1
|
Datta A, Istiaq A, Tamura S, Ohta K. Bacterial Ribosomes Induce Plasticity in Mouse Adult Fibroblasts. Cells 2024; 13:1116. [PMID: 38994968 PMCID: PMC11240311 DOI: 10.3390/cells13131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.
Collapse
Affiliation(s)
- Anamika Datta
- Department of Stem Cell Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Shigehiko Tamura
- Department of Molecular Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Cao SM, Wu H, Yuan GH, Pan YH, Zhang J, Liu YX, Li S, Xu YF, Wei MY, Yang L, Chen LL. Altered nucleocytoplasmic export of adenosine-rich circRNAs by PABPC1 contributes to neuronal function. Mol Cell 2024; 84:2304-2319.e8. [PMID: 38838666 DOI: 10.1016/j.molcel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.
Collapse
Affiliation(s)
- Shi-Meng Cao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Wu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Hua Yuan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yu-Hang Pan
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Xin Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Feng Xu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Yuan Wei
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
3
|
Guo L, Guo H, Zhang Y, Chen Z, Sun J, Wu G, Wang Y, Zhang Y, Wei X, Li P. Upregulated ribosome pathway plays a key role in HDAC4, improving the survival rate and biofunction of chondrocytes. Bone Joint Res 2023; 12:433-446. [PMID: 37414410 PMCID: PMC10325875 DOI: 10.1302/2046-3758.127.bjr-2022-0279.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Aims To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes.
Collapse
Affiliation(s)
- Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hua Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanyu Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi Chen
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunfei Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Ribosomes and Ribosomal Proteins Promote Plasticity and Stemness Induction in Glioma Cells via Reprogramming. Cells 2022; 11:cells11142142. [PMID: 35883585 PMCID: PMC9323835 DOI: 10.3390/cells11142142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal tumor that develops in the adult brain. Despite advances in therapeutic strategies related to surgical resection and chemo-radiotherapy, the overall survival of patients with GBM remains unsatisfactory. Genetic research on mutation, amplification, and deletion in GBM cells is important for understanding the biological aggressiveness, diagnosis, and prognosis of GBM. However, the efficacy of drugs targeting the genetic abnormalities in GBM cells is limited. Investigating special microenvironments that induce chemo-radioresistance in GBM cells is critical to improving the survival and quality of life of patients with GBM. GBM cells acquire and maintain stem-cell-like characteristics via their intrinsic potential and extrinsic factors from their special microenvironments. The acquisition of stem-cell-like phenotypes and aggressiveness may be referred to as a reprogramming of GBM cells. In addition to protein synthesis, deregulation of ribosome biogenesis is linked to several diseases including cancer. Ribosomal proteins possess both tumor-promotive and -suppressive functions as extra-ribosomal functions. Incorporation of ribosomes and overexpression of ribosomal protein S6 reprogram and induce stem-cell-like phenotypes in GBM cells. Herein, we review recent literature and our published data on the acquisition of aggressiveness by GBM and discuss therapeutic options through reprogramming.
Collapse
|