1
|
Gambari R, Papi C, Gasparello J, Agostinelli E, Finotti A. Preliminary results and a theoretical perspective of co‑treatment using a miR‑93‑5p mimic and aged garlic extract to inhibit the expression of the pro‑inflammatory interleukin‑8 gene. Exp Ther Med 2025; 29:85. [PMID: 40084194 PMCID: PMC11904878 DOI: 10.3892/etm.2025.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 03/16/2025] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has been a very significant health issue in the period between 2020 and 2023, forcing research to characterize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and to develop novel therapeutic approaches. Interleukin-6 (IL-6) and IL-8 are considered significant therapeutic targets for COVID-19 and emerging evidence has suggested that microRNAs (miRNAs/miRs) serve a key role in regulating these genes. MiRNAs are short, 19-25 nucleotides in length, non-coding RNAs that regulate gene expression at the post-transcriptional level through the sequence-selective recognition of the 3'-untranslated region (3'-UTR) of the regulated mRNAs, eventually repressing translation, commonly, via mRNA degradation. For example, among several miRNAs involved in the regulation of the COVID-19 'cytokine storm', miR-93-5p can inhibit IL-8 gene expression by directly targeting the 3'-UTR of IL-8 mRNA. In addition, miR-93-5p can regulate Toll-like receptor-4 (TLR4) and interleukin-1 receptor-associated kinase 4 (IRAK4) expression, thus affecting the nuclear factor-κB (NF-κB) pathway and the expression of NF-κB-regulated genes, such as IL-6, IL-1β and other hyper-expressed genes during the COVID-19 'cytokine storm'. In the present study, the results provided preliminary evidence suggesting that the miR-93-5p-based miRNA therapeutics could be combined with the anti-inflammatory aged garlic extract (AGE) to more effectively inhibit IL-8 gene expression. The human bronchial epithelial IB3-1 cell line was employed as experimental model system. IB3-1 cells were stimulated with the BNT162b2 COVID-19 vaccine and transfected with pre-miR-93-5p in the absence or in the presence of AGE, to verify the inhibitory effects on the BNT162b2-induced expression of the IL-8 gene. The accumulation of IL-8 mRNA was assessed by RT-qPCR; the release of IL-8 protein was determined by Bio-Plex assay. In addition, the possible applications of TLR4/NF-κB inhibitory agents (such as miR-93-5p and AGE) for treating human pathologies at a hyperinflammatory state, such as COVID-19, cystic fibrosis and other respiratory diseases, were summarized.
Collapse
Affiliation(s)
- Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation ‘ETS-ONLUS’, I-00159 Rome, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
2
|
Popa ML, Ichim C, Anderco P, Todor SB, Pop-Lodromanean D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J Clin Med 2025; 14:2054. [PMID: 40142862 PMCID: PMC11943142 DOI: 10.3390/jcm14062054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as crucial regulators in digestive pathologies, including inflammatory bowel disease (miR-31, miR-155, and miR-21), colorectal cancer (miR-21, miR-598, and miR-494), and non-alcoholic fatty liver disease (miR-21, miR-192, and miR-122). Their capacity to modulate gene expression at the post-transcriptional level makes them highly promising candidates for biomarkers and therapeutic interventions. However, despite considerable progress, their clinical application remains challenging. Research has shown that miRNA expression is highly dynamic, varying across patients, disease stages, and different intestinal regions. Their dual function as both oncogenes and tumor suppressors further complicates their therapeutic use, as targeting miRNAs may yield unpredictable effects. Additionally, while miRNA-based therapies hold great potential, significant hurdles persist, including off-target effects, immune activation, and inefficiencies in delivery methods. The intricate interplay between miRNAs and gut microbiota adds another layer of complexity, influencing disease mechanisms and treatment responses. This review examined the role of miRNAs in digestive pathologies, emphasizing their diagnostic and therapeutic potential. While they offer new avenues for disease management, unresolved challenges underscore the need for further research to refine their clinical application.
