1
|
Baldisserotto C, Gessi S, Ferraretto E, Merighi S, Ardondi L, Giacò P, Ferroni L, Nigro M, Travagli A, Pancaldi S. Cultivation modes affect the morphology, biochemical composition, and antioxidant and anti-inflammatory properties of the green microalga Neochloris oleoabundans. PROTOPLASMA 2024; 261:1185-1206. [PMID: 38864933 PMCID: PMC11511745 DOI: 10.1007/s00709-024-01958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Microalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions. In addition, specific studies on the antioxidant and anti-inflammatory properties of microalgae mainly concern Chlorella or Spirulina. The present work was focused on the characterization of the Chlorophyta Neochloris oleoabundans under two combinations of cultivation modes: autotrophy and glucose-induced mixotrophy, each followed by starvation. Biomass for morphological and biochemical characterization, as well as for extract preparation, was harvested at the end of each cultivation phase. Analyses indicated a different content of the most important classes of bioactive compounds with antioxidant/anti-inflammatory properties (lipids, exo-polysaccharides, pigments, total phenolics, and proteins). In particular, the most promising condition able to prompt the production of antioxidant algal biomass with anti-inflammatory properties was the mixotrophic one. Under mixotrophy, beside an elevated algal biomass production, a strong photosynthetic metabolism with high appression of thylakoid membranes and characteristics of high photo-protection from oxidative damage was observed and linked to the overproduction of exo-polysaccharides and lipids rather than pigments. Overall, mixotrophy appears a good choice to produce natural bioactive extracts, potentially well tolerated by human metabolism and environmentally sustainable.
Collapse
Affiliation(s)
- C Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - S Gessi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - E Ferraretto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Merighi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - L Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - P Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - L Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - M Nigro
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - A Travagli
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
2
|
Kuo CH, Xu ZY, Hsiao PZ, Liao PC, Liu CH, Hong MC, Chiu K. Utilizing fish wastewater in aquaponic systems to enhance anti-inflammatory and antioxidant bioactive compounds in Sarcodia suae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169958. [PMID: 38211863 DOI: 10.1016/j.scitotenv.2024.169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Aquaculture wastewater, rich in organic nutrients, is an essential environmental factor. When applied to seaweed cultivation systems, this wastewater holds the potential to notably increase the growth rate and carbon capture of Sarcodia suae. Sarcodia suae has the potential to be a healthy food due to its various biological activities; however, its chemical composition has yet to be completely defined. In this study, we applied a UHPLC-HRMS-based foodomics strategy to determine and classify possible bioactive metabolites in S. suae. From pooled seaweed samples (S. suae cultured in filtered running, FR, aquaponic recirculation, AR systems), we identified 179 and 146 compounds in POS and NEG modes, respectively. These compounds were then classified based on their structures using the Classyfire classification. Results show that S. suae in AR exhibited higher growth performance, and ten upregulated metabolites were determined. We also validated the anti-inflammatory and antioxidative bioactivities of some selected compounds. Our study provided important insights into the potential use of fish wastewater in aquaponic systems to profile and produce bioactive compounds in S. suae comprehensively. This has significant implications for the development of sustainable food and the promotion of environmental health.
Collapse
Affiliation(s)
- Chiu-Hui Kuo
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Zi-Yan Xu
- Tungkang Aquaculture Research Center, Fisheries Research Institute, MOA, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
3
|
Ahmadzadeh AM, Pourali G, Mirheidari SB, Shirazinia M, Hamedi M, Mehri A, Amirbeik H, Saghebdoust S, Tayarani-Najaran Z, Sathyapalan T, Forouzanfar F, Sahebkar A. Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:534-562. [PMID: 37455451 DOI: 10.2174/1389201024666230714143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Hamedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Amirbeik
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby Road HU3 2JZ, Hull, UK.m
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Suresh P, Karthik VP, Chamundeeswari DP. Anti-inflammatory and antioxidant effects of hydro-alcoholic extract of Dicliptera cuneata Nees aerial parts. Bioinformation 2023; 19:1193-1196. [PMID: 38250534 PMCID: PMC10794755 DOI: 10.6026/973206300191193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Dicliptera cuneata Nees is a traditional medicinal plant but its extract or phytochemicals are less known. Therefore, it is of interest to investigate the anti-inflammatory and antioxidant effects of aerial part hydroalcoholic extract of Dicliptera cuneata Nees. Hence, we used protein denaturation assay, FRAP assay, Nitric oxide and peroxide scavenging assays methods following standard developed techniques. The hydro-alcoholic extract exhibited dose-dependent effectiveness in all the assays and showed maximum efficacy in the assays at higher doses selected. Data shows that hydroalcholic extract of Dicliptera cuneata Nees showed anti-inflammatory and antioxidant properties in in vitro settings. It should be noted that more data is needed to further develop the extract into suitable formulations.
