1
|
Li SS, Zhou JR, Wang CS, Wang JL, Li YQ, Kulaixi X, Cao LW, Batesurong B, Ye JR. Anti-Inflammatory Regulatory Role of Signal Transducer and Activator of Transcription 3 Phosphorylation in Regulating Hypersensitivity Responses to Echinococcus granulosus Hydatid Cyst Fluid. J Inflamm Res 2025; 18:4585-4593. [PMID: 40191092 PMCID: PMC11971999 DOI: 10.2147/jir.s509286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Objective This study aims to investigate the anti-inflammatory regulatory function of signal transducer and activator of transcription 3 (STAT3) phosphorylation in hypersensitivity responses triggered by Echinococcus granulosus hydatid cyst fluid through in vitro RBL-2H3 cell culture. Methods RBL-2H3 cells were cultured in vitro and sensitized with immunoglobulin E (IgE), followed by intervention with STAT3 inhibitors Stattic and JSI-124. Cells were subsequently exposed to crude Echinococcus granulosus hydatid cyst fluid to induce an allergic reaction. β-Hexosaminidase (HEX) release in the cell supernatant was measured to evaluate degranulation. Apoptosis was detected using flow cytometry, and changes in phosphorylated protein levels were determined via Western Blot analysis. Results Analysis of β-HEX release in the Echinococcus-induced IgE-mediated RBL-2H3 cell degranulation model revealed that both inhibitors effectively inhibited mast cell degranulation (P < 0.01). Apoptosis assays revealed that both inhibitors caused varying degrees of cell damage (P < 0.01), potentially leading to late-stage apoptosis. Conclusion Immunoblotting analyses confirmed that treatment with the two inhibitors reduced STAT3 phosphorylation levels at the S727 and Y705 sites, thereby inhibiting cell degranulation and alleviating immune responses.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Jing-Ru Zhou
- Department of Anesthesiology, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830063, People’s Republic of China
| | - Chun-Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Jia-Ling Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Yu-Qian Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Xilizati Kulaixi
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Li-Wei Cao
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Bayina Batesurong
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| | - Jian-Rong Ye
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, People’s Republic of China
| |
Collapse
|
2
|
Cai XJ, Peng CR, Zhang JY, Li XF, Wang X, Han Y, Zhang HY, Peng X, Li TJ. Mast Cell Infiltration and Subtype Promote Malignant Transformation of Oral Precancer and Progression of Oral Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2203-2214. [PMID: 39087378 PMCID: PMC11339667 DOI: 10.1158/2767-9764.crc-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The role of mast cell (MC), a common myeloid-derived immune cell, in the development of oral squamous cell carcinoma (OSCC) is unclear. The aim of this study was to investigate MC infiltration in oral precancer and oral cancer. The evaluation of immune cell infiltration and its association with prognosis in OSCC used RNA sequencing and multiple public datasets. Multiplex immunofluorescence was used to explore the infiltration of MC in the microenvironment of OSCC and oral precancer and the interaction with CD8+ cells. The role of MC in OSCC progression was verified by in vivo experiments. The resting MC infiltration was mainly present in oral precancer, whereas activated MC infiltration was significantly higher in OSCC. Activated MC was associated with malignant transformation of oral precancer and poor prognosis of OSCC. In vivo studies showed that MC promoted the growth of OSCC. The infiltration of activated MC was negatively correlated with the infiltration of CD8+ T cells. The subtype of MC containing tryptase without chymase (MCT) was significantly higher in OSCC compared with oral precancer and was associated with poor survival. Furthermore, spatial distance analysis revealed a greater distance between MCT and CD8+ cells, which was also linked to poor prognosis in OSCC. Cox regression analysis showed that MCT could be a potential diagnostic and prognostic biomarker. This study provides new insights into the role of MC in the immune microenvironment of OSCC. It might enhance the immunotherapeutic efficacy of OSCC by developing targeted therapies against MC. SIGNIFICANCE In this study, we investigated the role of mast cells (MC) in oral precancer and oral cancer and demonstrated that MCs are involved in oral cancer progression and may serve as a potential diagnostic and prognostic marker. It might improve the immunotherapeutic efficacy through developing targeted therapies against MCs.
