1
|
Stancu MM. Investigating the Potential of Native Soil Bacteria for Diesel Biodegradation. Microorganisms 2025; 13:564. [PMID: 40142457 PMCID: PMC11945675 DOI: 10.3390/microorganisms13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
In countries with a long petroleum extraction and processing history, such as Romania, extensive soil areas are often polluted with petroleum and its derivatives, posing significant environmental and human health risks. This study explores the diesel biodegradation potential of two native bacterial consortia isolated from hydrocarbon-polluted soils, focusing on their phenotypic and molecular characteristics, growth kinetics, alkane hydroxylase activity, hydrolase production, and biosurfactant synthesis capabilities. The bacterial consortia, CoP1 and CoP2, were successfully obtained using the standard successive enrichment culture method from two soil samples collected from a region affected by petroleum pollution. The CoP1 and CoP2 consortia demonstrated efficient diesel-degrading capabilities, achieving 50.81-84.32% degradation when cultured in a minimal medium containing 1-10% (v/v) diesel as the sole carbon and energy source. This biodegradation potential was corroborated by their significant alkane hydroxylase activity and the detection of multiple catabolic genes in their genomes. The CoP1 consortium contains at least four catabolic genes (alkB, alkM, todM, ndoM) as well as rhamnosyltransferase 1 genes (rhlAB), while the CoP2 consortium contains only two catabolic genes (ndoM, C23DO). The RND transporter gene (HAE1) was present in both consortia. Secondary metabolites, such as glycolipid-type biosurfactants, as well as extracellular hydrolases (protease, amylase, cellulase, and lipase), were produced by both consortia. The CoP1 and CoP2 consortia demonstrate exceptional efficiency in diesel degradation and biosurfactant production, making them well suited for the bioremediation of soils contaminated with petroleum and its derivatives.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania
| |
Collapse
|
2
|
Kumar R, De M. Simultaneous bioremediation of diesel-contaminated soil and water ecosystems using mixed culture of Acinetobacter baumannii IITG19 and Providencia vermicola IITG20. ENVIRONMENTAL TECHNOLOGY 2025; 46:509-526. [PMID: 38837716 DOI: 10.1080/09593330.2024.2361171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Diesel degradation and bacterial growth were investigated in soil, marine water, and freshwater ecosystems using Acinetobacter baumannii IITG19, Providencia vermicola IITG20, and their mixed culture. Both bacteria were found to be effective in all three ecosystems, with the best degradation occurring in freshwater. Acinetobacter baumannii IITG19 showed higher degradation (59%, 62%, and 76%) than Providencia vermicola IITG20 (31%, 57%, and 67%) in soil, marine water, and freshwater, respectively. Alkanes showed higher degradation than naphthenes and aromatics for both strains. The mixed culture showed higher diesel degradation efficiency than individual strains in all ecosystems. The overall degradation was similar in soil and marine water (66%), while freshwater showed the highest degradation of 81%. In the presence of the mixed culture, the degradation of alkanes was more than 90%. Bacterial growth was highest in freshwater and lowest in soil for both bacteria and the mixed culture. Metabolite analysis confirmed alcoholic degradation for alkanes and cyclo-alcoholic degradation for naphthenes. The degradation rate for mixed culture was higher than that of both the individual strains. The mixed culture had highest degradation rate constant in freshwater at 0.11 day-1 followed by that in marine ecosystem at 0.078 day-1. The rate constant was lowest for soil ecosystem at 0.066 day-1. Thus the mixed culture showed effectiveness in all three ecosystems, with its highest effectiveness observed in the freshwater ecosystem.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mahuya De
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
3
|
Sürmeli Y, Durmuş N, Şanlı-Mohamed G. Exploring the Structural Insights of Thermostable Geobacillus esterases by Computational Characterization. ACS OMEGA 2024; 9:32931-32941. [PMID: 39100300 PMCID: PMC11292637 DOI: 10.1021/acsomega.4c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
