co-immunoprecipitation (co-IP) and Phos-tag assays were used to explore the mechanism of metformin-mediated Nrf2 suppression. Immunohistochemical (IHC) staining was performed to detect Nrf2 expression in matched tumor samples before and after neoadjuvant chemotherapy. Results Metformin was observed to synergistically augment cisplatin-induced cytotoxicity by strongly inhibiting the level of Nrf2, thereby weakening the antioxidant system and detoxification ability of Nrf2 and enhancing ROS-mediated apoptosis in NSCLC. The synergistic antitumor effect of combination therapy is blocked by treatment with the ROS scavenger N-acetyl cysteine (NAC) as well as overexpression of Nrf2 and its downstream antioxidant protein. Mechanistically, metformin extensively dephosphorylates Nrf2 by attenuating the interaction between Nrf2 and extracellular signal-regulated kinases 1/2 (ERK1/2), which then restores its polyubiquitination and accelerates its proteasomal degradation. Moreover, for the first time, an association of non-decreased Nrf2 expression in patients after neoadjuvant chemotherapy with poor survival and chemoresistance in NSCLC was revealed. Conclusions Our findings illustrate the mechanism of metformin-mediated Nrf2 degradation through posttranslational modifications (PTMs), which weakens the ROS defense system in NSCLC. Fluctuations in Nrf2 expression have a strong predictive ability for chemotherapeutic response in neoadjuvant NSCLC patients. Targeting of the Nrf2 pathway could be a therapeutic strategy for overcoming chemoresistance, with metformin as the first choice for this strategy.
Collapse
Affiliation(s)
- Sha Huang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Feichao Bao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfeng Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Cheng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer. Cell Oncol (Dordr) 2020; 44:1-18. [PMID: 33125630 DOI: 10.1007/s13402-020-00570-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metformin, a first-line therapeutic for type 2 diabetes, has been studied for its potential use in cancer treatment following a number of epidemiological studies that have demonstrated reduced cancer incidence and mortality rates among patients treated with the drug. As yet, however, there remains significant uncertainty about the molecular mechanisms by which metformin exerts its anti-cancer effects. Herein, we summarize the evidence surrounding the anti-lung cancer effects of metformin. CONCLUSIONS Specifically, we explore protein targets of metformin, including AMPK, PP2A, IRF-1/YAP and HGF and we outline the proposed mechanisms of action for metformin in lung cancer, with particular attention given to apoptosis and autophagy. We also closely examine the synergistic activity of metformin with existing cancer treatment regimens, such as TKI's, platinum-based agents and immune therapeutics. In addition to considering preclinical and clinical studies, we also dissect and contextualize the limitations and inconsistencies of the current literature, especially those of epidemiological studies. Finally, we offer a potential trajectory for future research in this rapidly evolving area of basic and clinical oncology.
Collapse
|
25
|
Chen X, Wang DD, Li ZP. Time course and dose effect of metformin on weight in patients with different disease states. Expert Rev Clin Pharmacol 2020; 13:1169-1177. [PMID: 32940086 DOI: 10.1080/17512433.2020.1822164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The present study was to quantitate and compare the efficacy of metformin on weight in different disease states using model-based meta-analysis (MBMA). METHODS Randomized controlled trials (RCT) of metformin effects on weight in different disease states were collected by searching the public databases. The change rate of weight from baseline was selected as the efficacy indicator. RESULTS A total 21 RCTs containing 1885 patients including patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity, were included into the present study. After deducting placebo effect, the maximal effect (Emax) of metformin on weight in patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity were -6.86%, -8.82%, and -4.14%, respectively. The treatment duration to reach half of the maximal effect (ET50) were 107, 45.5, and 15.1 weeks, respectively. Within the metformin dose range from 21 RCTs, no significant dose-response relationship was observed. However, the time-course relationship is obvious for efficacy of metformin on weight. CONCLUSIONS The present study firstly provided quantitative information for metformin effects on weight in different disease states, including patients with type 2 diabetes mellitus, patients with antipsychotic induced weight gain, patients with obesity.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| | - Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| | - Zhi-Ping Li
- Department of Pharmacy, Children's Hospital of Fudan University , Shanghai, China
| |
Collapse
|
26
|
Metabolic Responses to Metformin in Inoperable Early-stage Non-Small Cell Lung Cancer Treated With Stereotactic Radiotherapy: Results of a Randomized Phase II Clinical Trial. Am J Clin Oncol 2020; 43:231-235. [PMID: 31990759 DOI: 10.1097/coc.0000000000000632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metformin reduces glucose uptake in physiologic tissues and has been shown to affect non-small cell lung cancer (NSCLC) metabolism. We hypothesized that positron emission tomography (PET) scans could detect the impact of metformin on glucose uptake in NSCLC and we sought to test this hypothesis in a prospective clinical trial. MATERIALS AND METHODS A single-blinded phase II clinical trial was performed with subjects randomized 6:1 to 3 to 4 weeks of metformin versus placebo for inoperable early-stage NSCLC. PET scans were performed at baseline, mid-treatment (after 2 wk study medication), and 6 months postradiation. The primary endpoint of the trial was tumor metabolic response to metformin by PERCIST before definitive radiation. Stereotactic body radiotherapy to 50 Gy in 4 fractions was used for peripheral tumors and 70 Gy in 10 fractions for central tumors. RESULTS There were 14 subjects randomized to the metformin and 1 to placebo. Histologies were 60% adenocarcinoma, 33.3% squamous cell carcinoma, and 6.7% poorly differentiated carcinoma. At mid-treatment PET scan, 57% of subjects randomized to metformin met PERCIST criteria for metabolic response, of which 75% had progressive metabolic disease and 25% had partial metabolic response, whereas the placebo subject had stable metabolic disease. At 6 months, the metformin arm had 69% complete metabolic response, 23% partial metabolic response and 1 progressive metabolic disease, and the subject treated with placebo had a complete metabolic response. There were no CTCAE grade ≥3 toxicities. CONCLUSIONS Despite low accrual, majority of subjects treated with metformin had metabolic responses by PERCIST criteria on PET imaging. Contrary to the effect of metformin on most physiologic tissues, most tumors had increased metabolic activity in response to metformin.
