1
|
Li X, Yan C, Li S, Shen L, Huo L. Mechanism of LncRNA CBR3-AS1 in regulating pyroptosis of intestinal epithelial cells in ulcerative colitis. J Bioenerg Biomembr 2025:10.1007/s10863-025-10060-3. [PMID: 40257734 DOI: 10.1007/s10863-025-10060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Ulcerative colitis (UC) is a common chronic relapsing inflammatory disease that threatens human life. This study aims to explore the mechanism of LncRNA CBR3-AS1 in pyroptosis of intestinal epithelial cells in UC. The levels of CBR3-AS1, KLF2, and SUGT1 in UC cells were detected. After downregulating CBR3-AS1 expression, cell viability and pyroptosis were measured, followed by the detection of SOD and MDA levels. The binding of CBR3-AS1 to EZH2, enrichment of EZH2 and H3K27me3 on the KLF2 promoter, and binding of KLF2 to the SUGT1 promoter were assayed. The role of CBR3-AS1 in pyroptosis was validated in animal models. We found that CBR3-AS1 and SUGT1 were increased in UC cells, and KLF2 was decreased. After downregulation of CBR3-AS1, cell viability was increased and pyroptosis was alleviated. CBR3-AS1 recruited EZH2 to occupy the KLF2 promoter, leading to increased H3K27me3 levels and suppressed KLF2 expression, reducing the enrichment of KLF2 on the SUGT1 promoter, finally promoting SUGT1 expression. SUGT1 overexpression or KLF2 downregulation alleviated the protective effect of silencing CBR3-AS1 on pyroptosis in UC cells. CBR3-AS1 downregulation alleviates cell pyroptosis in colonic tissues. In conclusion, CBR3-AS1 exacerbated pyroptosis of intestinal epithelial cells in UC via the KLF2/SUGT1 pathway.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Caiwen Yan
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Suxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
| | - Lujun Shen
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Lijuan Huo
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China.
| |
Collapse
|
2
|
Cheng S, Li J, Song YQ, Jing S, Lan YX, Wang L, Chan DSH, Wong CY, Sheng C, Wang W, Wang HMD, Leung CH. A Bioactive Benzimidazole-Cyclometalated Iridium(III) Complex as an Epigenetic Regulator through Effectively Interrupting the EED-EZH2 Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405771. [PMID: 39967436 DOI: 10.1002/smll.202405771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Epigenetic regulation plays a fundamental role in controlling gene expression and maintaining cellular identity. Among epigenetic processes, the translocation of methyltransferases is critical for the modification of chromatin structure and transcriptional activity. The regulation of these translocation events and the mechanisms involved are complex, yet critical for understanding and manipulating epigenetic states. Therefore, novel strategies are required for detecting and visualizing the movement and interaction of methyltransferases within cells. Using enhancer of zeste homolog 2 (EZH2) methyltransferase as an example, a bifunctional compound capable of both monitoring and disrupting its translocation process is developed by targeting the protein-protein interaction (PPI) between embryonic ectoderm development (EED) and EZH2. The Ir(III) complex 1 bound enthalpically to EED and effectively inhibited the methyltransferase activity of EZH2. Moreover, disruption of the EED-EZH2 PPI led to increased transcriptional activity of P21 and P27, resulting in the suppression of triple-negative breast cancer (TNBC) cell proliferation. Excitingly, 1 suppressed tumor metastasis in a TNBC mouse model in vivo. To our knowledge, complex 1 is the first metal-based bifunctional therapeutic agent designed to probe and inhibit the EED-EZH2 PPI, highlighting the feasibility and significance of using metal complexes to monitor and influence methyltransferase translocations for therapeutic applications.