Collapse
Affiliation(s)
- Parepalli Suresh
- Department of Pharmacology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research-DU, Porur, Chennai - 600116, Tamil Nadu, India
| | - VP Karthik
- Department of Pharmacology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research-DU, Porur, Chennai - 600116, Tamil Nadu, India
| | - Durai Pandian Chamundeeswari
- Department of Pharmacology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research-DU, Porur, Chennai - 600116, Tamil Nadu, India
| |
Collapse
|
5
|
Kyriakou S, Tragkola V, Paraskevaidis I, Plioukas M, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Chemical Characterization and Biological Evaluation of Epilobium parviflorum Extracts in an In Vitro Model of Human Malignant Melanoma. PLANTS (BASEL, SWITZERLAND) 2023; 12:1590. [PMID: 37111814 PMCID: PMC10146124 DOI: 10.3390/plants12081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Malignant melanoma is an aggressive type of skin cancer characterised by high metastatic capacity and mortality rate. On the other hand, Epilobium parviflorum is known for its medicinal properties, including its anticancer potency. In this context, we aimed to (i) isolate various extracts of E. parviflorum, (ii) characterize their phytochemical content, and (iii) determine their cytotoxic potential in an in vitro model of human malignant melanoma. To these ends, we utilized various spectrophotometric and chromatographic (UPLC-MS/MS) approaches to document the higher content of the methanolic extract in polyphenols, soluble sugars, proteins, condensed tannins, and chlorophylls -a and -b as opposed to those of dichloromethane and petroleum. In addition, the cytotoxicity profiling of all extracts was assessed through a colorimetric-based Alamar Blue assay in human malignant melanoma (A375 and COLO-679) as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Overall, the methanolic extract was shown to exert significant cytotoxicity, in a time- and concentration-dependent manner, as opposed to the other extracts. The observed cytotoxicity was confined only to human malignant melanoma cells, whereas non-tumorigenic keratinocyte cells remained relatively unaffected. Finally, the expression levels of various apoptotic genes were assessed by qRT-PCR, indicating the activation of both intrinsic and extrinsic apoptotic cascades.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Ioannis Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Mihalis Plioukas
- Department of Life & Health Sciences, School of Sciences & Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
6
|
Tedeschi P, Brugnoli F, Merighi S, Grassilli S, Nigro M, Catani M, Gessi S, Bertagnolo V, Travagli A, Caboni MF, Cavazzini A. The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO. Antioxidants (Basel) 2023; 12:antiox12020499. [PMID: 36830057 PMCID: PMC9952458 DOI: 10.3390/antiox12020499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Voghiera garlic is an Italian white garlic variety which obtained in 2010 the Protected Designation of Origin. It is widely used for culinary purposes or as an ingredient for supplement production due to its phytochemical compositions. The storage conditions seem to be crucial to retain the high quality of garlic bulbs and their by-products, taking into account the high importance of organosulfur and phenolic compounds for the bioactive potency of garlic and its shelf-life. This study aims to examine the effect of storage on the phytochemical composition, biological effects, and shelf-life of Voghiera garlic PDO. In detail, we considered (i) -4 °C (industrial storage) for 3, 6, and 9 months; (ii) +4 °C for 3 months (home conservation), and (iii) -4 °C for 3 months, plus +4 °C for another 3 months. We focused our attention on the organosulfur compounds, total condensed tannins, flavonoids, phenolic compounds, and related antioxidant activity changes during the storage period. To evaluate the bioactive effects, the Voghiera garlic extracts at different storage conditions were administered to a breast cancer cell line, while antioxidant and anti-inflammatory activity was detected using macrophage RAW 264.7 cells. We observed a decrease in sulfur compounds after 6 months which correlated to a decrease in bioactive effects, while the number of antioxidant compounds was stable during the storage period, showing the good effect of refrigerated temperature in maintaining garlic bulb shelf-life.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Fiorenza Caboni