This study conducted an in silico analysis of two biochemically characterized thermostable esterases, Est2 and Est3, from Geobacillus strains. To achieve this, the amino acid sequences of Est2 and Est3 were examined to assess their biophysicochemical properties, evolutionary connections, and sequence similarities. Three-dimensional models were constructed and validated through diverse bioinformatics tools. Molecular dynamics (MD) simulation was employed on a pNP-C2 ligand to explore interactions between enzymes and ligand. Biophysicochemical property analysis indicated that aliphatic indices and theoretical T m values of enzymes were between 82-83 and 55-65 °C, respectively. Molecular phylogeny placed Est2 and Est3 within Family XIII, alongside other Geobacillus esterases. DeepMSA2 revealed that Est2, Est3, and homologous sequences shared 12 conserved residues in their core domain (L39, D50, G53, G55, S57, G92, S94, G96, P108, P184, D193, and H223). BANΔIT analysis indicated that Est2 and Est3 had a significantly more rigid cap domain compared to Est30. Salt bridge analysis revealed that E150-R136, E124-K165, E137-R141, and E154-K157 salt bridges made Est2 and Est3 more stable compared to Est30. MD simulation indicated that Est3 exhibited greater fluctuations in the N-terminal region including conserved F25, cap domain, and C-terminal region, notably including H223, suggesting that these regions might influence esterase catalysis. The common residues in the ligand-binding sites of Est2-Est3 were determined as F25 and L167. The analysis of root mean square fluctuation (RMSF) revealed that region 1, encompassing F25 within the β2-α1 loop of Est3, exhibited higher fluctuations compared to those of Est2. Overall, this study might provide valuable insights for future investigations aimed at improving esterase thermostability and catalytic efficiency, critical industrial traits, through targeted amino acid modifications within the N-terminal region, cap domain, and C-terminal region using rational protein engineering techniques.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department
of Agricultural Biotechnology, Tekirdağ
Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Naciye Durmuş
- Department
of Molecular Biology and Genetics, İstanbul
Technical University, 34485 İstanbul, Turkey
| | | |
Collapse
|
4
|
Song JZ, Wang CQ, Yu GS, Sun Z, Wu AH, Chi ZM, Liu GL. Simultaneous production of biosurfactant and extracellular unspecific peroxygenases by Moesziomyces aphidis XM01 enables an efficient strategy for crude oil degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134437. [PMID: 38691934 DOI: 10.1016/j.jhazmat.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.
Collapse
Affiliation(s)
- Ji-Zheng Song
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chu-Qi Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guan-Shuo Yu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhe Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ai-Hua Wu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhen-Ming Chi
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
| | - Guang-Lei Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Putcha JP, Kitagawa W. Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species. Microbes Environ 2024; 39:ME24031. [PMID: 39085141 PMCID: PMC11427307 DOI: 10.1264/jsme2.me24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.
Collapse
Affiliation(s)
- Jyothi Priya Putcha
- Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), 2–17–2–1, Tsukisamu-Higashi, Toyohira Ward, Sapporo 062–8517, Japan
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), 2–17–2–1, Tsukisamu-Higashi, Toyohira Ward, Sapporo 062–8517, Japan
| |
Collapse
|
6
|
Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Masi C, Tebiso A, Selva Kumar K. Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon 2023; 9:e12645. [PMID: 36793964 PMCID: PMC9922826 DOI: 10.1016/j.heliyon.2022.e12645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Extremozymes are innovative and robust biocatalysts produced by various microorganisms from harsh environments. As thermophilic organisms can only develop in a few places, studying them in geothermal environments has provided new insights into the origins and evolution of early life and access to significant bio-resources with potential biotechnology applications. The work aimed to isolate and identify likely multiple extracellular enzyme-producing thermophilic bacteria from an Addis Ababa landfill (Qoshe). The streaking approach was used to purify 102 isolates acquired by serial dilution and spread plate method. The isolates were morphologically and biochemically characterized. Thirty-five cellulases, 22 amylase, 17 protease, and nine lipase-producing bacteria were identified using primary screening methods. Further secondary screening using Strain safety evaluation; two bacterial strains (TQ11 and TQ46) were identified. Based on morphological and biochemical tests, they were found to be gram-positive and rod-shaped. Furthermore, molecular identification and phylogenic analysis of selected promising isolates confirmed the identity of the isolates, Paenibacillus dendritiformis (TQ11) and Anoxybacillus flavithermus (TQ46). The results indicated that, multiple extracellular enzyme-producing thermophilic bacteria isolated from a waste dumping area in Addis Ababa offer useful features for environmental sustainability in a wide range of industrial applications due to their biodegradability and specialized stability under extreme conditions, increased raw material utilization, and decreased waste.