Collapse
Affiliation(s)
- Xin-Jia Cai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Chao-Ran Peng
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
| | - Jian-Yun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
| | - Xue-Fen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - He-Yu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
| |
Collapse
|
3
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
4
|
Doulberis M, Papaefthymiou A, Polyzos SA, Boziki M, Kazakos E, Tzitiridou-Chatzopoulou M, Vardaka E, Hammrich C, Kulaksiz H, Riva D, Kiosses C, Linas I, Touloumtzi M, Stogianni A, Kountouras J. Impact of Helicobacter pylori and metabolic syndrome-related mast cell activation on cardiovascular diseases. FRONTIERS IN GASTROENTEROLOGY 2024; 3. [DOI: 10.3389/fgstr.2024.1331330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Helicobacter pylori, a widely renowned bacterium, has recently gained attention owing to its potential impact on extragastric health. The emergence of research linking H. pylori infection with metabolic syndrome (MetS)-related cardiovascular diseases (CVDs) has raised intriguing questions about the pathogenic linkage and its translational implications for clinicians. MetS encompasses a collection of metabolic abnormalities that considerably elevate the risk of CVDs and cerebrovascular diseases. Emerging evidence supports a potential pathogenetic role of H. pylori for MetS-related disorders through mechanisms implicating chronic smoldering inflammation, insulin resistance (IR), and modulation of immune responses. One intriguing aspect of this possible connection is the role of mast cells (MCs), a subset of immune cells representing innate immune system effector cells. They play a fundamental role in innate immune responses and the modulation of adaptive immunity. Activated MCs are commonly found in patients with MetS-related CVD. Recent studies have also suggested that H. pylori infection may activate MCs, triggering the release of pro-inflammatory mediators that contribute to IR and atherosclerosis. Understanding these intricate interactions at the cellular level provides new insights into the development of therapeutic strategies targeting both H. pylori infection and MetS-related MCs activation. This review investigates the current state of research regarding the potential impact of H. pylori infection and MetS-related MCs activation on the pathophysiology of CVD, thereby opening up new avenues for related research and paving the way for innovative approaches to prevention and treatment in clinical practice
Collapse
|
5
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
6
|
Lei Y, Guo X, Luo Y, Niu X, Xi Y, Xiao L, He D, Bian Y, Zhang Y, Wang L, Peng X, Wang Z, Chen G. Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis. Nat Commun 2024; 15:113. [PMID: 38168103 PMCID: PMC10761862 DOI: 10.1038/s41467-023-44304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.
Collapse
Affiliation(s)
- Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Li Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| |
Collapse
|
7
|
Alimohammadi S, Masuda-Kuroki K, Szöllősi AG, Di Nardo A. Factors Influencing Marker Expressions of Cultured Human Cord Blood-Derived Mast Cells. Int J Mol Sci 2023; 24:14891. [PMID: 37834338 PMCID: PMC10573221 DOI: 10.3390/ijms241914891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells of a hematopoietic origin that play vital roles in innate and adaptive immunity. Human MCs can be isolated and differentiated from various tissue sources, including cord blood, when supplemented with cytokines such as stem cell factor, interleukin 3, and interleukin 6. Our current research study has shown significant differences in the marker expressions of human cord blood-derived mast cells (hCBMCs) based on donor dependency and the type of medium used for culturing and differentiation. These findings are particularly relevant given the challenges of obtaining specialty media influencing MC phenotypic marker expressions. We found that hCBMCs cultured in StemSpanTM-XF medium had a moderate expression of mast/stem cell growth factor receptor Kit (c-KIT) (mRNA and protein), low expressions of FcεRI (mRNA) and TLR2 (mRNA and protein) but had high levels of MRGPRX2 (mRNA and protein) expressions. In contrast, hCBMCs cultured in Stem Line II medium expressed FcεRI and TLR2 (mRNA and protein) with higher c-KIT but had lower MRGPRX2 expressions compared to the hCBMCs cultured in the StemSpanTM-XF medium. These results suggest that it is crucial to consider both donor dependency and the medium when investigating MC functions and that further research is needed to fully understand the impact of these factors on the hCBMC marker expressions.
