1
|
Mazurkiewicz-Stanek E, Machnik J, Kopernyk I, Wiertelak W, Maszczak-Seneczko D, Jeruzalska E, Biernatowska A, Makowiecka A, Majkowski M, Biecek P, Trombik T, Donizy P, Mazur AJ. Gelsolin traps ribosomal protein SA (RPSA) within lipid nanodomains of the plasma membrane and modulates the level of protein synthesis in the submembranous region of human skin melanoma cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167686. [PMID: 39842520 DOI: 10.1016/j.bbadis.2025.167686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The connection between the F-actin and ribosome docking to the PM has been reported, but the exact mechanism has remained unclear. Previously, we discovered that gelsolin (GSN) forms complexes with numerous ribosomal proteins, including ribosomal protein SA (RPSA). Now, we have unraveled the mechanism of ribosome recruitment to the lipid nanodomains of the PM, with GSN playing a pivotal role in this process. We demonstrate that GSN directly interacts with RPSA, and microscopic analyses reveal their colocalization in the cell's submembranous region. Through spot variation fluorescence correlation spectroscopy, we confirm that GSN is responsible for trapping RPSA within PM's lipid nanodomains, a process dependent on F-actin. Importantly, we establish a correlation between the GSN level and the level of protein synthesis in melanoma cells. Furthermore, we present compelling evidence that high levels of GSN and RPSA are associated with the progression of cutaneous melanoma and a poorer prognosis for patients.
Collapse
Affiliation(s)
- Ewa Mazurkiewicz-Stanek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland.
| | - Joanna Machnik
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Iryna Kopernyk
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Michał Majkowski
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Przemysław Biecek
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Tomasz Trombik
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland.
| |
Collapse
|
2
|
Lee SY, Roh H, Gonzalez-Perez D, Mackey MR, Kim KY, Hoces D, McLaughlin CN, Adams SR, Nguyen K, Luginbuhl DJ, Luo L, Udeshi ND, Carr SA, Hernández-López RA, Ellisman MH, Alcalde M, Ting AY. Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620861. [PMID: 39554088 PMCID: PMC11565909 DOI: 10.1101/2024.10.29.620861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Enzymes that oxidize aromatic substrates have shown utility in a range of cell-based technologies including live cell proximity labeling (PL) and electron microscopy (EM), but are associated with drawbacks such as the need for toxic H 2 O 2 . Here, we explore laccases as a novel enzyme class for PL and EM in mammalian cells. LaccID, generated via 11 rounds of directed evolution from an ancestral fungal laccase, catalyzes the one-electron oxidation of diverse aromatic substrates using O 2 instead of toxic H 2 O 2 , and exhibits activity selective to the surface plasma membrane of both living and fixed cells. We show that LaccID can be used with mass spectrometry-based proteomics to map the changing surface composition of T cells that engage with tumor cells via antigen-specific T cell receptors. In addition, we use LaccID as a genetically-encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
Collapse
|
3
|
Oziębło S, Mizera J, Górska A, Krzyziński M, Karpiński P, Markiewicz A, Sąsiadek MM, Romanowska-Dixon B, Biecek P, Hoang MP, Mazur AJ, Donizy P. Co-Targeting of DTYMK and PARP1 as a Potential Therapeutic Approach in Uveal Melanoma. Cells 2024; 13:1348. [PMID: 39195238 PMCID: PMC11352547 DOI: 10.3390/cells13161348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults, with no standardized treatment for advanced disease. Based on preliminary bioinformatical analyses DTYMK and PARP1 were selected as potential therapeutic targets. High levels of both proteins were detected in uveal melanoma cells and correlated with increased tumor growth and poor prognosis. In vitro tests on MP41 (BAP1 positive) and MP46 (BAP1 negative) cancer cell lines using inhibitors pamiparib (PARP1) and Ymu1 (DTYMK) demonstrated significant cytotoxic effects. Combined treatment had synergistic effects in MP41 and additive in MP46 cell lines, reducing cell proliferation and inhibiting the mTOR signaling pathway. Furthermore, the applied inhibitors in combination decreased cell motility and migration speed, especially for BAP1-negative cell lines. Our hypothesis of the double hit into tumoral DNA metabolism as a possible therapeutic option in uveal melanoma was confirmed since combined targeting of DTYMK and PARP1 affected all tested cytophysiological parameters with the highest efficiency. Our in vitro findings provide insights into novel therapeutic avenues for managing uveal melanoma, warranting further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Sylwia Oziębło
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Jakub Mizera
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Mateusz Krzyziński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland (P.B.)
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland (M.M.S.)
| | - Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland (B.R.-D.)
| | | | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland (B.R.-D.)