Collapse
Affiliation(s)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | | | | |
Collapse
|
3
|
Abedi N, Sadeghian A, Kouhi M, Haugen HJ, Savabi O, Nejatidanesh F. Immunomodulation in Bone Tissue Engineering: Recent Advancements in Scaffold Design and Biological Modifications for Enhanced Regeneration. ACS Biomater Sci Eng 2025; 11:1269-1290. [PMID: 39970366 DOI: 10.1021/acsbiomaterials.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bone defects, whether caused by trauma, cancer, infectious diseases, or surgery, can significantly impair people's quality of life. Although autografts are the gold standard for treating bone defects, they often fall short in adequately forming bone tissue. The field of bone tissue engineering has made strides in using scaffolds with various biomaterials, stem cells, and growth factors to enhance bone healing. However, some biological structures do not yield satisfactory therapeutic outcomes for new bone formation. Recent studies have shed light on the crucial role of immunomodulation, specifically the interaction between the implanted scaffold and host immune systems, in bone regeneration. Immune cells, particularly macrophages, are pivotal in the inflammatory response, angiogenesis, and osteogenesis. This review delves into the immune system's mechanism toward foreign bodies and the recent advancements in scaffolds' physical and biological properties that foster bone regeneration by modulating macrophage polarization to an anti-inflammatory phenotype and enhancing the osteoimmune microenvironment.
Collapse
Affiliation(s)
- Niloufar Abedi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Aida Sadeghian
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Omid Savabi
- Department of Prosthodontics, Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Farahnaz Nejatidanesh
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
4
|
Alghamian Y, Soukkarieh C, Aljapawe A, Murad H. Exploring miRNA profile associated with cisplatin resistance in ovarian cancer cells. Biochem Biophys Rep 2025; 41:101906. [PMID: 39830525 PMCID: PMC11741906 DOI: 10.1016/j.bbrep.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation. Here, this study aimed to identify miRNAs expression changes related to cisplatin resistance in ovarian cancer cells. The miRNA expression profiles of a cisplatin-sensitive A2780 cell line and two cisplatin-resistant cell lines, A2780cis and SK-OV-3, were analyzed using PCR array and qPCR. Accordingly, the miRNAs that were differentially expressed were further investigated to identify their biological functions and the target pathways using Gene Ontology (GO) annotation and KEGG pathway analyses. In order to evaluate the clinical significance of the differentially expressed miRNAs, survival analysis was carried out using expression data for ovarian cancer patients available in the Kaplan-Meier (KM) plotter database. The current work demonstrates that Nine miRNAs were found to be upregulated in cells resistant to cisplatin. Clearly, these miRNAs have functions in cell death/survival related processes and treatment response. They may also target pathways involved in treatment response like PI3K-Akt, pathway in cancer and MAPK. Interestingly, High expression of hsa-miR-133b, hsa-miR-512-are, hsa-miR-200b-3p, and hsa-miR-451a is related to poor overall survival in patients diagnosed with ovarian cancer. Our findings suggest that hsa-miR-133b, hsa-miR-512-5p, hsa-miR-200b-3p, and hsa-miR-451a are good candidates for future studies aimed to establishing functional links and exploring therapeutic interventions to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Abdulmunim Aljapawe
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| | - Hossam Murad
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| |
Collapse
|
5
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
6
|
Ravi Mythili VM, Rajendran RL, Arun R, Thasma Loganathbabu VK, Reyaz D, Nagarajan AK, Ahn BC, Gangadaran P. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Bioengineering (Basel) 2025; 12:92. [PMID: 39851366 PMCID: PMC11762151 DOI: 10.3390/bioengineering12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Critical limb ischemia (CLI) poses a substantial and intricate challenge in vascular medicine, necessitating the development of innovative therapeutic strategies to address its multifaceted pathophysiology. Conventional revascularization approaches often fail to adequately address the complexity of CLI, necessitating the identification of alternative methodologies. This review explores uncharted territory beyond traditional therapies, focusing on the potential of two distinct yet interrelated entities: cell-derived extracellular vesicles (EVs) and artificial nanovesicles. Cell-derived EVs are small membranous structures naturally released by cells, and artificial nanovesicles are artificially engineered nanosized vesicles. Both these vesicles represent promising avenues for therapeutic intervention. They act as carriers of bioactive cargo, including proteins, nucleic acids, and lipids, that can modulate intricate cellular responses associated with ischemic tissue repair and angiogenesis. This review also assesses the evolving landscape of CLI revascularization through the unique perspective of cell-derived EVs and artificial nanovesicles. The review spans the spectrum from early preclinical investigations to the latest translational advancements, providing a comprehensive overview of the current state of research in this emerging field. These groundbreaking vesicle therapies hold immense potential for revolutionizing CLI treatment paradigms.