Collapse
Grants
- MYRG-GRG2024-00202-ICMS-UMDF the University of Macau, University of Macau Development Foundation, Macau SAR, China
- MYRG-GRG2023-00194-ICMS-UMDF the University of Macau, University of Macau Development Foundation, Macau SAR, China
- SKL-QRCM-IRG2023-025 State Key Laboratory of Quality Research in Chinese Medicine, the University of Macau, Macau SAR, China
- 22101230 National Natural Science Foundation of China
- 22077109 National Natural Science Foundation of China
- 21775131 National Natural Science Foundation of China
- 2024SF-YBXM-418 Key Research and Development Program of Shaanxi
- 2023YFE0205200 National Key Research and Development Program of China
- D5000230060 Fundamental Research Funds for the Central Universities
- 2023-CX-TD-72 Innovation Capability Support Program of Shaanxi
- ZDYF2021SHFZ250 Hainan Province Science and Technology Special Fund
- 2023A1515011871 Basic and Applied Basic Research Foundation of Guangdong Province
- SKL-QRCM(UM)-2023-2025,0020/2022/A1,0045/2023/AMJ,0032/2023/RIB2 the Science and Technology Development Fund, Macau SAR, China
- 111-2221-E-005-026-MY3,111-2221-E-005-009 the Ministry of Science and Technology (MOST), Taiwan
Collapse
Affiliation(s)
- Shasha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Yi-Xuan Lan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chunquan Sheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
3
|
Wu F, Yu H. The role of the NOTCH1 signaling pathway in the maintenance of mesenchymal stem cell stemness and chondrocyte differentiation and its potential in the treatment of osteoarthritis. J Orthop Surg Res 2025; 19:772. [PMID: 39754211 PMCID: PMC11697486 DOI: 10.1186/s13018-024-05236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation. METHODS Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence. Through the construction of lentiviruses overexpressing and knocking out NOTCH1, the effects of NOTCH1 on the stemness of MSCs and chondrocyte differentiation were investigated. Additionally, the effects of NOTCH1 on chondrocyte homeostasis and apoptosis were evaluated by adding the EZH2 inhibitor GSK126 and the endoplasmic reticulum stress inducer tunicamycin. RESULTS Experimental results demonstrated that NOTCH1 expression can influence the maintenance of MSC stemness and chondrocyte differentiation by regulating EZH2. Knockout of NOTCH1 decreased the expression of chondrocyte markers, while overexpression increased their expression. Under conditions of endoplasmic reticulum stress, NOTCH1 expression helped reduce the expression of stress-related proteins, maintain chondrocyte homeostasis, and inhibit apoptosis. CONCLUSION The NOTCH1 signaling pathway plays a crucial role in maintaining the stemness of MSCs, differentiating into chondrocytes, and in the treatment of osteoarthritis. NOTCH1 influences the differentiation fate of MSCs and the homeostasis of chondrocytes by regulating EZH2 and other related genes, offering new targets and strategies for the treatment of diseases like osteoarthritis.
Collapse
Affiliation(s)
- Fuming Wu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China
| | - Haiquan Yu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
| |
Collapse
|
4
|
Qiu Y, Yu W, Zhang X, Zhang M, Ni Y, Lai S, Wu Q. Upregulation of OGT-mediated EZH2 O-GlcNAcylation Promotes Human Umbilical Vein Endothelial Cell Proliferation, Invasion, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cell Biochem Biophys 2025:10.1007/s12013-024-01655-5. [PMID: 39751742 DOI: 10.1007/s12013-024-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot. RT-qPCR and western blot assays were used to test the OGT overexpression and EZH2 silencing levels. CCK-8, EdU, wound healing, and transwell invasion assays were used to analyze the cell proliferative, migratory, and invasive abilities. Tube formation assay was performed to evaluate angiogenesis ability of cells. Western blot assay was performed to estimate vascular endothelial growth factor (VEGF) and p-VEGFR2 levels in cells. The binding of O-GlcNAc and EZH2 after OGT overexpression was measured by Co-IP assay. The results showed that OGT, O-GlcNAc, EZH2, and HEK27me3 expressions were declined in GDM-HUVECs. OGT overexpression induced the proliferation, migration, and invasion of GDM-HUVECs, and also elevated angiogenesis and the expressions of VEGF and p-VEGFR2 in cells. O-GlcNAc, EZH2, and HEK27me3 expressions were upregulated after OGT overexpression. OGT upregulation induced the binding between O-GlcNAc and EZH2. EZH2 silencing attenuated the promotion of OGT overexpression on the proliferative, invasive, migratory, and angiogenic capacities of GDM-HUVECs. To be concluded, OGT overexpression stabilized EZH2 expression by promoting O-GlcNAcylation modification of EZH2, and further enhanced proliferation, migration, and invasion as well as angiogenesis of GDM-HUVECs. While these effects were decayed after EZH2 absenting. Overall, the modulation of OGT on endothelial dysfunction in GDM provides a novel perspective for the clinical treatment of GDM.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China.
