1
|
Zhao Y, Xie Z, Hu B, Li Y, Teng A, Zhong F. The effects of polypropylene microplastics on the removal of nitrogen and phosphorus from water by Acorus calamus, Iris tectorum and functional microorganisms. CHEMOSPHERE 2024; 364:143153. [PMID: 39197682 DOI: 10.1016/j.chemosphere.2024.143153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Polypropylene microplastics (PP-MPs), an emerging pollutant, adversely affect the ability of aquatic plants to restore water bodies, thereby compromising the functionality and integrity of wetland ecosystems. This study examines the effects of microplastic stress on the nitrogen and phosphorus removal capacities of Acorus calamus and Iris tectorum, as well as on functional microorganisms within the aquatic system. The findings indicate that under PP-MP stress, the nitrogen and phosphorus absorption capabilities of both plants were diminished. Additionally, there was a significant reduction in the metabolic enzyme activities related to nitrogen and phosphorus in the plants, alongside a notable decrease in leaf nitrogen content. PP-MPs hinder the nutrient uptake of plants, affecting their growth and indirectly reducing their ability to utilize nitrogen and phosphorus. Specifically, in the 10 mg L-1 treatment group, A. calamus and I. tectorum showed reductions in leaf nitrogen content by 23.1% and 31.0%, respectively, and by 14.8% and 27.7% in the 200 mg L-1 treatment group. Furthermore, I. tectorum had higher leaf nitrogen levels than A. calamus. Using fluorescent tagging, the distribution of PP-MPs was traced in the roots, stems, and leaves of the plants, revealing significant growth impairment in both species. This included a considerable decline in photosynthetic pigment synthesis, enhanced oxidative stress responses, and increased lipid peroxidation in cell membranes. PP-MP exposure also significantly reduced the abundance of functional microorganisms involved in denitrification and phosphorus removal at the genus level in aquatic systems. Ecological function predictions revealed a notable decrease in nitrogen cycling functions such as nitrogen respiration and nitrite denitrification among water microorganisms in both treatment groups, with a higher ecological risk potential in the A. calamus treatment group. This study provides new insights into the potential stress mechanisms of PP-MPs on aquatic plants involved in water body remediation and their impacts on wetland ecosystems.
Collapse
Affiliation(s)
- Yilin Zhao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Baoming Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Yuanle Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Aiting Teng
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Feng Zhong
- Safecleen Technology Co.,Ltd., Wuhan, 430062, PR China.
| |
Collapse
|
2
|
Modekwe HU, Daramola MO, Mamo MA, Moothi K. Recent advancements in the use of plastics as a carbon source for carbon nanotubes synthesis - A review. Heliyon 2024; 10:e24679. [PMID: 38304810 PMCID: PMC10830538 DOI: 10.1016/j.heliyon.2024.e24679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Plastics, which majorly consist of polypropylene (PP), polyethylene (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE) and high-density polyethylene (HDPE)), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), etc., are the most abundant municipal solid wastes (MSW). They have been utilized as a cheap carbon feedstock in the synthesis of carbon nanotubes (CNTs) because of their high hydrocarbon content, mainly carbon and hydrogen, especially for the polyolefins. In this review, the detailed progress made so far in the use of plastics (both waste and virgin) as cheap carbon feedstock in the synthesis of CNTs (only) over the years is studied. The primary aim of this work is to provide an expansive landscape made so far, especially in the areas of catalysts, catalyst supports, and the methods employed in their preparations and other operational growth conditions, as well as already explored applications of plastic-derived CNTs. This is to enable researchers to easily access, understand, and summarise previous works done in this area, forging ahead towards improving the yield and quality of plastic-derived CNTs, which could extend their market and use in other purity-sensitive applications.