- Department of Agricultural and Food Sciences and Technologies, University of Bologna, 40127 Bologna, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants (Basel) 2022; 12:antiox12010091. [PMID: 36670952 PMCID: PMC9854965 DOI: 10.3390/antiox12010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Epilobium species are used in Romanian folk medicine as tinctures, tea, or tablets for ameliorating the symptoms of benign prostate hyperplasia (BPH), but scientific-based evidence is scarce for this species or other endemic plants of the same genus. Therefore, the aims of this research were to evaluate the phytochemical profile of five endemic Epilobium species (E. hirsutum L., E. parviflorum Schreb., E. palustre L. E. dodonaei Vill., and E. angustifolium L.) and to assess their in vitro biological activity. For enhanced recovery of polyphenols, a D-optimal experimental plan was developed using Modde software and the optimal working conditions were ultra-turrax-assisted extraction, for 8 min, with 30% ethanol in water. The optimized extracts were obtained from various plant parts and were further characterized by LC-MS analysis, with the major compound being oenothein B. All extracts demonstrated good antioxidant activity, evaluated by DPPH and TEAC assays. The most prominent antimicrobial potency of optimized extracts was displayed against Bacillus cereus, while against Gram-(+) bacteria, a moderate efficacy was observed. Furthermore, anti-cancer, anti-inflammatory, and antioxidant potential were assessed on normal fibroblasts and prostate carcinoma cell lines. From the evaluated optimized extracts, E. angustifolium aerial parts had the highest selectivity toward killing cancerous cells, followed by E. hirsutum aerial parts extract. For the antioxidant effect, E. hirsutum leaves and E. hirstum aerial parts extracts displayed the highest potency, decreasing ROS at the level observed for the positive control. The highest anti-inflammatory potential, based on the IL-6 and IL-8 levels, was displayed by E. dodonaei aerial parts and E. angustifolium leaves extracts. In conclusion, all five endemic species of Epilobium harvested from Romanian flora possess a diverse phytochemical composition, which supports complex biological activities.
Collapse
|
8
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
9
|
Studies Regarding the Antibacterial Effect of Plant Extracts Obtained from Epilobium parviflorum Schreb. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was carried out to develop an experimental endodontic irrigant solution based on plant extracts obtained from Epilobium parviflorum Schreb. that largely replenish the properties of the usual antiseptics used in dentistry. Background: This study investigated the phytochemical contents of plant extracts obtained from Epilobium parviflorum Schreb. and their potential antibacterial activity. Methods: Identification and quantification of biologically active compounds were made by UV field photo spectrometry, adapting the Folin-Ciocalteu test method. Antibacterial activity was tested on pathological bacterial cultures collected from tooth with endodontic infections using a modified Kirby-Bauer diffuse metric method. Results: Polyphenols and flavonoids were present in all plant extracts; the hydroalcoholic extract had the highest amount of polyphenols—17.44 pyrogallol equivalent (Eq Pir)/mL and flavonoids—3.13 quercetin equivalent (Eq Qr)/mL. Plant extracts had antibacterial activity among the tested bacterial species with the following inhibition diameter: White Staphylococcus (16.5 mm), Streptococcus mitis (25 mm), Streptococcus sanguis (27 mm), Enterococcus faecalis (10 mm). Conclusions: All plant extracts contain polyphenols and flavonoids; the antibacterial activity was in direct ratio with the amount of the bioactive compounds.
Collapse
|