1
|
Bijl M, Lim KRG, Garg S, Nicolas NJ, Visser NL, Aizenberg M, van der Hoeven JES, Aizenberg J. Controlling nanoparticle placement in Au/TiO 2 inverse opal photocatalysts. NANOSCALE 2024; 16:13867-13873. [PMID: 38979601 DOI: 10.1039/d4nr01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.
Collapse
Affiliation(s)
- Marianne Bijl
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| |
Collapse
|
2
|
Martín-Gómez J, Reca-Expósito S, López-Tenllado FJ, Hidalgo-Carrillo J, Marinas A, Urbano FJ. Synthesis of Fe-TiO 2 and Cu-TiO 2 Based Materials by Olive Leaves Biotemplating-Application to Hydrogen Production from Glycerol Photoreforming. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:664. [PMID: 36839032 PMCID: PMC9966289 DOI: 10.3390/nano13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen production is mainly based on the use of fossil fuels, but currently, many alternative routes are being developed, among which the photo-reforming of oxygenated organic compounds stands out. Recently, several studies have been carried out in order to develop new techniques to create bio-inspired TiO2 structures. One of these is 'biotemplating', a process that replicates a biological system in an inorganic TiO2-based structure. In this study, olive by-products-olive leaves-are valorized as a biotemplate for the synthesis of new Fe-TiO2- and Cu-TiO2-based photocatalysts with the aim of improving the replication of the leaf structure and enhancing hydrogen photoproduction. In conclusion, the incorporation of iron and copper decreases the band gap and increases the energetic disorder at the band edges. Moreover, it is verified by SEM and TEM that the metals are not found forming particles but are introduced into the formed TiO2 structure. The accuracy of the internal and external structure replication is improved with the incorporation of Fe in the synthesis, while the incorporation of Cu substantially improves the production of hydrogen, which is multiplied 14 times under UV light and 6 times under sunlight, as compared to a pure TiO2 structure.
Collapse
|
3
|
Shee NK, Kim HJ. Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye. Int J Mol Sci 2022; 23:13702. [PMID: 36430177 PMCID: PMC9696627 DOI: 10.3390/ijms232213702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
4
|
Issa Hamoud H, Wolski L, Pankin I, Bañares MA, Daturi M, El-Roz M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Cham) 2022; 380:37. [PMID: 35951125 DOI: 10.1007/s41061-022-00387-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ilia Pankin
- Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Miguel A Bañares
- Catalytic Spectroscopy Laboratory, Instituto de Catalisis, ICP-CSIC, 28049, Madrid, Spain
| | - Marco Daturi
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France.
| |
Collapse
|
5
|
Enhanced Photocatalytic and Photoluminescence Properties Resulting from Type-I Band Alignment in the Zn2GeO4/g-C3N4 Nanocomposites. Catalysts 2022. [DOI: 10.3390/catal12070692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Well-defined Zn2GeO4/g-C3N4 nanocomposites with a band alignment of type-I were prepared by the ultrasound-assisted solvent method, starting from g-C3N4 nanosheets and incorporating 0, 10, 20, and 40 wt% of Zn2GeO4. In this study, we have investigated in-depth the photoluminescence emission and photocatalytic activity of these nanocomposites. Our experimental results showed that an increased mass ratio of Zn2GeO4 to g-C3N4 can significantly improve their photoluminescence and photocatalytic responses. Additionally, we have noted that the broadband photoluminescence (PL) emission for these nanocomposites reveals three electronic transitions; the first two well-defined transitions (at ca. 450 nm and 488 nm) can be attributed to π*→ lone pair (LP) and π*→π transitions of g-C3N4, while the single shoulder at ca. 532 nm is due to the oxygen vacancy (Vo) as well as the hybridization of 4s and 4p orbital states in the Zn and Ge belonging to Zn2GeO4. These experimental findings are also supported by theoretical calculations performed under periodic conditions based on the density functional theory (DFT) fragment. The theoretical findings for these nanocomposites suggest a possible strain-induced increase in the Zn-O bond length, as well as a shortening of the Ge-O bond of both tetrahedral [ZnO4] and [GeO4] clusters, respectively. Thus, this disordered structure promotes local polarization and a charge gradient in the Zn2GeO4/g-C3N4 interface that enable an efficient separation and transfer of the photoexcited charges. Finally, theoretical results show a good correlation with our experimental data.