Collapse
Affiliation(s)
- Vijay Murali Ravi Mythili
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Raksa Arun
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Vasanth Kanth Thasma Loganathbabu
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Danyal Reyaz
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - ArulJothi Kandasamy Nagarajan
- Integrative Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; (V.M.R.M.); (R.A.); (V.K.T.L.); (D.R.); (A.K.N.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
Finotti A, Gambari R. Perspectives in MicroRNA Therapeutics for Cystic Fibrosis. Noncoding RNA 2025; 11:3. [PMID: 39846681 PMCID: PMC11755495 DOI: 10.3390/ncrna11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The discovery of the involvement of microRNAs (miRNAs) in cystic fibrosis (CF) has generated increasing interest in the past years, due to their possible employment as a novel class of drugs to be studied in pre-clinical settings of therapeutic protocols for cystic fibrosis. In this narrative review article, consider and comparatively evaluate published laboratory information of possible interest for the development of miRNA-based therapeutic protocols for cystic fibrosis. We consider miRNAs involved in the upregulation of CFTR, miRNAs involved in the inhibition of inflammation and, finally, miRNAs exhibiting antibacterial activity. We suggest that antago-miRNAs and ago-miRNAs (miRNA mimics) can be proposed for possible validation of therapeutic protocols in pre-clinical settings.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Thibonnier M, Ghosh S. Review of the Different Outcomes Produced by Genetic Knock Out of the Long Non-coding microRNA-host-gene MIR22HG versus Pharmacologic Antagonism of its Intragenic microRNA product miR-22-3p. Microrna 2025; 14:19-41. [PMID: 38952162 DOI: 10.2174/0122115366282339240604042154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharmacologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR- 22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological antagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmacologic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Pennington Biomedical Research Center, Department of Computational Biology, Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
10
|
Loreni F, Nenna A, Nappi F, Ferrisi C, Chello C, Lusini M, Vincenzi B, Tonini G, Chello M. miRNAs in the diagnosis and therapy of cardiac and mediastinal tumors: a new dawn for cardio-oncology? Future Cardiol 2024; 20:795-806. [PMID: 39513219 PMCID: PMC11622773 DOI: 10.1080/14796678.2024.2419225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Dysfunctions in miRNA production have been recently investigated as predictors of neoplasms and their therapeutic strategies. In this review, we summarize the available knowledge on miRNAs and cardiac tumors (such as myxoma) and mediastinal tumors (such as thymoma) and propose new avenues for future research. MiRNAs are crucial for cardiac development through the expression of cardiac transcription factors (miR-335-5p), hinder the cell cycle by modulating the activity of transcription factors (miR-126-3p, miR-320a), modulate the production of inflammatory factors such as interleukins (miR-217), and interfere with cell proliferation or apoptosis (miR-218, miR-634 and miR-122). Current and future research on miRNAs is essential, as a deep understanding could lead to a revolution in the field of diagnostics and prevention of neoplastic diseases.