Collapse
|
27
|
Meng Y, Xiang R, Yan H, Zhou Y, Hu Y, Yang J, Zhou Y, Cui Q. Transcriptomic landscape profiling of metformin-treated healthy mice: Implication for potential hypertension risk when prophylactically used. J Cell Mol Med 2020; 24:8138-8150. [PMID: 32529766 PMCID: PMC7348147 DOI: 10.1111/jcmm.15472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the first-line anti-diabetic drug metformin shows versatile protective effects against several diseases and is potentially prescribed to healthy individual for prophylactic use against ageing or other pathophysiological processes. However, for healthy individuals, it remains unclear what effects metformin treatment will induce on their bodies. A systematic profiling of the molecular landscape of metformin treatment is expected to provide crucial implications for this issue. Here, we delineated the first transcriptomic landscape induced by metformin in 10 tissues (aorta, brown adipose, brain, eye, heart, liver, kidney, skeletal muscle, stomach and testis) of healthy mice by using RNA-sequencing technique. A comprehensive computational analysis was performed. The overrepresentation of cardiovascular disease-related gene sets, positive correlation with hypertension-related transcriptomic signatures and the associations of drugs with hypertensive side effect together indicate that although metformin does exert various beneficial effects, it would also increase the risk of hypertension in healthy mice. This prediction was experimentally validated by an independent animal experiments. Together, this study provided important resource necessary for investigating metformin's beneficial/deleterious effects on various healthy tissues, when it is potentially prescribed to healthy individual for prophylactic use.
Collapse
Affiliation(s)
- Yuhong Meng
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Rui Xiang
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Han Yan
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yiran Zhou
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yuntao Hu
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Jichun Yang
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Yuan Zhou
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| | - Qinghua Cui
- Department of Physiology and PathophysiologyDepartment of Biomedical InformaticsCenter for Non‐coding RNA MedicineMOE Key Lab of Cardiovascular SciencesSchool of Basic Medical SciencesPeking UniversityBeijingChina
| |
Collapse
|
28
|
Ko E, Baek S, Kim J, Park D, Lee Y. Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells. Dev Reprod 2020; 24:113-123. [PMID: 32734128 PMCID: PMC7375979 DOI: 10.12717/dr.2020.24.2.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 01/28/2023]
Abstract
Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/ RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.
Collapse
Affiliation(s)
- Eunjeong Ko
- Dept. of Medicine, Jeju National
University School of Medicine, Jeju 63243,
Korea
| | - Seungjae Baek
- Dept. of Medicine, Jeju National
University School of Medicine, Jeju 63243,
Korea
| | - Jiwon Kim
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| | - Deokbae Park
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| | - Youngki Lee
- Histology, Jeju National University
School of Medicine, Jeju 63243,
Korea
| |
Collapse
|
29
|
Alhajala HS, Markley JL, Kim JH, Al-Gizawiy MM, Schmainda KM, Kuo JS, Chitambar CR. The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1. Oncotarget 2020; 11:1531-1544. [PMID: 32391122 PMCID: PMC7197450 DOI: 10.18632/oncotarget.27567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/04/2022] Open
Abstract
New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 μmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of in vitro cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.