Collapse
Affiliation(s)
- Helen U. Modekwe
- Renewable Energy and Biomass Research Group, Department of Chemical Engineering, Faculty of Engineering & the Built Environment, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, 0028, Pretoria, South Africa
| | - Messai A. Mamo
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom 2520, South Africa
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein campus, 2028, Johannesburg, South Africa
| |
Collapse
|
3
|
Potylitsyna AR, Rudneva YV, Bauman YI, Plyusnin PE, Stoyanovskii VO, Gerasimov EY, Vedyagin AA, Shubin YV, Mishakov IV. Efficient Production of Segmented Carbon Nanofibers via Catalytic Decomposition of Trichloroethylene over Ni-W Catalyst. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020845. [PMID: 36676584 PMCID: PMC9861240 DOI: 10.3390/ma16020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/03/2023]
Abstract
The catalytic utilization of chlorine-organic wastes remains of extreme importance from an ecological point of view. Depending on the molecular structure of the chlorine-substituted hydrocarbon (presence of unsaturated bonds, intermolecular chlorine-to-hydrogen ratio), the features of its catalytic decomposition can be significantly different. Often, 1,2-dichloroethane is used as a model substrate. In the present work, the catalytic decomposition of trichloroethylene (C2HCl3) over microdispersed 100Ni and 96Ni-4W with the formation of carbon nanofibers (CNF) was studied. Catalysts were obtained by a co-precipitation of complex salts followed by reductive thermolysis. The disintegration of the initial bulk alloy driven by its interaction with the reaction mixture C2HCl3/H2/Ar entails the formation of submicron active particles. It has been established that the optimal activity of the pristine Ni catalyst and the 96Ni-4W alloy is provided in temperature ranges of 500-650 °C and 475-725 °C, respectively. The maximum yield of CNF for 2 h of reaction was 63 g/gcat for 100Ni and 112 g/gcat for 96Ni-4W catalyst. Longevity tests showed that nickel undergoes fast deactivation (after 3 h), whereas the 96Ni-4W catalyst remains active for 7 h of interaction. The effects of the catalyst's composition and the reaction temperature upon the structural and morphological characteristics of synthesized carbon nanofibers were investigated by X-ray diffraction analysis, Raman spectroscopy, and electron microscopies. The initial stages of the carbon erosion process were precisely examined by transmission electron microscopy coupled with elemental mapping. The segmented structure of CNF was found to be prevailing in a range of 500-650 °C. The textural parameters of carbon product (SBET and Vpore) were shown to reach maximum values (374 m2/g and 0.71 cm3/g, respectively) at the reaction temperature of 550 °C.
Collapse
Affiliation(s)
- Arina R. Potylitsyna
- Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva, 5, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Str. Pirogova 2, Novosibirsk 630090, Russia
| | - Yuliya V. Rudneva
- Nikolaev Institute of Inorganic Chemistry, Ac. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Yury I. Bauman
- Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Pavel E. Plyusnin
- Nikolaev Institute of Inorganic Chemistry, Ac. Lavrentieva 3, Novosibirsk 630090, Russia
| | | | - Evgeny Y. Gerasimov
- Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Aleksey A. Vedyagin
- Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Yury V. Shubin
- Nikolaev Institute of Inorganic Chemistry, Ac. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Ilya V. Mishakov
- Boreskov Institute of Catalysis, Pr. Ac. Lavrentieva, 5, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Pourebrahimi S. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158396. [PMID: 36055514 PMCID: PMC9424124 DOI: 10.1016/j.scitotenv.2022.158396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/06/2023]
Abstract
Billions of disposable face masks (i.e., single-use masks) are used and discarded worldwide monthly due to the COVID-19 outbreak. The immethodical disposal of these polymer-based wastes containing non-biodegradable constituents (e.g., polypropylene) has provoked marked and severe damage to the ecosystem. Meanwhile, their ever-growing usage significantly strains the present-day waste management measures such as landfilling and incineration, resulting in large quantities of used face-covering masks landing in the environment as importunate contaminants. Hence, alternative waste management strategies are crucially demanded to decrease the negative impacts of face mask contamination. In this venue, developing high-yield, effective, and green routes toward recycling or upcycling face mask wastes (FMWs) into value-added materials is of great importance. While existing recycling processes assist the traditional waste management, they typically end up in materials with downgraded physicochemical, structural, mechanical, and thermal characteristics with reduced values. Therefore, pursuing potential economic upcycling processes would be more beneficial than waste disposal and/or recycling processes. This paper reviews recent advances in the FMWs upcycling methods. In particular, we focus on producing value-added materials via various waste conversion methods, including carbonization (i.e., extreme pyrolysis), pyrolysis (i.e., rapid carbonization), catalytic conversion, chemical treatment, and mechanical reprocessing. Generally, the upcycling methods are promising, firming the vital role of managing FMWs' fate and shedding light on the road of state-of-the-art materials design and synthesis.