Collapse
Affiliation(s)
- Francesco Loreni
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Antonio Nenna
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord, Saint Denis, 93200, France
| | - Chiara Ferrisi
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Camilla Chello
- PhD Course of Integrated Biomedical Sciences, Università Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Mario Lusini
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Bruno Vincenzi
- Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Giuseppe Tonini
- Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Massimo Chello
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| |
Collapse
|
11
|
Qian H, Maghsoudloo M, Kaboli PJ, Babaeizad A, Cui Y, Fu J, Wang Q, Imani S. Decoding the Promise and Challenges of miRNA-Based Cancer Therapies: An Essential Update on miR-21, miR-34, and miR-155. Int J Med Sci 2024; 21:2781-2798. [PMID: 39512697 PMCID: PMC11539376 DOI: 10.7150/ijms.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
MicroRNAs (miRNAs)-based therapies hold great promise for cancer treatment, challenges such as expression variability, off-target effects, and limited clinical effectiveness have led to the withdrawal of many clinical trials. This review investigates the setbacks in miRNA-based therapies by examining miR-21, miR-34, and miR-155, highlighting their functional complexity, off-target effects, and the challenges in delivering these therapies effectively. Moreover, It highlights recent advances in delivery methods, combination therapies, and personalized treatment approaches to overcome these challenges. This review highlights the intricate molecular networks involving miRNAs, particularly their interactions with other non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), emphasizing the pivotal role of miRNAs in cancer biology and therapeutic strategies. By addressing these hurdles, this review aims to steer future research toward harnessing the potential of miRNA therapies to target cancer pathways effectively, enhance anti-tumor responses, and ultimately improve patient outcomes in precision cancer therapy.
Collapse
Affiliation(s)
- Hongbo Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Yulan Cui
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Karmakar A, Kumar U, Prabhu S, Ravindran V, Nagaraju SP, Suryakanth VB, Prabhu MM, Karmakar S. Molecular profiling and therapeutic tailoring to address disease heterogeneity in systemic lupus erythematosus. Clin Exp Med 2024; 24:223. [PMID: 39294397 PMCID: PMC11410857 DOI: 10.1007/s10238-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, heterogeneous, systemic autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition. SLE predominantly affects young, middle-aged, and child-bearing women with episodes of flare-up and remission, although it affects males at a much lower frequency (female: male; 7:1 to 15:1). Technological and molecular advancements have helped in patient stratification and improved patient prognosis, morbidity, and treatment regimens overall, impacting quality of life. Despite several attempts to comprehend the pathogenesis of SLE, knowledge about the precise molecular mechanisms underlying this disease is still lacking. The current treatment options for SLE are pragmatic and aim to develop composite biomarkers for daily practice, which necessitates the robust development of novel treatment strategies and drugs targeting specific responsive pathways. In this communication, we review and aim to explore emerging therapeutic modalities, including multiomics-based approaches, rational drug design, and CAR-T-cell-based immunotherapy, for the management of SLE.
Collapse
Affiliation(s)
- Abhibroto Karmakar
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Smitha Prabhu
- Department of Dermatology, Kasturba Medical College, Manipal Academy Higher Education, Manipal, India
| | - Vinod Ravindran
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India
- Department of Rheumatology, Centre for Rheumatology, Kozhikode, Kerala, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College Manipal, Manipal Academy Higher Education, Manipal, India
| | - Varashree Bolar Suryakanth
- Department of Biochemistry, Kasturba Medical College Manipal, Manipal Academy Higher Education, Manipal, India
| | - Mukhyaprana M Prabhu
- Department of General Medicine, Kasturba Medical College, Manipal, Manipal Academy Higher Education, Manipal, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, New Delhi, India.
| |
Collapse
|
13
|
He L, Wang X, Chen X. Unveiling the role of microRNAs in metabolic dysregulation of Gestational Diabetes Mellitus. Reprod Biol 2024; 24:100924. [PMID: 39013209 DOI: 10.1016/j.repbio.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.