Collapse
|
6
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
7
|
Shee NK, Kim HJ. Morphology-controlled self-assembled nanostructures of complementary metalloporphyrin triads obtained through tuning their intermolecular coordination and their photocatalytic degradation of Orange II dye. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the intermolecular metal–ligand coordination mode in a series of (Zn–Sn–Zn) porphyrin triads resulted in the formation of specific nanostructured photocatalysts for the visible light photodegradation of Orange II dye.
Collapse
Affiliation(s)
- Nirmal Kumar Shee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
8
|
Narewadikar N, Rajpure K. Study on effect of deposition temperature on photoelectrocatalyatic performance of immobilized TiO2. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wei X, Akbar MU, Raza A, Li G. A review on bismuth oxyhalide based materials for photocatalysis. NANOSCALE ADVANCES 2021; 3:3353-3372. [PMID: 36133717 PMCID: PMC9418972 DOI: 10.1039/d1na00223f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/01/2021] [Indexed: 05/04/2023]
Abstract
Photocatalytic solar energy transformation is the most encouraging solution to alleviate the environmental crisis and energy scarcity. Bismuth oxyhalide (BiOX) is an emerging class of materials that exhibits photocatalytic properties, such as resilient response to light, which causes enhanced energy conversion (solar energy) owing to their exceptional layered structure and attractive band structure. The present review presents a summary of results from the recent developments on the tuning and design of BiOX-based materials to improve the energy conversion. In particular, the preparation and tuning approaches that have the potential to enhance the photocatalytic behavior of BiOX and some other techniques, such as elemental doping, are addressed, which prevent the rapid recombination of charges, and formation of oxygen vacancies, facilitating an improvement in the photocatalytic reaction. Various frameworks are also presented, displaying the significance of BiOX-based nanocomposites. Finally, the main challenges and opportunities associated with the future progress of BiOX-based materials are presented. This review will provide an extended understanding and offer a preferred direction for the innovative design of BiOX-based materials for environmental and especially energy-based applications.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Punjab 54000 Pakistan
| | - Ali Raza
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Punjab 54000 Pakistan
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
10
|
Wei X, Barkaoui S, Chen J, Cao G, Wu Z, Wang F, Li G. Investigation of Au/Co 3O 4 nanocomposites in glycol oxidation by tailoring Co 3O 4 morphology. NANOSCALE ADVANCES 2021; 3:1741-1746. [PMID: 36132573 PMCID: PMC9419253 DOI: 10.1039/d1na00053e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 05/16/2023]
Abstract
The interfacial perimeter of nanogold and supports is often deemed as the catalytically active site for multiple reactions while the geometrical configuration of the interfacial perimeter at atomic scale is less studied. Herein, gold nanoparticles (NPs) of ca. 2.0 nm are dispersed on Co3O4 support in the shape of nanocubes (dominant Co3O4(001) facet) and nanoplates (Co3O4(111)), which forms different Au-Co3O4 interfaces with respect to the specific facet of the oxide support. A comparison is made on the basis of the interfacial structures and catalytic behavior of ethylene glycol oxidation. STEM analysis identifies that these metallic Au NPs interact with Co3O4 with an orientation relationship of Au/Co3O4(001) and Au/Co3O4(111). XPS and Raman spectroscopy investigations reveal the important variations in the reactivity of surface oxygen, surface Oads/OL ratio, and evolution of surface oxygen vacancies upon variation of the Co3O4 shape. Au/Co3O4-P exhibits much better catalytic activity than the Au/Co3O4-C counterpart in the aerobic oxidation of ethylene glycol, which is promoted by surface oxygen vacancies and intrinsic defects. It has been revealed that the surface oxygen vacancies participate in activating O2, thus making Co3O4-P a superior support for Au NPs in the catalysis of ethylene glycol oxidation.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Sami Barkaoui
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jingwen Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 China
| | - Guiping Cao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 China
| | - Zeying Wu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 China
| | - Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|