Collapse
Affiliation(s)
- Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
| | - Attila Gábor Szöllősi
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
| |
Collapse
|
8
|
Mehrani Y, Morovati S, Tieu S, Karimi N, Javadi H, Vanderkamp S, Sarmadi S, Tajik T, Kakish JE, Bridle BW, Karimi K. Vitamin D Influences the Activity of Mast Cells in Allergic Manifestations and Potentiates Their Effector Functions against Pathogens. Cells 2023; 12:2271. [PMID: 37759494 PMCID: PMC10528041 DOI: 10.3390/cells12182271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mast cells (MCs) are abundant at sites exposed to the external environment and pathogens. Local activation of these cells, either directly via pathogen recognition or indirectly via interaction with other activated immune cells and results in the release of pre-stored mediators in MC granules. The release of these pre-stored mediators helps to enhance pathogen clearance. While MCs are well known for their protective role against parasites, there is also significant evidence in the literature demonstrating their ability to respond to viral, bacterial, and fungal infections. Vitamin D is a fat-soluble vitamin and hormone that plays a vital role in regulating calcium and phosphorus metabolism to maintain skeletal homeostasis. Emerging evidence suggests that vitamin D also has immunomodulatory properties on both the innate and adaptive immune systems, making it a critical regulator of immune homeostasis. Vitamin D binds to its receptor, called the vitamin D receptor (VDR), which is present in almost all immune system cells. The literature suggests that a vitamin D deficiency can activate MCs, and vitamin D is necessary for MC stabilization. This manuscript explores the potential of vitamin D to regulate MC activity and combat pathogens, with a focus on its ability to fight viruses.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14174-66191, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| |
Collapse
|
9
|
The Distinct Effects of the Mitochondria-Targeted STAT3 Inhibitors Mitocur-1 and Mitocur-3 on Mast Cell and Mitochondrial Functions. Int J Mol Sci 2023; 24:ijms24021471. [PMID: 36674987 PMCID: PMC9865224 DOI: 10.3390/ijms24021471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
There is accumulating evidence that mitochondria and mitochondrial STAT3 are involved in the activation of mast cells. The mitochondria-targeted curcuminoids Mitocur-1 and Mitocur-3 have been suggested to reduce antigen-dependent mast cell activation by inhibiting mitochondrial STAT3. The aim of the current work was to investigate the mechanisms of action of these mitocurcuminoids on mast cells and mitochondrial functions. The pretreatment of rat basophilic leukemia cells RBL-2H3 with Mitocur-1 and Mitocur-3 decreased antigen-dependent degranulation but did not affect spontaneous degranulation. Both compounds caused mitochondrial fragmentation and increased mitochondrial ROS. Inhibition of Drp1 prevented mitochondrial fragmentation induced by Mitocur-3 but not by Mitocur-1. The antioxidant N-acetylcysteine inhibited mitochondrial fission induced by Mitocur-1 but not Mitocur-3. Mitochondrial fragmentation caused by Mitocur-3 but not Mitocur-1 was accompanied by activation of Drp1 and AMPK. These data suggest a distinct mechanism of action of mitocurcuminoids on the mitochondria of RBL-2H3 cells: Mitocur-3 stimulated AMPK and caused Drp1-dependent mitochondrial fragmentation, while Mitocur-1-induced mitochondrial fission was ROS-dependent. This difference may contribute to the higher toxicity of Mitocur-3 compared to Mitocur-1. The findings contribute to further drug development for inflammatory and allergic diseases.