Collapse
Affiliation(s)
- Ling He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Chen
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Sandhanam K, Tamilanban T, Manasa K, Bhattacharjee B. Unlocking novel therapeutic avenues in glioblastoma: Harnessing 4-amino cyanine and miRNA synergy for next-gen treatment convergence. Neuroscience 2024; 553:1-18. [PMID: 38944146 DOI: 10.1016/j.neuroscience.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy 502294, Telangana, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501 Assam, India
| |
Collapse
|
16
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Rahman I, Black SM, Liu Y, Unwalla HJ. Altered Host microRNAomics in HIV Infections: Therapeutic Potentials and Limitations. Int J Mol Sci 2024; 25:8809. [PMID: 39201495 PMCID: PMC11354509 DOI: 10.3390/ijms25168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome. Specifically, the Human Immunodeficiency Virus (HIV), which affects approximately 39 million people worldwide and has no definitive cure, was reported to induce significant changes in host cell miRNA profiles. Identifying and understanding the effects of the aberrant microRNAome holds potential for early detection and therapeutic designs. This review presents a comprehensive overview of the impact of HIV on host microRNAome. We aim to review the cause-and-effect relationship between the HIV-induced aberrant microRNAome that underscores miRNA's therapeutic potential and acknowledge its limitations.
Collapse
Affiliation(s)
- Maria J. Santiago
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA;
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
17
|
Huang J, Chakraborty A, Tadepalli LS, Paul A. Adoption of a Tetrahedral DNA Nanostructure as a Multifunctional Biomaterial for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:2204-2214. [PMID: 39144555 PMCID: PMC11320733 DOI: 10.1021/acsptsci.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
DNA nanostructures have been widely researched in recent years as emerging biomedical materials for drug delivery, biosensing, and cancer therapy, in addition to their hereditary function. Multiple precisely designed single-strand DNAs can be fabricated into complex, three-dimensional DNA nanostructures through a simple self-assembly process. Among all of the synthetic DNA nanostructures, tetrahedral DNA nanostructures (TDNs) stand out as the most promising biomedical nanomaterial. TDNs possess the merits of structural stability, cell membrane permeability, and natural biocompatibility due to their compact structures and DNA origin. In addition to their inherent advantages, TDNs were shown to have great potential in delivering therapeutic agents through multiple functional modifications. As a multifunctional material, TDNs have enabled innovative pharmaceutical applications, including antimicrobial therapy, anticancer treatment, immune modulation, and cartilage regeneration. Given the rapid development of TDNs in the biomedical field, it is critical to understand how to successfully produce and fine-tune the properties of TDNs for specific therapeutic needs and clinical translation. This article provides insights into the synthesis and functionalization of TDNs and summarizes the approaches for TDN-based therapeutics delivery as well as their broad applications in the field of pharmaceutics and nanomedicine, challenges, and future directions.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lakshmi Suchitra Tadepalli
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of
Biomedical Engineering, The University of
Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department
of Chemistry, The University of Western
Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
18
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
19
|
Mensah-Bonsu M, Doss C, Gloster C, Muganda P. Identification and Potential Roles of Human MicroRNAs in Ebola Virus Infection and Disease Pathogenesis. Genes (Basel) 2024; 15:403. [PMID: 38674337 PMCID: PMC11049046 DOI: 10.3390/genes15040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.