Collapse
Affiliation(s)
- Hisham S. Alhajala
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John L. Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Hae Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - John S. Kuo
- Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas, USA
| | - Christopher R. Chitambar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
30
|
Wang G, Li X, Xiong R, Wu H, Xu M, Xie M. Long-term survival analysis of patients with non-small cell lung cancer complicated with type 2 diabetes mellitus. Thorac Cancer 2020; 11:1309-1318. [PMID: 32190995 PMCID: PMC7180624 DOI: 10.1111/1759-7714.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
Background This study aimed to investigate the effect of type 2 diabetes mellitus on survival of patients with non‐small cell lung cancer (NSCLC). Methods We retrospectively analyzed NSCLC patients who had undergone radical lung cancer surgery from January 2011 to December 2014 in the Anhui Medical University affiliated Anhui Provincial Hospital. Kaplan‐Meier plots, log‐rank tests, and Cox proportional hazards regression models were used to describe the effect of type 2 diabetes mellitus on the overall survival of patients with NSCLC. Results A total of 769 patients with NSCLC were enrolled, including 126 in the diabetic mellitus group and 643 in the nondiabetic mellitus group. The one, three, and five‐year survival for patients with and without diabetes mellitus were 86.1% versus 89.6%, 49.5% versus 62.4%, and 33.3% versus 40.6%, respectively. The Cox model showed that type 2 diabetes mellitus was a poor independent prognostic factors for NSCLC patients. In addition, metformin is a good independent prognostic factor for patients with non‐small cell lung cancer with type 2 diabetes mellitus. Conclusions NSCLC patients without type 2 diabetes mellitus have an increased survival rate compared with those with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gaoxiang Wang
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xuejiao Li
- School of Nursing, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ran Xiong
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hanran Wu
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiqing Xu
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingran Xie
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Bouras H, Roig SR, Kurstjens S, Tack CJJ, Kebieche M, de Baaij JHF, Hoenderop JGJ. Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients. Can J Physiol Pharmacol 2020; 98:400-411. [PMID: 32017603 DOI: 10.1139/cjpp-2019-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metformin therapy is associated with lower serum magnesium (Mg2+) levels in type 2 diabetes patients. The TRPM6 channel determines the fine-tuning of Mg2+ (re)absorption in intestine and kidney. Therefore, we aimed to investigate the short- and long-term effects of metformin on TRPM6. Patch clamp recordings and biotinylation assays were performed upon 1 h of incubation with metformin in TRPM6-transfected HEK293 cells. Additionally, 24 h of treatment of mDCT15 kidney and hCaco-2 colon cells with metformin was applied to measure the effects on endogenous TRPM6 expression by quantitative real-time PCR. To assess Mg2+ absorption, 25Mg2+ uptake measurements were performed using inductively coupled plasma mass spectrometry. Short-term effects of metformin significantly increased TRPM6 activity and its cell surface trafficking. In contrast, long-term effects significantly decreased TRPM6 mRNA expression and 25Mg2+ uptake. Metformin lowered TRPM6 mRNA levels independently of insulin- and AMPK-mediated pathways. Moreover, in type 2 diabetes patients, metformin therapy was associated with lower plasma Mg2+ concentrations and fractional excretion of Mg2+. Thereby, short-term metformin treatment increases TRPM6 activity explained by enhanced cell surface expression. Conversely, long-term metformin treatment results in downregulation of TRPM6 gene expression in intestine and kidney cells. This long-term effect translated in an inverse correlation between metformin and plasma Mg2+ concentration in type 2 diabetes patients.
Collapse
Affiliation(s)
- Hacene Bouras
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Faculty of Nature and Life Sciences, University of Mohamed Seddik Ben Yahia, Jijel, Algeria
| | - Sara R Roig
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steef Kurstjens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees J J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohamed Kebieche
- Faculty of Nature and Life Sciences, University of Batna2, Algeria
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21030810. [PMID: 32012648 PMCID: PMC7037743 DOI: 10.3390/ijms21030810] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Triple-negative (TN) breast cancer lacks expression of estrogen receptor (ER), progesterone receptor (PR) as well as the expression and/or gene amplification of human epidermal growth factor receptor 2 (HER2). TN breast cancer is aggressive and does not respond to hormone therapy, therefore new treatments are urgently needed. Plant-derived chemicals have contributed to the establishment of chemotherapy agents. In previous studies, rosemary extract (RE) has been found to reduce cell proliferation and increase apoptosis in some cancer cell lines. However, there are very few studies examining the effects of RE in TN breast cancer. In the present study, we examined the effects of RE on TN MDA-MB-231 breast cancer cell proliferation, survival/apoptosis, Akt, and mTOR signaling. RE inhibited MDA-MB-231 cell proliferation and survival in a dose-dependent manner. Furthermore, RE inhibited the phosphorylation/activation of Akt and mTOR and enhanced the cleavage of PARP, a marker of apoptosis. Our findings indicate that RE has potent anticancer properties against TN breast cancer and modulates key signaling molecules involved in cell proliferation and survival.
Collapse
|
33
|
Mazurek M, Litak J, Kamieniak P, Kulesza B, Jonak K, Baj J, Grochowski C. Metformin as Potential Therapy for High-Grade Glioma. Cancers (Basel) 2020; 12:E210. [PMID: 31952173 PMCID: PMC7016983 DOI: 10.3390/cancers12010210] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (MET), 1,1-dimethylbiguanide hydrochloride, is a biguanide drug used as the first-line medication in the treatment of type 2 diabetes. The recent years have brought many observations showing metformin in its new role. The drug, commonly used in the therapy of diabetes, may also find application in the therapy of a vast variety of tumors. Its effectiveness has been demonstrated in colon, breast, prostate, pancreatic cancer, leukemia, melanoma, lung and endometrial carcinoma, as well as in gliomas. This is especially important in light of the poor options offered to patients in the case of high-grade gliomas, which include glioblastoma (GBM). A thorough understanding of the mechanism of action of metformin can make it possible to discover new drugs that could be used in neoplasm therapy.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
- Department of Immunology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Bartłomiej Kulesza
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.); (B.K.)