Collapse
Affiliation(s)
- Chandran Masi
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Corresponding author. Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
| | - Abel Tebiso
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - K.V. Selva Kumar
- School of Chemical and Bioengineering, Dire Dawa University Institute of Technology, Dire Dawa, Ethiopia
| |
Collapse
|
8
|
Bacteria consortia enhanced hydrocarbon degradation of waxy crude oil. Arch Microbiol 2022; 204:701. [DOI: 10.1007/s00203-022-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/14/2022]
|
9
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
10
|
Rosli NE, Ali MSM, Kamarudin NHA, Masomian M, Latip W, Saadon S, Rahman RNZRA. Structure Prediction and Characterization of Thermostable Aldehyde Dehydrogenase from Newly Isolated Anoxybacillus geothermalis Strain D9. Microorganisms 2022; 10:microorganisms10071444. [PMID: 35889163 PMCID: PMC9322625 DOI: 10.3390/microorganisms10071444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
In nature, aldehyde dehydrogenase (ALDH) is widely distributed and mainly involved in the oxidation of aldehydes. Thermostability is one of the key features for industrial enzymes. The ability of enzymes to withstand a high operating temperature offers many advantages, including enhancing productivity in industries. This study was conducted to understand the structural and biochemical features of ALDH from thermophilic bacterium, Anoxybacillus geothermalis strain D9. The 3D structure of A. geothermalis ALDH was predicted by YASARA software and composed of 24.3% β-sheet located at the center core region. The gene, which encodes 504 amino acids with a molecular weight of ~56 kDa, was cloned into pET51b(+) and expressed in E.coli Transetta (DE3). The purified A. geothermalis ALDH showed remarkable thermostability with optimum temperature at 60 °C and stable at 70 °C for 1 h. The melting point of the A. geothermalis ALDH is at 65.9 °C. Metal ions such as Fe3+ ions inhibited the enzyme activity, while Li+ and Mg2+ enhanced by 38.83% and 105.83%, respectively. Additionally, this enzyme showed tolerance to most non-polar organic solvents tested (xylene, n-dedocane, n-tetradecane, n-hexadecane) in a concentration of 25% v/v. These findings have generally improved the understanding of thermostable A. geothermalis ALDH so it can be widely used in the industry.
Collapse
Affiliation(s)
- Nur Ezzati Rosli
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Shazleen Saadon
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Hydrocarbon Recovery Technology, PETRONAS Research Sdn Bhd, Lot 3288 & 3299, Off Jalan Ayer Hitam, Kawasan Institusi Bangi, Bandar Baru Bangi 43000, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.E.R.); (M.S.M.A.); (N.H.A.K.); (M.M.); (W.L.); (S.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-192760708
| |
Collapse
|
11
|
Schultz J, Argentino ICV, Kallies R, Nunes da Rocha U, Rosado AS. Polyphasic Analysis Reveals Potential Petroleum Hydrocarbon Degradation and Biosurfactant Production by Rare Biosphere Thermophilic Bacteria From Deception Island, an Active Antarctic Volcano. Front Microbiol 2022; 13:885557. [PMID: 35602031 PMCID: PMC9114708 DOI: 10.3389/fmicb.2022.885557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Extreme temperature gradients in polar volcanoes are capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located in maritime Antarctica. The volcano has pronounced temperature gradients over very short distances, from as high as 100°C in the fumaroles to subzero next to the glaciers. These characteristics make Deception a promising source of a variety of bioproducts for use in different biotechnological areas. In this study, we isolated thermophilic bacteria from sediments in fumaroles at two geothermal sites on Deception Island with temperatures between 50 and 100°C, to evaluate the potential capacity of these bacteria to degrade petroleum hydrocarbons and produce biosurfactants under thermophilic conditions. We isolated 126 thermophilic bacterial strains and identified them molecularly as members of genera Geobacillus, Anoxybacillus, and Brevibacillus (all in phylum Firmicutes). Seventy-six strains grew in a culture medium supplemented with crude oil as the only carbon source, and 30 of them showed particularly good results for oil degradation. Of 50 strains tested for biosurfactant production, 13 showed good results, with an emulsification index of 50% or higher of a petroleum hydrocarbon source (crude oil and diesel), emulsification stability at 100°C, and positive results in drop-collapse, oil spreading, and hemolytic activity tests. Four of these isolates showed great capability of degrade crude oil: FB2_38 (Geobacillus), FB3_54 (Geobacillus), FB4_88 (Anoxybacillus), and WB1_122 (Geobacillus). Genomic analysis of the oil-degrading and biosurfactant-producer strain FB4_88 identified it as Anoxybacillus flavithermus, with a high genetic and functional diversity potential for biotechnological applications. These initial culturomic and genomic data suggest that thermophilic bacteria from this Antarctic volcano have potential applications in the petroleum industry, for bioremediation in extreme environments and for microbial enhanced oil recovery (MEOR) in reservoirs. In addition, recovery of small-subunit rRNA from metagenomes of Deception Island showed that Firmicutes is not among the dominant phyla, indicating that these low-abundance microorganisms may be important for hydrocarbon degradation and biosurfactant production in the Deception Island volcanic sediments.