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China.
| | - Weiwei Yu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Mingjing Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| |
Collapse
|
5
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
6
|
Aziz M, Jandeleit-Dahm KA, Khan AW. Interplay between epigenetic mechanisms and transcription factors in atherosclerosis. Atherosclerosis 2024; 395:117615. [PMID: 38917706 DOI: 10.1016/j.atherosclerosis.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CVD), including coronary heart disease and stroke, comprise the number one cause of mortality worldwide. A major contributor to CVD is atherosclerosis, which is a low-grade inflammatory disease of vasculature that involves a pathological build-up of plaque within the arterial walls. Studies have shown that regulation of gene expression via transcription factors and epigenetic mechanisms play a fundamental role in transcriptomic changes linked to the development of atherosclerosis. Chromatin remodeling is a reversible phenomenon and studies have supported the clinical application of chromatin-modifying agents for the prevention and treatment of CVD. In addition, pre-clinical studies have identified multiple transcription factors as potential therapeutic targets in combating atherosclerotic CVD. Although interaction between transcription factors and epigenetic mechanisms facilitate gene regulation, a limited number of studies appreciate this crosstalk in the context of CVD. Here, we reviewed this gene regulatory mechanism underappreciated in atherosclerosis, which will highlight the mechanisms underlying novel therapeutics targeting epigenetic modifiers and transcription factors in atherosclerosis.
Collapse
Affiliation(s)
- Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karin Am Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| | - Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Wang Z, Liu Z, Zhou P, Niu X, Sun Z, He H, Zhu Z. The involvement of krüppel-like transcription factor 2 in megakaryocytic differentiation induction by phorbol 12-myrestrat 13-acetate. Biomark Res 2024; 12:65. [PMID: 39014479 PMCID: PMC11253501 DOI: 10.1186/s40364-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Megakaryocytic differentiation is a complicated process regulated by a series of transcription factors in a context- and stage-dependent manner. Recent studies have suggested that krüppel-like transcription factor 2 (KLF2) is involved in the control of embryonic erythroid precursor cell differentiation and maturation. However, the function and mechanism of KLF2 in regulating megakaryocytic differentiation remain unclear. METHODS The expression patterns of krüppel-like transcription factors (KLFs) during megakaryocytic differentiation were identified from public databases. Phorbol 12-myristate 13-acetate (PMA) treatment of the myeloid-erythroid-leukemic cell lines K562 and HEL were used as cellular megakaryocytic differentiation models. A lentiviral transduction system was utilized to achieve the goal of amplifying or reducing KLF2. The expression of KLF2 was examined using real-time PCR and western blot. The impact of KLF2 on the megakaryocytic differentiation of K562 cells was examined by flow cytometry, Giemsa staining, Phalloidin staining and western blot. RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) technologies were used to identify the KLF2-regulated targets. RESULTS KLF2 is increased in the maturation process of megakaryocytes. KLF2 overexpression accelerated the PMA-induced megakaryocytic differentiation, as reflected by an increased percentage of CD41/CD61 cells, an increased number of polyploid cells, and an elevated expression of P21 and P27. KLF2 knockdown exhibited the opposite results, indicating that KLF2 knockdown suppressed the megakaryocytic differentiation. Further, combination of the RNA-seq and ChIP-seq results suggested that chimerin 1 (CHN1) and potassium voltage-gated channel subfamily Q member 5 (KCNQ5) may be target genes regulated of KLF2. Both CHN1 and KCNQ5 knockdown could block the megakaryocytic differentiation to some content. CONCLUSION This study implicated a regulatory role of KLF2 in megakaryocytic differentiation, which may suggest KLF2 as a target for illness with abnormal megakaryocytic differentiation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Henan University, Kaifeng, Henan, China.
- Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongwen Liu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan University, Kaifeng, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan University, Kaifeng, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | | | - Huan He
- Zhengzhou University, Zhengzhou, Henan, China
| | - Zunmin Zhu
- Department of Hematology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Henan University, Kaifeng, Henan, China.
- Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Sánchez-Ceinos J, Hussain S, Khan AW, Zhang L, Almahmeed W, Pernow J, Cosentino F. Repressive H3K27me3 drives hyperglycemia-induced oxidative and inflammatory transcriptional programs in human endothelium. Cardiovasc Diabetol 2024; 23:122. [PMID: 38580969 PMCID: PMC10998410 DOI: 10.1186/s12933-024-02196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.
Collapse
Affiliation(s)
- Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shafaat Hussain
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Abdul Waheed Khan
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Liang Zhang
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - John Pernow
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Bashi A, Lekpor C, Hood JL, Thompson WE, Stiles JK, Driss A. Modulation of Heme-Induced Inflammation Using MicroRNA-Loaded Liposomes: Implications for Hemolytic Disorders Such as Malaria and Sickle Cell Disease. Int J Mol Sci 2023; 24:16934. [PMID: 38069257 PMCID: PMC10707194 DOI: 10.3390/ijms242316934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Hemolytic disorders, like malaria and sickle cell disease (SCD), are responsible for significant mortality and morbidity rates globally, specifically in the Americas and Africa. In both malaria and SCD, red blood cell hemolysis leads to the release of a cytotoxic heme that triggers the expression of unique inflammatory profiles, which mediate the tissue damage and pathogenesis of both diseases. MicroRNAs (miRNAs), such as miR-451a and let-7i-5p, contribute to a reduction in the pro-inflammatory responses induced by circulating free hemes. MiR-451a targets both IL-6R (pro-inflammatory) and 14-3-3ζ (anti-inflammatory), and when this miRNA is present, IL-6R is reduced and 14-3-3ζ is increased. Let-7i-5p targets and reduces TLR4, which results in anti-inflammatory signaling. These gene targets regulate inflammation via NFκB regulation and increase anti-inflammatory signaling. Additionally, they indirectly regulate the expression of key heme scavengers, such as heme-oxygenase 1 (HO-1) (coded by the HMOX1 gene) and hemopexin, to decrease circulating cytotoxic heme concentration. MiRNAs can be transported within extracellular vesicles (EVs), such as exosomes, offering insights into the mechanisms of mitigating heme-induced inflammation. We tested the hypothesis that miR-451a- or let-7i-5p-loaded artificial EVs (liposomes) will reduce heme-induced inflammation in brain vascular endothelial cells (HBEC-5i, ATCC: CRL-3245) and macrophages (THP-1, ATCC: TIB-202) in vitro. We completed arginase and nitric oxide assays to determine anti- and pro-inflammatory macrophage presence, respectively. We also assessed the gene expression of IL-6R, TLR4, 14-3-3ζ, and NFκB by RT-qPCR for both cell lines. Our findings revealed that the exposure of HBEC-5i and THP-1 to liposomes loaded with miR-451a or let-7i-5p led to a reduced mRNA expression of IL-6R, TLR4, 14-3-3ζ, and NFκB when treated with a heme. It also resulted in the increased expression of HMOX1 and hemopexin. Finally, macrophages exhibited a tendency toward adopting an anti-inflammatory differentiation phenotype. These findings suggest that miRNA-loaded liposomes can modulate heme-induced inflammation and can be used to target specific cellular pathways, mediating inflammation common to hematological conditions, like malaria and SCD.
Collapse
Affiliation(s)
- Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| | - Cecilia Lekpor
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.L.); (J.K.S.)
| | - Joshua L. Hood
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Hepatobiology and Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville , Louisville, KY 40202, USA
| | - Winston E. Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.L.); (J.K.S.)