| | - Katarzyna Jonak
- Department of Foregin Languages, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
34
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
35
|
Arrieta O, Barrón F, Padilla MÁS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, Vergara E, Zatarain-Barrón ZL, Hernández-Pedro N, Cardona AF, Cruz-Rico G, Barrios-Bernal P, Yamamoto Ramos M, Rosell R. Effect of Metformin Plus Tyrosine Kinase Inhibitors Compared With Tyrosine Kinase Inhibitors Alone in Patients With Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol 2019; 5:e192553. [PMID: 31486833 PMCID: PMC6735425 DOI: 10.1001/jamaoncol.2019.2553] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Metformin hydrochloride is emerging as a repurposed anticancer drug. Preclinical and retrospective studies have shown that it improves outcomes across a wide variety of neoplasms, including lung cancer. Particularly, evidence is accumulating regarding the synergistic association between metformin and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs). OBJECTIVE To assess the progression-free survival (PFS) in patients with advanced lung adenocarcinoma who received treatment with EGFR-TKIs plus metformin compared with those who received EGFR-TKIs alone. DESIGN, SETTING, AND PARTICIPANTS Open-label, randomized, phase 2 trial conducted at the Instituto Nacional de Cancerología (INCan), Mexico City, Mexico. Eligible patients were 18 years or older, had histologically confirmed stage IIIB-IV lung adenocarcinoma with an activating EGFR mutation. INTERVENTIONS Patients were randomly allocated to receive EGFR-TKIs (erlotinib hydrochloride, afatinib dimaleate, or gefitinib at standard dosage) plus metformin hydrochloride (500 mg twice a day) or EGFR-TKIs alone. Treatment was continued until occurrence of intolerable toxic effects or withdrawal of consent. MAIN OUTCOMES AND MEASURES The primary outcome was PFS in the intent-to-treat population. Secondary outcomes included objective response rate, disease control rate, overall survival (OS), and safety. RESULTS Between March 31, 2016, and December 31, 2017, a total of 139 patients (mean [SD] age, 59.4 [12.0] years; 65.5% female) were randomly assigned to receive EGFR-TKIs (n = 70) or EGFR-TKIs plus metformin (n = 69). The median PFS was significantly longer in the EGFR-TKIs plus metformin group (13.1; 95% CI, 9.8-16.3 months) compared with the EGFR-TKIs group (9.9; 95% CI, 7.5-12.2 months) (hazard ratio, 0.60; 95% CI, 0.40-0.94; P = .03). The median OS was also significantly longer for patients receiving the combination therapy (31.7; 95% CI, 20.5-42.8 vs 17.5; 95% CI, 11.4-23.7 months; P = .02). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study to prospectively show that the addition of metformin to standard EGFR-TKIs therapy in patients with advanced lung adenocarcinoma significantly improves PFS. These results justify the design of a phase 3, placebo-controlled study. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03071705.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | | | - Edgar Vergara
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Norma Hernández-Pedro
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Andrés F. Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Clinical Research and Biology Systems Department, Universidad el Bosque, Bogotá, Colombia
| | - Graciela Cruz-Rico
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Pedro Barrios-Bernal
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Masao Yamamoto Ramos
- Department of Radiology and Imaging, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Research Institute and Hospital Campus Can Ruti, Barcelona, Spain
| |
Collapse
|
36
|
Xiong ZS, Gong SF, Si W, Jiang T, Li QL, Wang TJ, Wang WJ, Wu RY, Jiang K. Effect of metformin on cell proliferation, apoptosis, migration and invasion in A172 glioma cells and its mechanisms. Mol Med Rep 2019; 20:887-894. [PMID: 31173255 PMCID: PMC6625203 DOI: 10.3892/mmr.2019.10369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to determine the effects of metformin on the inhibition of proliferation, apoptosis, invasion and migration of A172 human glioma cells in vitro and determine the underlying mechanism. The effects of metformin at different concentrations (0, 0.1, 1 and 10 mmol/l) on the inhibition of A172 cell proliferation were detected using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. Cell apoptosis was detected by flow cytometry. Caspase‑3 activity was analyzed by spectrophotometry. The invasion and migration of cells were detected by Transwell assays. The levels of Bcl‑2‑associated X protein (Bax), B‑cell lymphoma 2 (Bcl‑2), AMP‑activated protein kinase (AMPK), phosphorylated‑(p)AMPK and mechanistic target of rapamycin (mTOR) protein expression were detected by western blot analysis, and changes in the malondialdehyde (MDA) content and activity of superoxide dismutase (SOD) were determined. Compared with the control group, metformin significantly increased the inhibition of proliferation and apoptosis, and significantly reduced the invasion and migration of A172 cells in dose‑ and time‑dependent manners (P<0.05). In addition, compared with the control group, metformin significantly enhanced the activity of caspase‑3, increased the expression of AMPK/pAMPK/Bax proteins and reduced the expression of mTOR/Bcl‑2 proteins (P<0.05). Metformin increased the MDA content and reduced the activity of SOD in a dose‑dependent manner (P<0.05). Metformin may inhibit glioma cell proliferation, migration and invasion, and promote its apoptosis; the effects may be associated with the AMPK/mTOR signaling pathway and oxidative stress.