Collapse
Affiliation(s)
- Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada.
| |
Collapse
|
5
|
Abstract
The accumulation of waste plastics has caused serious environmental issues due to their unbiodegradable nature and hazardous additives. Converting waste plastics to different carbon nanomaterials (CNMs) is a promising approach to minimize plastic pollution and realize advanced manufacturing of CNMs. The reported plastic-derived carbons include carbon filaments (i.e. carbon nanotubes and carbon nanofibers), graphene, carbon nanosheets, carbon sphere, and porous carbon. In this review, we present the influences of different intrinsic structures of plastics on the pyrolysis intermediates. We also reveal that non-charring plastics are prone to being pyrolyzed into light hydrocarbons while charring plastics are prone to being pyrolyzed into aromatics. Subsequently, light hydrocarbons favor to form graphite while aromatics are inclined to form amorphous carbon during the carbon formation process. In addition, the conversion tendency of different plastics into various morphologies of carbon is concluded. We also discuss other impact factors during the transformation process, including catalysts, temperature, processing duration and templates, and reveal how to obtain different morphological CNMs from plastics. Finally, current technology limitations and perspectives are presented to provide future research directions in effective plastic conversion and advanced CNM synthesis. The impact factors in transforming plastics into carbon nanomaterials are reviewed. The carbon morphology tendency from different plastics is revealed. Directions for future research on plastic carbonization are presented.
Collapse
|
6
|
Eldahshory AI, Emara K, Abd-Elhady MS, Ismail MA. High Quality and Maximizing the Production of CNTs from the Pyrolysis of Waste Polypropylene. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThermal decomposition of plastics by pyrolysis into oil is a successful way of treating wastes. Nevertheless, the production of carbon nanotubes (CNTs) from wastes improves the feasibility of the waste management process. An experimental setup was developed to study the influence of different heating rates on the produced oil by pyrolysis of waste polypropylene (WPP), and the influence of using foamed nickel on the produced CNTs as a function of operating temperature and heating rate. Different heating rates of 5, 10, and 20 °C/min were examined, as well as the different carbon vapor deposition (CVD) temperatures of 600, 700, and 800 °C were studied. It has been found that increasing the heating rate from 5 to 20 °C/min increases the oil yield from 59.3 to 71%, but on the other hand it decreases the quality of the oil. It has been also found that increasing the heating rate decreases the quality of CNTs, i.e., uniform CNTs with small diameter and small wall thickness, and as well as the quantity. The physical properties of the produced CNTs have been improved by increasing the CVD temperature; however, the quantity of CNTs decreased. The highest yield of CNTs produced was 43.12% at the lowest CVD temperature and heating rate examined, i.e., 600 and 5 °C/min, respectively. The optimum heating rate and CVD temperature for the pyrolysis of waste polypropylene to achieve the highest quality of CNTs with moderate production of 39.34%, is the lowest heating rate examined, i.e., 5 °C/min, with a moderate CVD temperature of 700 °C.