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland (P.B.)
| | - Mai P. Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Antonina J. Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Alsofyani AA, Nedjadi T. Gelsolin, an Actin-Binding Protein: Bioinformatic Analysis and Functional Significance in Urothelial Bladder Carcinoma. Int J Mol Sci 2023; 24:15763. [PMID: 37958747 PMCID: PMC10647509 DOI: 10.3390/ijms242115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 11/15/2023] Open
Abstract
The involvement of the actin-regulatory protein, gelsolin (GSN), in neoplastic transformation has been reported in different cancers including bladder cancer. However, the exact mechanism by which GSN influences bladder cancer development is not well understood. Here, we sought to reveal the functional significance of GSN in bladder cancer by undertaking a comprehensive bioinformatic analysis of TCGA datasets and through the assessment of multiple biological functions. GSN expression was knocked down in bladder cancer cell lines with two siRNA isoforms targeting GSN. Proliferation, migration, cell cycle and apoptosis assays were carried out. GSN expression, enrichment analysis, protein-protein interaction and immune infiltration analysis were verified through online TCGA tools. The data indicated that GSN expression is associated with bladder cancer proliferation, migration and enhanced cell apoptosis through regulation of NF-κB expression. GSN expression correlated with various inflammatory cells and may influence the immunity of the tumor microenvironment. Computational analysis identified several interacting partners which are associated with cancer progression and patient outcome. The present results demonstrate that GSN plays an important role in bladder cancer pathogenesis and may serve as a potential biomarker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| |
Collapse
|
5
|
Wu A, Mazurkiewicz E, Donizy P, Kotowski K, Pieniazek M, Mazur AJ, Czogalla A, Trombik T. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization. Biol Res 2023; 56:32. [PMID: 37312227 DOI: 10.1186/s40659-023-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout (ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition of ABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin β3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.
Collapse
Affiliation(s)
- Ambroise Wu
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krzysztof Kotowski
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Małgorzata Pieniazek
- Department of Oncology and Division of Surgical Oncology, Wrocław Medical University, Pl. Hirszfelda 12, 53-413, Wrocław, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
6
|
Venghateri JB, Dassa B, Morgenstern D, Shreberk-Shaked M, Oren M, Geiger B. Deciphering the involvement of the Hippo pathway co-regulators, YAP/TAZ in invadopodia formation and matrix degradation. Cell Death Dis 2023; 14:290. [PMID: 37185904 PMCID: PMC10130049 DOI: 10.1038/s41419-023-05769-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Invadopodia are adhesive, actin-rich protrusions formed by metastatic cancer cells that degrade the extracellular matrix and facilitate invasion. They support the metastatic cascade by a spatially and temporally coordinated process whereby invading cells bind to the matrix, degrade it by specific metalloproteinases, and mechanically penetrate diverse tissue barriers by forming actin-rich extensions. However, despite the apparent involvement of invadopodia in the metastatic process, the molecular mechanisms that regulate invadopodia formation and function are still largely unclear. In this study, we have explored the involvement of the key Hippo pathway co-regulators, namely YAP, and TAZ, in invadopodia formation and matrix degradation. Toward that goal, we tested the effect of depletion of YAP, TAZ, or both on invadopodia formation and activity in multiple human cancer cell lines. We report that the knockdown of YAP and TAZ or their inhibition by verteporfin induces a significant elevation in matrix degradation and invadopodia formation in several cancer cell lines. Conversely, overexpression of these proteins strongly suppresses invadopodia formation and matrix degradation. Proteomic and transcriptomic profiling of MDA-MB-231 cells, following co-knockdown of YAP and TAZ, revealed a significant change in the levels of key invadopodia-associated proteins, including the crucial proteins Tks5 and MT1-MMP (MMP14). Collectively, our findings show that YAP and TAZ act as negative regulators of invadopodia formation in diverse cancer lines, most likely by reducing the levels of essential invadopodia components. Dissecting the molecular mechanisms of invadopodia formation in cancer invasion may eventually reveal novel targets for therapeutic applications against invasive cancer.
Collapse
Affiliation(s)
- Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
8
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Kot M, Mazurkiewicz E, Wiktor M, Wiertelak W, Mazur AJ, Rahalevich A, Olczak M, Maszczak-Seneczko D. SLC35A2 Deficiency Promotes an Epithelial-to-Mesenchymal Transition-like Phenotype in Madin–Darby Canine Kidney Cells. Cells 2022; 11:cells11152273. [PMID: 35892570 PMCID: PMC9331475 DOI: 10.3390/cells11152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In mammalian cells, SLC35A2 delivers UDP–galactose for galactosylation reactions that take place predominantly in the Golgi lumen. Mutations in the corresponding gene cause a subtype of a congenital disorder of glycosylation (SLC35A2-CDG). Although more and more patients are diagnosed with SLC35A2-CDG, the link between defective galactosylation and disease symptoms is not fully understood. According to a number of reports, impaired glycosylation may trigger the process of epithelial-to-mesenchymal transition (EMT). We therefore examined whether the loss of SLC35A2 activity would promote EMT in a non-malignant epithelial cell line. For this purpose, we knocked out the SLC35A2 gene in Madin–Darby canine kidney (MDCK) cells. The resulting clones adopted an elongated, spindle-shaped morphology and showed impaired cell–cell adhesion. Using qPCR and western blotting, we revealed down-regulation of E-cadherin in the knockouts, while the fibronectin and vimentin levels were elevated. Moreover, the knockout cells displayed reorganization of vimentin intermediate filaments and altered subcellular distribution of a vimentin-binding protein, formiminotransferase cyclodeaminase (FTCD). Furthermore, depletion of SLC35A2 triggered Golgi compaction. Finally, the SLC35A2 knockouts displayed increased motility and invasiveness. In conclusion, SLC35A2-deficient MDCK cells showed several hallmarks of EMT. Our findings point to a novel role for SLC35A2 as a gatekeeper of the epithelial phenotype.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Maciej Wiktor
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Andrei Rahalevich
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
- Correspondence:
| |
Collapse
|