Collapse
Affiliation(s)
- Zhang Sheng Xiong
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Song Feng Gong
- Department of Neurosurgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, P.R. China
| | - Wen Si
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Taipeng Jiang
- Department of Neurosurgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, P.R. China
| | - Qing Long Li
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Tie Jun Wang
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Wen Jie Wang
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Rui Yue Wu
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| | - Kun Jiang
- Department of Neurosurgery, Longhua District Central Hospital of Shenzhen, Shenzhen, Guangdong 518110, P.R. China
| |
Collapse
|
37
|
Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H. Energy metabolism modulation by biguanides in comparison with rotenone in rat liver and heart. Arch Toxicol 2019; 93:2603-2615. [DOI: 10.1007/s00204-019-02519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
|
38
|
Metformin induces the AP-1 transcription factor network in normal dermal fibroblasts. Sci Rep 2019; 9:5369. [PMID: 30926854 PMCID: PMC6441003 DOI: 10.1038/s41598-019-41839-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Metformin is a widely-used treatment for type 2 diabetes and is reported to extend health and lifespan as a caloric restriction (CR) mimetic. Although the benefits of metformin are well documented, the impact of this compound on the function and organization of the genome in normal tissues is unclear. To explore this impact, primary human fibroblasts were treated in culture with metformin resulting in a significant decrease in cell proliferation without evidence of cell death. Furthermore, metformin induced repositioning of chromosomes 10 and 18 within the nuclear volume indicating altered genome organization. Transcriptome analyses from RNA sequencing datasets revealed that alteration in growth profiles and chromosome positioning occurred concomitantly with changes in gene expression profiles. We further identified that different concentrations of metformin induced different transcript profiles; however, significant enrichment in the activator protein 1 (AP-1) transcription factor network was common between the different treatments. Comparative analyses revealed that metformin induced divergent changes in the transcriptome than that of rapamycin, another proposed mimetic of CR. Promoter analysis and chromatin immunoprecipitation assays of genes that changed expression in response to metformin revealed enrichment of the transcriptional regulator forkhead box O3a (FOXO3a) in normal human fibroblasts, but not of the predicted serum response factor (SRF). Therefore, we have demonstrated that metformin has significant impacts on genome organization and function in normal human fibroblasts, different from those of rapamycin, with FOXO3a likely playing a role in this response.
Collapse
|
39
|
Preliminary Results that Assess Metformin Treatment in a Preclinical Model of Pancreatic Cancer Using Simultaneous [ 18F]FDG PET and acidoCEST MRI. Mol Imaging Biol 2019; 20:575-583. [PMID: 29374343 DOI: 10.1007/s11307-018-1164-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE We sought to determine if the synergy between evaluations of glucose uptake in tumors and extracellular tumor acidosis measured with simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) can improve longitudinal evaluations of the response to metformin treatment. PROCEDURES A standard 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET protocol that evaluates glucose uptake in tumors, and a standard acidoCEST MRI protocol that measures extracellular pH (pHe) in tumors, were simultaneously performed to assess eight vehicle-treated (control) mice and eight metformin-treated mice 1 day before treatment, 1 day after initiating daily treatment with metformin, and 7 days after initiating treatment. Longitudinal changes in SUVmax and extracellular pH (pHe) were evaluated for each treatment group, and differences in SUVmax and pHe between metformin-treated and control groups were also evaluated. RESULTS MRI acquisition protocols had little effect on the PET count rate, and the PET instrumentation had little effect on image contrast during acidoCEST MRI, verifying that [18F]FDG PET and acidoCEST MRI can be performed simultaneously. The average SUVmax of the tumor model had a significant decrease after 7 days of treatment with metformin, as expected. The average tumor pHe decreased after 7 days of metformin treatment, which reflected the inhibition of the consumption of cytosolic lactic acid caused by metformin. However, the average SUVmax of the tumor model was not significantly different between the metformin-treated and control groups after 7 days of treatment, and average pHe was also not significantly different between these groups. For comparison, the combination of average SUVmax and pHe measurements significantly differed between the treatment group and control group on Day 7. CONCLUSIONS [18F]FDG PET and acidoCEST MRI studies can be performed simultaneously. The synergistic combination of assessing glucose uptake and tumor acidosis can improve differentiation of a drug-treated group from a control group during drug treatment of a tumor model.