Collapse
|
7
|
Effect of the NiO particle size on the activity of Mo/HZSM-5 catalyst physically mixed with NiO in methane dehydroaromatization. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Modekwe HU, Moothi K, Daramola MO, Mamo MA. Corn Cob Char as Catalyst Support for Developing Carbon Nanotubes from Waste Polypropylene Plastics: Comparison of Activation Techniques. Polymers (Basel) 2022; 14:polym14142898. [PMID: 35890673 PMCID: PMC9318988 DOI: 10.3390/polym14142898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
The future and continuity of nanomaterials are heavily dependent on their availability and affordability. This could be achieved when cheap materials are actively employed as starting materials for nanomaterials synthesis. In this study, waste corn cob char was used as support during the preparation of the NiMo catalyst, and the effect of different char-activating techniques on the microstructure, yield and quality of carbon nanotubes (CNTs) obtained from waste polypropylene (PP) plastics using the chemical vapor deposition (CVD) technique was investigated. Properties of the catalysts and obtained nanomaterials were evaluated by XRD, SEM, N2 physisorption experiment, FTIR, Raman spectroscopy and TEM. Results showed improved surface properties of the NiMo catalyst supported on chemically (NiMo/ACX) and physically activated char (NiMo/ACT) compared to the NiMo catalyst supported on non-activated char (NiMo/AC0). High-quality CNTs were deposited over NiMo/ACT compared to NiMo/ACX and NiMo/AC0. It was also observed that different activation methods resulted in the formation of CNTs of different microstructures and yield. Optimum yield (470.0 mg CNTs/g catalyst) was obtained with NiMo/AC0, while NiMo/ACT gave the least product yield (70.0 mg CNTs/g catalyst) of the as-produced nanomaterials. Based on the results of the analysis, it was concluded that utilizing a cheap pyrogenic product of waste corn cob as a catalyst support in a bimetallic NiMo catalyst could offer a promising approach to mass producing CNTs and as a low-cost alternative in CNTs production from waste plastics.
Collapse
Affiliation(s)
- Helen U. Modekwe
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (H.U.M.); (K.M.)
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (H.U.M.); (K.M.)
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria 0028, South Africa;
| | - Messai A. Mamo
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
- Correspondence: ; Tel.: +27-11-559-9001
| |
Collapse
|
9
|
Cai N, Xia S, Li X, Xiao H, Chen X, Chen Y, Bartocci P, Chen H, Williams PT, Yang H. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:47-56. [PMID: 34637978 DOI: 10.1016/j.wasman.2021.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Catalytic pyrolysis is considered a promising strategy for the utilisation of plastic waste from the economic and environmental perspectives. As such, the supporting materials play a critical role in the properties of the catalyst. This study clarified this influence on the dispersion of the iron (Fe) within an experimental context. Four different types of typical supports with different physical structures were introduced and explored in a two-stage fixed-bed reactor; these included metallic oxides (Al2O3, TiO2), a non-metallic oxide (SiO2), and molecular sieves (ZSM-5). The results show that the liquid products were converted into carbon deposits and lighter gaseous products, such as hydrogen. The Al2O3-supported catalyst with a relatively moderate specific surface areas and average pore diameter exhibited improved metal distribution with higher catalytic activity. In comparison, the relatively low specific surface areas of TiO2 and small average pore diameters of ZSM-5 had a negative impact on metal distribution and the subsequent catalytic reformation process; this was because of the inadequate reaction during the catalytic process. The Fe/Al2O3 catalyst produced a higher yield of carbon deposits (30.2 wt%), including over 65% high-value carbon nanotubes (CNTs) and hydrogen content (58.7 vol%). Additionally, more dispersive and uniform CNTs were obtained from the Fe/SiO2 catalyst. The Fe/TiO2 catalyst promoted the formation of carbon fibre twisted like fried dough twist. Notably, there was interesting correspondence between the size of the reduced Fe nanoparticles and the product distribution. Within certain limits, the smaller Fe particle size facilitates the catalytic activity. The smaller and better dispersed Fe particles over the support materials were observed to be essential for hydrocarbon cracking and the subsequent formation of carbon deposits. The findings from this study may provide specific guidance for the preparation of different forms of carbon materials.
Collapse
Affiliation(s)
- Ning Cai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Sunwen Xia
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Xiaoqiang Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Haoyu Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Xu Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China.
| | - Pietro Bartocci
- Department of Engineering, University of Perugia, via G. Duranti 67, 06125 Perugia, Italy
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, PR China.
| |
Collapse
|