Collapse
Affiliation(s)
- Júnia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - René Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Alexandre Soares Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Hydrolysis of Methylumbeliferyl Substrate Proxies for Esterase Activities as Indicator for Microbial Oil Degradation in the Ocean: Evidence from Observations in the Aftermath of the Deepwater Horizon Oil Spill (Gulf of Mexico). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biological oil weathering facilitated by specialized heterotrophic microbial communities plays a key role in the fate of petroleum hydrocarbon in the ocean. The most common methods of assessing oil biodegradation involve (i) measuring changes in the composition and concentration of oil over time and/or (ii) biological incubations with stable or radio-labelled substrates. Both methods provide robust and invaluable information on hydrocarbon biodegradation pathways; however, they also require extensive sample processing and are expensive in nature. More convenient ways to assess activities within microbial oil degradation networks involve measuring extracellular enzyme activity. This perspective article synthesizes previously published results from studies conducted in the aftermath of the 2010 Deepwater Horizon (DwH) oil spill in the northern Gulf of Mexico (nGoM), to test the hypothesis that fluorescence assays of esterases, including lipase activity, are sensitive indicators for microbial oil degradation in the ocean. In agreement with the rates and patterns of enzyme activity in oil-contaminated seawater and sediments in the nGoM, we found close correlations between esterase activity measured by means of methylumbeliferyl (MUF) oleate and MUF butyrate hydrolysis, and the concentration of petroleum hydrocarbons in two separate laboratory incubations using surface (<1 m) and deep nGoM waters (>1200 m). Correlations between esterase activities and oil were driven by the presence of chemical dispersants, suggesting a connection to the degree of oil dissolution in the medium. Our results clearly show that esterase activities measured with fluorogenic substrate proxies are a good indicator for oil biodegradation in the ocean; however, there are certain factors as discussed in this study that need to be taken into consideration while utilizing this approach.
Collapse
|
13
|
Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287. [PMID: 34670489 PMCID: PMC8527658 DOI: 10.1186/s12866-021-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. Methods Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. Results 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. Conclusions The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02346-4.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
14
|
Qin D, Zheng Q, Zhang P, Lin S, Huang S, Cheng D, Zhang Z. Azadirachtin directly or indirectly affects the abundance of intestinal flora of Spodoptera litura and the energy conversion of intestinal contents mediates the energy balance of intestine-brain axis, and along with decreased expression CREB in the brain neurons. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104778. [PMID: 33771257 DOI: 10.1016/j.pestbp.2021.104778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Azadirachtin is a good growth inhibitor for Lepidopteran larvae, but its effect on the brain neurons, intestinal flora and intestinal contents caused by the growth inhibition mechanism has not been reported yet. This study explored the mechanism of azadirachtin on the growth and development of Spodoptera litura larvae and brain neurons through three aspects: intestinal pathology observation, intestinal flora sequencing, and intestinal content analysis. The results showed that the treatment of azadirachtin led to the pathological changes in the structure of the midgut and the goblet cells in the intestinal wall cells to undergo apoptosis. Changes in the host environment of the intestinal flora lead to changes in the abundance value of the intestinal flora, showing an increase in the abundance value of harmful bacteria such as Sphingomonas and Enterococcus, as well as an increase in the abundance value of excellent flora such as Lactobacillus and Bifidobacterium. Changes in the abundance of intestinal flora will result in changes in intestinal contents and metabolites. The test results show that after azadirachtin treatment, the alkane compounds in the intestinal contents of the larvae are greatly reduced, and the number of the long carbon chain and multi-branched hydrocarbon compounds is increased, unsaturated fatty acids, silicon‑oxygen compounds and ethers. The production of similar substances indicates that azadirachtin has an inhibitory effect on digestive enzymes in the intestines, which results in the inhibition of substance absorption and energy transmission, and ultimately the inhibition of larval growth and brain neurons.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sukun Lin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA. Microbial Biodegradation of Paraffin Wax in Malaysian Crude Oil Mediated by Degradative Enzymes. Front Microbiol 2020; 11:565608. [PMID: 33013795 PMCID: PMC7506063 DOI: 10.3389/fmicb.2020.565608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37–C40 and increase the ratio of C14–C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
Collapse
Affiliation(s)
- Nur Aina Adlan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|