Collapse
|
40
|
Bergamino M, Rullan AJ, Saigí M, Peiró I, Montanya E, Palmero R, Ruffinelli JC, Navarro A, Arnaiz MD, Brao I, Aso S, Padrones S, Cardenal F, Nadal E. Fasting plasma glucose is an independent predictor of survival in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. BMC Cancer 2019; 19:165. [PMID: 30791870 PMCID: PMC6385407 DOI: 10.1186/s12885-019-5370-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/11/2019] [Indexed: 02/02/2023] Open
Abstract
Background Diabetes is related with increased cancer mortality across multiple cancer types. Its role in lung cancer mortality is still unclear. We aim to determine the prognostic value of fasting plasma glucose (FPG) and diabetes mellitus in patients with locally advanced non-small cell lung cancer (NSCLC) treated with concurrent chemoradiotherapy. Methods One-hundred seventy patients with stage III NSCLC received definitive concurrent chemoradiotherapy from 2010 to 2014. Clinico-pathological data and clinical outcome was retrospectively registered. Fifty-six patients (33%), met criteria for type 2 diabetes mellitus (T2DM) at baseline. The prognostic value of FPG and other clinical variables was assessed. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan–Meier method and Cox proportional models and log-rank test were used. Results With a median follow-up of 36 months, median PFS was 8.0 months and median OS was 15.0 months in patients with FPG ≥7 mmol/L compared to 20 months (HR 1.13; 95% CI 1.07–1.19, p < 0.001) and 31 months (HR 1.09; 95% CI 1.04–1.15; p < 0.001) respectively, for patients with FPG < 7 mmol/L. In the multivariate analysis of the entire cohort adjusted by platinum compound and comorbidities, high levels of FPG as a continuous variable (HR 1.14; 95% CI 1.07–1.21; p < 0.001), the presence of comorbidity (HR 1.72; 95% CI 1.12–2.63; p = 0.012), and treatment with carboplatin (HR 1.95; 95% CI 1.26–2.99; p = 0.002) were independent predictors for shorter OS. In additional multivariate models considering non-diabetic patients as a reference group, diabetic patients with poor metabolic control (HbA1c > 8.5%) (HR 4.53; 95% CI 2.21–9.30; p < 0.001) and those receiving insulin (HR 3.22; 95% CI 1.90–5.46 p < 0.001) had significantly independent worse OS. Conclusion Baseline FPG level is an independent predictor of survival in our cohort of patients with locally advanced NSCLC treated with concurrent chemoradiotherapy. Studies in larger cohorts of patients are warranted to confirm this relevant association. Electronic supplementary material The online version of this article (10.1186/s12885-019-5370-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milana Bergamino
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Antonio J Rullan
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Maria Saigí
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Inmaculada Peiró
- Clinical Nutrition Unit, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet, Barcelona, Spain
| | - Eduard Montanya
- Department of Endocrinology, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Hospital Universitari de Bellvitge, IDIBELL, CIBERDEM, L'Hospitalet, Barcelona, Spain
| | - Ramón Palmero
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - José Carlos Ruffinelli
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Arturo Navarro
- Department of Radiation Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet, Barcelona, Spain
| | - María Dolores Arnaiz
- Department of Radiation Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet, Barcelona, Spain
| | - Isabel Brao
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Samantha Aso
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Susana Padrones
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Felipe Cardenal
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Thoracic Oncology Division, Catalan Institute of Oncology, Hospital Duran i Reynals, Avda Gran via, 199-203, L'Hospitalet, 08908, Barcelona, Spain. .,Clinical Research in Solid Tumors Group (CReST), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
41
|
The Interplay between MicroRNAs and Cellular Components of Tumour Microenvironment (TME) on Non-Small-Cell Lung Cancer (NSCLC) Progression. J Immunol Res 2019; 2019:3046379. [PMID: 30944831 PMCID: PMC6421779 DOI: 10.1155/2019/3046379] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Cellular components of the tumour microenvironment (TME) are recognized to regulate the hallmarks of cancers including tumour proliferation, angiogenesis, invasion, and metastasis, as well as chemotherapeutic resistance. The linkage between miRNA, TME, and the development of the hallmarks of cancer makes miRNA-mediated regulation of TME a potential therapeutic strategy to complement current cancer therapies. Despite significant advances in cancer therapy, lung cancer remains the deadliest form of cancer among males in the world and has overtaken breast cancer as the most fatal cancer among females in more developed countries. Therefore, there is an urgent need to develop more effective treatments for NSCLC, which is the most common type of lung cancer. Hence, this review will focus on current literature pertaining to antitumour or protumourigenic effects elicited by nonmalignant stromal cells of TME in NSCLC through miRNA regulation as well as current status and future prospects of miRNAs as therapeutic agents or targets to regulate TME in NSCLC.
Collapse
|
42
|
Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci Rep 2019; 9:1282. [PMID: 30718758 PMCID: PMC6361966 DOI: 10.1038/s41598-018-38004-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is an extensively used chemotherapeutic drug for lung cancer, but the development of resistance decreases its effectiveness in the treatments of non-small cell lung cancer (NSCLC). In this study, we examined the effects of metformin, a widely used antidiabetic drug, on cisplatin radiosensitization in NSCLC cell lines. Human NSCLC cell lines, A549 (cisplatin-resistant) and H460 (cisplatin-sensitive), were treated with metformin, cisplatin or a combination of both drugs before ionizing radiation. Cell proliferation, clonogenic assays, western blotting, cisplatin-DNA adduct formation and immunocytochemistry were used to characterize the treatments effects. Metformin increased the radiosensitivity of NSCLC cells. Metformin showed additive and over-additive effects in combination with cisplatin and the radiation response in the clonogenic assay in H460 and A549 cell lines (p = 0.018 for the interaction effect between cisplatin and metformin), respectively. At the molecular level, metformin led to a significant increase in cisplatin-DNA adduct formation compared with cisplatin alone (p < 0.01, ANOVA-F test). This was accompanied by a decreased expression of the excision repair cross-complementation 1 expression (ERCC1), a key enzyme in nucleotide excision repair pathway. Furthermore, compared with each treatment alone metformin in combination with cisplatin yielded the lowest level of radiation-induced Rad51 foci, an essential protein of homologous recombination repair. Ionizing radiation-induced γ-H2AX and 53BP1 foci persisted longer in both cell lines in the presence of metformin. Pharmacological inhibition of AMP-activated protein kinase (AMPK) demonstrated that metformin enhances the radiosensitizing effect of cisplatin through an AMPK-dependent pathway only in H460 but not in A549 cells. Our results suggest that metformin can enhance the effect of combined cisplatin and radiotherapy in NSCLC and can sensitize these cells to radiation that are not sensitized by cisplatin alone.