Collapse
|
10
|
Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients 2022; 15:nu15010123. [PMID: 36615781 PMCID: PMC9824256 DOI: 10.3390/nu15010123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Modern lifestyles deviated considerably from the ancestral routines towards major shifts in diets and increased sedentarism. The trace elements status of the human body is no longer adequately supported by micronutrient-inferior farmed meats and crop commodities produced by the existing agricultural food systems. This is particular evident in the increased obesogenic adipogenesis and low-grade inflammation that fails to resolve with time. The metabolically restrictive environment of the inflamed tissues drives activation and proliferation of transient and resident populations of immune cells in favor of pro-inflammatory phenotypes, as well as a part of the enhanced autoimmune response. As different stages of the immune activation and resolution depend on the availability of specific minerals to maintain the structural integrity of skin and mucus membranes, activation and migration of immune cells, activation of the complement system, and the release of pro-inflammatory cytokines and chemokines, this review discusses recent advances in our understanding of the contribution of select minerals in optimizing the responses of innate and adaptive immune outcomes. An abbreviated view on the absorption, transport, and delivery of minerals to the body tissues as related to metabolic adaptation is considered.
Collapse
|
11
|
Inhibition of Complex I of the Respiratory Chain, but Not Complex III, Attenuates Degranulation and Cytokine Secretion in Human Skin Mast Cells. Int J Mol Sci 2022; 23:ijms231911591. [PMID: 36232895 PMCID: PMC9570238 DOI: 10.3390/ijms231911591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation in the absence of glucose was examined using a metabolic flux analyzer. Effects of the inhibition of mitochondrial complex I (by rotenone A) and III (by myxothiazol) on degranulation and cytokine secretion (IL-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF) were explored by the β-hexosaminidase release assay and multiplex ELISA. IgE-mediated activation rapidly increased the mitochondrial OCR and extracellular acidification; the contribution of non-mitochondrial oxygen consumption remained unchanged at lower levels. Both myxothiazol and rotenone A reduced OCR, the mitochondrial parameters, and extracellular acidification; however, myxothiazol did not affect degranulation and cytokine secretion. In contrast, degranulation and the secretion of IL-6, IL-13, TNF-α, and GM-CSF were reduced by rotenone A, whereas the secretion of IL-4 and IL-5 was not significantly affected. The inhibitors did not affect cell viability. Our results highlight the important role played by mitochondrial respiration in primary human skin MCs and allow for a conclusion on a hierarchy of their effector functions. Drugs targeting specific pathways in mitochondria may provide future options to control MC-driven skin symptoms.
Collapse
|
12
|
Bae M, Kim MB, Lee JY. Fucoxanthin Attenuates the Reprogramming of Energy Metabolism during the Activation of Hepatic Stellate Cells. Nutrients 2022; 14:nu14091902. [PMID: 35565869 PMCID: PMC9103095 DOI: 10.3390/nu14091902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatic stellate cells (HSC) play a major role in developing liver fibrosis. Upon activation during liver injury, activated HSC (aHSC) increase cell proliferation, fibrogenesis, contractility, chemotaxis, and cytokine release. We previously showed that aHSC have increased mitochondrial respiration but decreased glycolysis compared to quiescent HSC (qHSC). We also demonstrated that fucoxanthin (FCX), a xanthophyll carotenoid, has an anti-fibrogenic effect in HSC. The objective of this study was to investigate whether FCX attenuates metabolic reprogramming occurring during HSC activation. Mouse primary HSC were activated in the presence or absence of FCX for seven days. aHSC displayed significantly decreased glycolysis and increased mitochondrial respiration compared to qHSC, which was ameliorated by FCX present during activation. In addition, FCX partially attenuated the changes in the expression of genes involved in glycolysis and mitochondrial respiration, including hexokinase 1 (Hk1), Hk2, peroxisome proliferator-activated receptor γ coactivator 1β, and pyruvate dehydrogenase kinase 3. Our data suggest that FCX may prevent HSC activation by modulating the expression of genes crucial for metabolic reprogramming in HSC.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Department of Food and Nutrition, Interdisciplinary Program in Senior Human Ecology, BK21 FOUR, College of Natural Sciences, Changwon National University, Changwon 51140, Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Correspondence: ; Tel.: +1-(860)-486-1827