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (A.B.); (W.E.T.)
| |
Collapse
|
10
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
11
|
Thomas JJ, Harp KO, Bashi A, Hood JL, Botchway F, Wilson MD, Thompson WE, Stiles JK, Driss A. MiR-451a and let-7i-5p loaded extracellular vesicles attenuate heme-induced inflammation in hiPSC-derived endothelial cells. Front Immunol 2022; 13:1082414. [PMID: 36618355 PMCID: PMC9815029 DOI: 10.3389/fimmu.2022.1082414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Hemolysis is associated with many pathologies, including trauma, sepsis, hemorrhagic stroke, malaria, and genetic disorders such as sickle cell disease (SCD). When hemolysis occurs, free-heme drives vascular inflammation, resulting in oxidative tissue damage and cardiometabolic complications. A better understanding of heme clearance and detoxification is essential to preventing sustained tissue damage. Human induced pluripotent stem cell (hiPSC)-derived endothelial cells (hiPSC-ECs) provide a novel source of patient-specific cells and tissues for disease modeling, drug discovery, and regenerative therapeutics. Here we report the use of hiPSC-ECs to elucidate the role of miR-451a and let-7i-5p-loaded extracellular vesicles (EVs, such as exosomes) in the inflammatory response to free-heme as a model for heme-induced inflammation. We provide evidence of a significant correlation between miR-451a and let-7i-5p-loaded circulating exosomes in plasmodium-infected patients with reported clinical benchmarks of malaria-severity (e.g., Hemoglobin (Hb) levels, white blood cell counts). Additionally, we determined that exposure of Plasmodium falciparum (Pf) parasites to EVs, loaded with either miRNA, significantly reduces their counts in vitro. Using hiPSCs derived from individuals with wild-type Hb (HbAA) or homozygous sickle cell mutated Hb (HbSS) genotypes, we demonstrate that heme-treated hiPSC-ECs secreted inflammatory products (cytokines, chemokines and growth factors) into supporting media at concentrations that were similar to that reported in HbAA and HbSS serum. This inflammatory response was attenuated by exposure with miR-451a or let-7i-5p-loaded EVs. We also found a decrease in transcription of ICAM1 and P-Selectin, as well as the secretion of key inflammatory cytokines (e.g., CXCL10, TNF-α, and IFN-γ). Based on these findings, we propose a model in which increased levels of exosomal miR-451a and let-7i-5p in Plasmodium-infected individuals will attenuate inflammatory responses to free-heme and parasite-derived products. As a result, infected erythrocytes will less likely adhere to the endothelium, sequester in brain micro vessels, and reduce vaso-occlusive crises that exacerbate cerebral malaria.
Collapse
Affiliation(s)
- Justin J. Thomas
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Keri Oxendine Harp
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joshua L. Hood
- Department of Pharmacology and Toxicology, Brown Cancer Center, Hepatobiology and Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY, United States
| | - Felix Botchway
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Winston E. Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Adel Driss,
| |
Collapse
|
12
|
Roudier E, Lemieux P, Lam B. Treating the diabetic wound through miR inhibitor cocktails: A question of timing? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:112-114. [PMID: 36250204 PMCID: PMC9535267 DOI: 10.1016/j.omtn.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Emilie Roudier
- Angiogenesis research group, School of Kinesiology and Health Sciecne, Muscle Health Research center, Faculty of Health, Bethune College, York University, Room 431, 4700 Keele stret, Toronto, ON M3J 1P3, Canada
- Corresponding author Emilie Roudier, PhD, Angiogenesis Research Group, School of Kinesiology and Health Science, Muscle Health Research Center, Faculty of Health, Bethune College, York University, Room 341, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Pierre Lemieux
- Angiogenesis research group, School of Kinesiology and Health Sciecne, Muscle Health Research center, Faculty of Health, Bethune College, York University, Room 431, 4700 Keele stret, Toronto, ON M3J 1P3, Canada
| | - Brian Lam
- Angiogenesis research group, School of Kinesiology and Health Sciecne, Muscle Health Research center, Faculty of Health, Bethune College, York University, Room 431, 4700 Keele stret, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
13
|
Xu K, Liu X, Wen B, Liu Y, Zhang W, Hu X, Chen L, Hang W, Chen J. GSK-J4, a Specific Histone Lysine Demethylase 6A Inhibitor, Ameliorates Lipotoxicity to Cardiomyocytes via Preserving H3K27 Methylation and Reducing Ferroptosis. Front Cardiovasc Med 2022; 9:907747. [PMID: 35722096 PMCID: PMC9200982 DOI: 10.3389/fcvm.2022.907747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in modern lifestyle provoke a series of metabolic stresses such as hyperlipidemia. Excessive free fatty acids induce cardiomyocyte metabolic reprogramming and rearrangement of the lipid content of cardiomyocyte and promote oxidative stress. As a newly defined lipid peroxidation-related cell death pathway, the role of ferroptosis in metabolic stress-induced cardiomyocyte injury is poorly revealed. Our work indicates that GSK-J4, a histone lysine demethylase 6A/6B dual inhibitor, can alleviate palmitic acid (PA)-induced hypersensitivity to ferroptosis by suppressing H3K27 demethylation. Mechanistically, PA stimulation reduces the H3K27me3 level and hence promotes the expression of ACSL4, a key lipid modulator of ferroptosis. GSK-J4 pretreatment significantly preserves the H3K27me3 level and reduces the ACSL4 level. GSK-J4 also reduces reactive oxygen species to alleviate oxidative stress, which further decreases lipid peroxidation. Taken together, our data suggest that cardiomyocyte undergoes epigenetic reprogramming under metabolic challenges, rearranging lipid content, and sensitizing to ferroptosis. GSK-J4 can be a potential drug for treating hyperlipidemia-induced cardiomyocyte injury by targeting epigenetic modulations.