Collapse
|
43
|
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM, Kim DH. Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med 2019; 23:2872-2889. [PMID: 30710424 PMCID: PMC6433689 DOI: 10.1111/jcmm.14194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.
Collapse
Affiliation(s)
- Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dongho Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
44
|
Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, Chiu HY. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol 2019; 54:1271-1281. [PMID: 30720062 PMCID: PMC6411354 DOI: 10.3892/ijo.2019.4704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti-neoplastic effects on various types of tumors via adenosine monophosphate-activated protein kinase (AMPK) signaling. However, the role of metformin in AMPK-mediated apoptosis of human gastric cancer cells is poorly understood. In the current study, metformin exhibited a potent anti-proliferative effect and induced apoptotic characteristics in human AGS gastric adenocarcinoma cells, as demonstrated by MTT assay, morphological observation method, terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3/7 assay kits. Western blot analysis demonstrated that treatment with metformin increased the phosphorylation of AMPK, and decreased the phosphorylation of AKT, mTOR and p70S6k. Compound C (an AMPK inhibitor) suppressed AMPK phosphorylation and significantly abrogated the effects of metformin on AGS cell viability. Metformin also reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK and p38). Additionally, metformin significantly increased the cellular ROS level and included loss of mitochondrial membrane potential (ΔΨm). Metformin altered apoptosis-associated signaling to downregulate the BAD phosphorylation and Bcl-2, pro-caspase-9, pro-caspase-3 and pro-caspase-7 expression, and to upregulate BAD, cytochrome c, and Apaf-1 proteins levels in AGS cells. Furthermore, z-VAD-fmk (a pan-caspase inhibitor) was used to assess mitochondria-mediated caspase-dependent apoptosis in metformin-treated AGS cells. The findings demonstrated that metformin induced AMPK-mediated apoptosis, making it appealing for development as a novel anticancer drug for the treating gastric cancer.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40404, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi 62241, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan, R.O.C
| |
Collapse
|
45
|
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2018; 44:6-22. [PMID: 30218625 DOI: 10.1111/jcpt.12759] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE In order to expedite the availability of drugs to treat cancers in a cost-effective manner, repurposing of old drugs for oncological indications is gathering momentum. Revolutionary advances in pharmacology and genomics have demonstrated many old drugs to have activity at novel antioncogenic pharmacological targets. We decided to investigate whether prospective studies support the promises of nonclinical and retrospective clinical studies on repurposing three old drugs, namely metformin, valproate and astemizole. METHODS We conducted an extensive literature search through PubMed to gather representative nonclinical and retrospective clinical studies that investigated the potential repurposing of these three drugs for oncological indications. We then searched for prospective studies aimed at confirming the promises of retrospective data. RESULTS AND DISCUSSION While evidence from nonclinical and retrospective clinical studies with these drugs appears highly promising, large scale prospective studies are either lacking or have failed to substantiate this promise. We provide a brief discussion of some of the challenges in repurposing. Principal challenges and obstacles relate to heterogeneity of cancers studied without considering their molecular signatures, trials with small sample size and short duration, failure consider issues of ethnicity of study population and effective antioncogenic doses of the drug studied. WHAT IS NEW AND CONCLUSION Well-designed prospective studies demonstrating efficacy are required for repurposing old drugs for oncology indications, just as they are for new chemical entities for any indication. Early and ongoing interactions with regulatory authorities are invaluable. We outline a tentative framework for a structured approach to repurposing old drugs for novel indications in oncology.
Collapse
Affiliation(s)
- Rashmi R Shah
- Pharmaceutical Consultant, Gerrards Cross, Buckinghamshire, UK
| | - Peter D Stonier
- Department of Pharmaceutical Medicine, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| |
Collapse
|
46
|
Abstract
Metformin is a lipophilic biguanide which inhibits hepatic gluconeogenesis and improves peripheral utilization of glucose. It is the first line pharmacotherapy for glucose control in patients with Type 2 diabetes due to its safety, efficacy and tolerability. Metformin exhibits pleotropic effects, which may have beneficial effects on a variety of tissues independent of glucose control. A potential anti-tumourigenic effect of metformin may be mediated by its role in activating AMP-kinase, which in turn inhibits mammalian target of rapamycin (mTOR). Non-AMPK dependent protective pathways may include reduction of insulin, insulin-like growth factor-1, leptin, inflammatory pathways and potentiation of adiponectin, all of which may have a role in tumourigenesis. A role in inhibiting cancer stem cells is also postulated. A number of large scale observational and cohort studies suggest metformin is associated with a reduced risk of a number of cancers, although the data is not conclusive. Recent randomised studies reporting use of metformin in treatment of cancer have revealed mixed results, and the results of much larger randomised trials of metformin as an adjuvant therapy in breast and colorectal cancers are awaited.