| |
Collapse
|
13
|
PDK4 Constitutes a Novel Prognostic Biomarker and Therapeutic Target in Gastric Cancer. Diagnostics (Basel) 2022; 12:diagnostics12051101. [PMID: 35626257 PMCID: PMC9139696 DOI: 10.3390/diagnostics12051101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. We aimed to assess the functional role and clinical significance of pyruvate dehydrogenase kinase (PDK) in GC and explored the underlying mechanisms. The bioinformatics method was used to investigate the expression of PDKs in GC, the effect on clinical outcomes, enriched pathways, interactive network, and the correlation between PDK4 and immune infiltration. Next, PDK expression in the GC cells and tissues were verified by qRT-PCR and western blotting. A Cell Counting Kit-8 (CCK8), colony-formation, Flow cytometry, Transwell and wound healing assays were carried out to evaluate the influence of PDK4 on cell proliferation, invasion and migration. Among PDKs, PDK4 expression was aberrant in GC and identified as an independent prognostic factor. GO analysis, GSEA, and PPI showed that PDK4 expression may regulate cell adhesion, metal ion transport, synaptic activity, and cancer cell metabolism in GC. Analyses of immune infiltration showed that PDK4 correlated with the abundant expression of various immunocytes. Finally, we verified that upregulation of PDK4 expression enhanced the ability of GC cells to proliferate, migrate, and invade. In conclusion, PDK4 was identified as a potential candidate diagnostic biomarker and therapeutic target for GC patients.
Collapse
|
14
|
Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol 2021; 106:2423-2433. [PMID: 34713923 DOI: 10.1113/ep089901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of fat mass and obesity-associated protein (FTO) on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes? What is the main finding and its importance? FTO modification of N6 -methyladenosine (m6 A) is associated with myocardial cell energy metabolism disorder. FTO reduced the m6 A level of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis, and improving energy metabolism of H/R cardiomyocytes. ABSTRACT Energy metabolism disorder is the initial physiological link of myocardial ischaemia-reperfusion injury. Fat mass and obesity-associated protein (FTO) is an N6 -methyladenosine (m6 A) demethylase implicated in several cardiac defects. This study sought to investigate the effect of FTO on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. FTO and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in H/R-induced cardiomyocytes were determined. Cardiomyocyte viability, cytotoxicity and apoptosis were measured. The total RNA and polyA+ RNA contents were isolated from cells. The m6 A level of RNA and the enrichment of m6 A of SERCA2a mRNA were calculated. Several indices such as the glycolytic potential, reactive oxygen species (ROS), mitochondrial activity and ATP content were evaluated. The concentration of calcium in cardiomyocytes was determined. FTO and SERCA2a were poorly expressed in H/R-induced cardiomyocytes. There was an elevated m6 A level in total RNA and enrichment of m6 A in SERCA2a mRNA. H/R treatment reduced the cell viability, mitochondrial membrane potential and ATP content in cardiomyocytes, but increased the cytotoxicity, apoptosis, ROS content and calcium concentration. Upregulation of FTO reversed the preceding findings with downregulation of the m6 A level of SERCA2a mRNA. Downregulation of SERCA2a annulled the promoting effect of FTO on calcium homeostasis and energy metabolism in H/R-induced cardiomyocytes. Collectively, the current study demonstrated that FTO reduced the m6 A level on SERCA2a mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis and improving the energy metabolism of H/R cardiomyocytes.
Collapse
Affiliation(s)
- Wenzheng Deng
- Department of Cardiology, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| | - Liang Li
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|