Collapse
Affiliation(s)
- Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Liu
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yazhou Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Hu
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Chen
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Weijian Hang,
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Neonatal Intensive Care Unit, Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Juan Chen,
| |
Collapse
|
14
|
Pandya Thakkar N, Pereira BMV, Katakia YT, Ramakrishnan SK, Thakar S, Sakhuja A, Rajeev G, Soorya S, Thieme K, Majumder S. Elevated H3K4me3 Through MLL2-WDR82 upon Hyperglycemia Causes Jagged Ligand Dependent Notch Activation to Interplay with Differentiation State of Endothelial Cells. Front Cell Dev Biol 2022; 10:839109. [PMID: 35392173 PMCID: PMC8982561 DOI: 10.3389/fcell.2022.839109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a hallmark of diabetes-associated vascular complications. Epigenetic mechanisms emerged as one of the key pathways to regulate diabetes-associated complications. In the current study, we aimed to determine how abrupt changes in histone 3 lysine 4 tri-methylation (H3K4me3) upon hyperglycemia exposure reprograms endothelial cells to undergo EndMT. Through in vitro studies, we first establish that intermittent high-glucose exposure to EC most potently induced partial mesenchyme-like characteristics compared with transient or constant high-glucose-challenged endothelial cells. In addition, glomerular endothelial cells of BTBR Ob/Ob mice also exhibited mesenchymal-like characteristics. Intermittent hyperglycemia-dependent induction of partial mesenchyme-like phenotype of endothelial cells coincided with an increase in H3K4me3 level in both macro- and micro-vascular EC due to selective increase in MLL2 and WDR82 protein of SET1/COMPASS complex. Such an endothelial-specific heightened H3K4me3 level was also detected in intermittent high-glucose-exposed rat aorta and in kidney glomeruli of Ob/Ob mice. Elevated H3K4me3 enriched in the promoter regions of Notch ligands Jagged1 and Jagged2, thus causing abrupt expression of these ligands and concomitant activation of Notch signaling upon intermittent hyperglycemia challenge. Pharmacological inhibition and/or knockdown of MLL2 in cells in vitro or in tissues ex vivo normalized intermittent high-glucose-mediated increase in H3K4me3 level and further reversed Jagged1 and Jagged2 expression, Notch activation and further attenuated acquisition of partial mesenchyme-like phenotype of endothelial cells. In summary, the present study identifies a crucial role of histone methylation in hyperglycemia-dependent reprograming of endothelial cells to undergo mesenchymal transition and indicated that epigenetic pathways contribute to diabetes-associated vascular complications.
Collapse
Affiliation(s)
- Niyati Pandya Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yash T. Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Shyam Kumar Ramakrishnan
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Gayathry Rajeev
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - S. Soorya
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
- *Correspondence: Syamantak Majumder,
| |
Collapse
|
15
|
Wang Q, Sun Y, Xu Q, Liu W, Wang P, Yao J, Zhao A, Chen Y, Wang W. Higher dietary inflammation potential and certain dietary patterns are associated with polycystic ovary syndrome risk in China: A case–control study. Nutr Res 2022; 100:1-18. [PMID: 35108617 DOI: 10.1016/j.nutres.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
|