Collapse
Affiliation(s)
- Ritwika Mallik
- (a)International Training Fellow in Endocrinology and Diabetes, Department of Diabetes and Metabolism, Barts Health NHS Trust, London, UK
| | - Tahseen A Chowdhury
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
47
|
Maniar K, Singh V, Moideen A, Bhattacharyya R, Chakrabarti A, Banerjee D. Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders. Biomed Pharmacother 2018; 107:495-506. [PMID: 30114633 DOI: 10.1016/j.biopha.2018.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
The management of chronic lung diseases such as cancer, asthma, COPD and pulmonary hypertension remains unsatisfactory till date, and several strategies are being tried to control the same. Metformin, a popular anti-diabetic drug has shown promising effects in pre-clinical studies and has been subject to several trials in patients with debilitating pulmonary diseases. However, the clinical evidence for the use of metformin in these conditions is disappointing. Recent observations suggest that metformin use in diabetic patients is associated with an increase in butyrate-producing bacteria in the gut microbiome. Butyrate, similar to metformin, shows beneficial effects in pathological conditions found in pulmonary diseases. Further, the pharmacokinetic data of metformin suggests that metformin is predominantly concentrated in the gut, even after absorption. Butyrate, on the other hand, has a short half-life and thus oral supplementation of butyrate and metformin is unlikely to result in high concentrations of these drugs in the lung. In this paper, we review the pre-clinical studies of metformin and butyrate pertaining to pathologies commonly encountered in chronic lung diseases and underscore the need to administer these drugs directly to the lung via the inhalational route.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Vandana Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, India
| | - Amal Moideen
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Dibyajyoti Banerjee
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India.
| |
Collapse
|
48
|
Xu S, Yang Z, Jin P, Yang X, Li X, Wei X, Wang Y, Long S, Zhang T, Chen G, Sun C, Ma D, Gao Q. Metformin Suppresses Tumor Progression by Inactivating Stromal Fibroblasts in Ovarian Cancer. Mol Cancer Ther 2018; 17:1291-1302. [PMID: 29545331 DOI: 10.1158/1535-7163.mct-17-0927] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Sen Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongyuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ya Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sixiang Long
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taoran Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Davies G, Lobanova L, Dawicki W, Groot G, Gordon JR, Bowen M, Harkness T, Arnason T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One 2017; 12:e0187191. [PMID: 29211738 PMCID: PMC5718420 DOI: 10.1371/journal.pone.0187191] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple drug resistant (MDR) malignancy remains a predictable and often terminal event in cancer therapy, and affects individuals with many cancer types, regardless of the stage at which they were originally diagnosed or the interval from last treatment. Protein biomarkers of MDR are not globally used for clinical decision-making, but include the overexpression of drug-efflux pumps (ABC transporter family) such as MDR-1 and BCRP, as well as HIF1α, a stress responsive transcription factor found elevated within many MDR tumors. Here, we present the important in vitro discovery that the development of MDR (in breast cancer cells) can be prevented, and that established MDR could be resensitized to therapy, by adjunct treatment with metformin. Metformin is prescribed globally to improve insulin sensitivity, including in those individuals with Type 2 Diabetes Mellitus (DM2). We demonstrate the effectiveness of metformin in resensitizing MDR breast cancer cell lines to their original treatment, and provide evidence that metformin may function through a mechanism involving post-translational histone modifications via an indirect histone deacetylase inhibitor (HDACi) activity. We find that metformin, at low physiological concentrations, reduces the expression of multiple classic protein markers of MDR in vitro and in preliminary in vivo models. Our demonstration that metformin can prevent MDR development and resensitize MDR cells to chemotherapy in vitro, provides important medical relevance towards metformin’s potential clinical use against MDR cancers.
Collapse
Affiliation(s)
- Gerald Davies
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Liubov Lobanova
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gary Groot
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John R. Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew Bowen
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Terra Arnason
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
50
|
Yousef M, Vlachogiannis IA, Tsiani E. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients 2017; 9:nu9111231. [PMID: 29125563 PMCID: PMC5707703 DOI: 10.3390/nu9111231] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled cell growth and resistance to apoptosis characterize cancer cells. These two main features are initiated in cancer cells through mutations in key signaling molecules, which regulate pathways that are directly involved in controlling cell proliferation and apoptosis. Resveratrol (RSV), a naturally occurring plant polyphenol, has been shown to have biological effects counteracting different diseases. It has been found to provide cardio-protective, neuro-protective, immuno-modulatory, and anti-cancer health benefits. RSV has been found to inhibit cancer cell proliferation, induce cell cycle arrest and apoptosis, and these anticancer effects may be due to its ability to modulate signaling molecules involved in these processes. The present review summarizes the existing in vitro and in vivo studies on resveratrol and its anti-lung cancer properties.
Collapse
Affiliation(s)
- Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | | | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|