1
|
Zheng J, Li X, Zhang G, Ren Y, Ren L. Research progress of vimentin in viral infections. Antiviral Res 2025; 236:106121. [PMID: 39978552 DOI: 10.1016/j.antiviral.2025.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Vimentin, a type III intermediate filament protein, has become a focal point in the research of viral infections. It participates in multiple crucial processes during the viral life cycle and the host's antiviral response. During viral entry, it may function as a receptor or co-receptor and interact with viral entry proteins, also influencing endocytic pathways. Furthermore, vimentin engages with replication complexes and modulates the intracellular environment in viral replication. Moreover, vimentin plays significant roles in immune responses and inflammatory reactions during viral infections. This review thoroughly analyzes the recent progress in understanding vimentin's functions during viral infections, covering aspects such as viral entry, replication, and the immune response to achieve a cohesive comprehension of the underlying mechanisms. The antiviral strategies based on vimentin are also discussed, aiming to promote the development of more effective preventive and treatment strategies for viral diseases.
Collapse
Affiliation(s)
- Jiawei Zheng
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Guoqing Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Ying Ren
- Public Computer Education and Research Center, Jilin University, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Li X, Zheng J, Lv X, Han Y, Jiang B, Zhang X, Zhang G, Ren L. Vimentin as a universal receptor for pseudorabies virus infection in pig and human cells. Int J Biol Macromol 2024; 283:137638. [PMID: 39549807 DOI: 10.1016/j.ijbiomac.2024.137638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Pseudorabies virus (PRV), known to infect pigs and found in various species, including humans, shows zoonotic potential. This study identified vimentin (VIM), a highly conserved intermediate filament protein expressed in multiple mammalian species and tissues, as a universal receptor for PRV infections in human and porcine cells. The adsorption of PRV is positively correlated with the level of VIM expressed in different cells. Overexpression and knockdown of VIM significantly increase and decrease PRV adsorption in cells, respectively. Dot blot assay and VOPBA showed that purified VIM can directly bind to PRV virions efficiently in a dose-dependent manner. PRV and VIM are co-localized at the cell membrane of PRV-infected cells. Moreover, PRV mainly binds to host VIM via its conserved amino acid residues in PRV gD (W98, G162, Y164, C205) and gH (C439) and the Rod domain (residues 96-404) of VIM. In addition, regulating the expression of VIM also influences the entry, replication, and release of PRV, which has a similar result to the adsorption. These results demonstrate that VIM, as a universal receptor, can facilitate PRV infection in multiple stages in human and porcine cells, highlighting the zoonosis characteristics of PRV and the need for more attention.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinru Lv
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yaqi Han
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Boheng Jiang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinwei Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guoqing Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
3
|
Suprewicz Ł, Zakrzewska M, Okła S, Głuszek K, Sadzyńska A, Deptuła P, Fiedoruk K, Bucki R. Extracellular vimentin as a modulator of the immune response and an important player during infectious diseases. Immunol Cell Biol 2024; 102:167-178. [PMID: 38211939 DOI: 10.1111/imcb.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Vimentin, an intermediate filament protein primarily recognized for its intracellular role in maintaining cellular structure, has recently garnered increased attention and emerged as a pivotal extracellular player in immune regulation and host-pathogen interactions. While the functions of extracellular vimentin were initially overshadowed by its cytoskeletal role, accumulating evidence now highlights its significance in diverse physiological and pathological events. This review explores the multifaceted role of extracellular vimentin in modulating immune responses and orchestrating interactions between host cells and pathogens. It delves into the mechanisms underlying vimentin's release into the extracellular milieu, elucidating its unconventional secretion pathways and identifying critical molecular triggers. In addition, the future perspectives of using extracellular vimentin in diagnostics and as a target protein in the treatment of diseases are discussed.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Alicja Sadzyńska
- State Higher Vocational School of Prof. Edward F. Szczepanik in Suwałki, Suwałki, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
5
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
6
|
Prasenohadi P, Burhan E, Dhunny S, Suharno W, Wabnitz P, Kim YW, Petrosillo N. Double-Blind, Randomized, Placebo-Controlled Study on hzVSF-v13, a Novel Anti-Vimentin Monoclonal Antibody Drug as Add-on Standard of Care in the Management of Patients with Moderate to Severe COVID-19. J Clin Med 2022; 11:jcm11112961. [PMID: 35683351 PMCID: PMC9181020 DOI: 10.3390/jcm11112961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Humanized Virus Suppressing Factor-variant 13 (hzVSF-v13), a monoclonal IgG4 antibody against vimentin, was investigated in moderate to severe COVID-19 pneumonia through a Phase II study. Patients were randomized to two different IV doses of the test drug or saline with standard of care. Overall, 64 patients were recruited, and 62 entered the efficacy assessment in the full analysis set. Primary endpoint: The clinical failure rate at day 28 was 15.8% for placebo, 9.1% for low-dose hzVSF-v13 and 9.5% for high-dose hzVSF-v13 (not significant). A trend toward better efficacy was shown in several secondary endpoints, with statistical significance between low-dose hzVSF-v13 and placebo in terms of the rate of improved patients on the ordinal scale for clinical improvement (OSCI): 90.0% vs. 52.63% (p = 0.0116). In the severe stratum, the results of low-dose hzVSF-v13 vs. placebo were 90.0% and 22.2% for OSCI (p = 0.0092), 9 days and 14 days for time to discontinuation of oxygen therapy (p = 0.0308), 10 days and 15 days for both time to clinical improvement (TTCI) and time to recovery (TTR) and p = 0.0446 for both TTCI and TTR. Change from baseline of NEWS2 score at day 28 was -3.4 vs. + 0.4 (p = 0.0441). The results propose hzVSF-v13 as a candidate in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Prasenohadi Prasenohadi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Persahabatan Hospital, Universitas Indonesia, Jakarta 13230, Indonesia; (P.P.); (E.B.)
| | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Persahabatan Hospital, Universitas Indonesia, Jakarta 13230, Indonesia; (P.P.); (E.B.)
| | - Sri Dhunny
- Department of Pulmonology, Pasar Minggu General Hospital, South Jakarta 12550, Indonesia;
| | | | - Paul Wabnitz
- clinPHARMA, Precision Medicine & Clinical Trials, Adelaide, SA 5061, Australia;
| | - Yoon-Won Kim
- ImmuneMed, Chuncheon 24232, Korea; or
- Department of Microbiology, Faculty of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Nicola Petrosillo
- Head, Infection Prevention & Control—Infectious Disease Service, Foundation University Hospital, Campus Bio-Medico UniCampus University, 00128 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Suresh M, Li B, Huang X, Korolowicz KE, Murreddu MG, Gudima SO, Menne S. Agonistic Activation of Cytosolic DNA Sensing Receptors in Woodchuck Hepatocyte Cultures and Liver for Inducing Antiviral Effects. Front Immunol 2021; 12:745802. [PMID: 34671360 PMCID: PMC8521114 DOI: 10.3389/fimmu.2021.745802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-β and interleukins 1β and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Kyle E Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|