Collapse
Affiliation(s)
- Melvin Mensah-Bonsu
- Applied Science and Technology Ph.D. Program, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Christopher Doss
- Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Clay Gloster
- Department of Computer Systems Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Perpetua Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
20
|
Pandey S, Jain A, Vagha S. Insights Into Colorectal Carcinoma: A Comprehensive Review of MicroRNA Expression Patterns. Cureus 2024; 16:e56739. [PMID: 38650823 PMCID: PMC11033970 DOI: 10.7759/cureus.56739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Colorectal carcinoma (CRC) remains a significant contributor to cancer-related morbidity and mortality worldwide. MicroRNAs (miRNAs) have emerged as crucial regulators of gene expression and play critical roles in various biological processes, including carcinogenesis. This comprehensive review aims to elucidate the role of miRNAs in CRC by analyzing their expression patterns and functional implications. An extensive literature review identified dysregulated miRNAs associated with different stages of CRC progression, from initiation to metastasis. These miRNAs modulate key signaling pathways in tumor growth, invasion, and metastasis. Furthermore, we discuss the potential of miRNAs as diagnostic biomarkers and therapeutic targets in CRC management. Future research directions include elucidating the functional significance of dysregulated miRNAs using advanced experimental models and computational approaches and exploring the therapeutic potential of miRNA-based interventions in personalized treatment strategies for CRC patients. Collaboration among researchers, clinicians, and industry partners will be essential to translate these findings into clinically impactful interventions that improve patient outcomes in CRC.
Collapse
Affiliation(s)
- Shweta Pandey
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akriti Jain
- Pathology, Delhi State Cancer Institute, Delhi, IND
| | - Sunita Vagha
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed Microdevices 2024; 26:16. [PMID: 38324228 DOI: 10.1007/s10544-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
23
|
Cao Y, Zheng M, Sewani MA, Wang J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res 2024; 116:e2273. [PMID: 37984445 PMCID: PMC11418803 DOI: 10.1002/bdr2.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that play important roles in both physiological and pathological processes through post-transcriptional regulation. The miR-17-92 cluster includes six individual members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a-1. The miR-17-92 cluster has been extensively studied and reported to broadly function in cancer biology, immunology, neurology, pulmonology, and cardiology. This review focuses on its roles in heart development and cardiac diseases. We briefly introduce the nature of the miR-17-92 cluster and its crucial roles in both normal development and the pathogenesis of various diseases. We summarize the recent progress in understanding the versatile roles of miR-17-92 during cardiac development, regeneration, and aging. Additionally, we highlight the indispensable roles of the miR-17-92 cluster in pathogenesis and therapeutic potential in cardiac birth defects and adult cardiac diseases.
Collapse
Affiliation(s)
- Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Maham A Sewani
- Department of BioSciences, Wiess School of Natural Sciences, Rice University, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| |
Collapse
|
24
|
Bandakinda M, Mishra A. Insights into role of microRNA in Alzheimer's disease: From contemporary research to bedside perspective. Int J Biol Macromol 2023; 253:126561. [PMID: 37659493 DOI: 10.1016/j.ijbiomac.2023.126561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD). Despite the pervasiveness of AD being considerable, the rates of both diagnosis and therapy are comparatively less and still lacking. For the treatment of AD, acetylcholinesterase inhibitors and NMDA receptor antagonists (Memantine) have received clinical approval. The approved drugs are only capable of mitigating the symptoms; however, halting the progression of the disease remains a matter of substantial concern. MicroRNAs (miRs) are a subclass of non-coding single-stranded RNA molecules that target mRNAs to control the expression of genes in certain tissues. Dysregulation in the expression and function of miRs contributes to a neurodegeneration-like pathogenesis seen in Alzheimer's disease (AD), featuring hallmark characteristics such as Aβ aggregation, hyper-phosphorylation of Tau proteins, mitochondrial dysfunction, neuroinflammation, and apoptosis. These factors collectively underpin the cognitive deterioration and learning disabilities associated with AD. According to the research, numerous miRs have considerably different expression patterns in AD patients compared to healthy people. Due to these attributes, miRs prove to be effective diagnostic and therapeutic agents for AD. This review will examine clinical and preclinical data concerning the potential of miRs as diagnostic and therapeutic agents, utilizing various techniques (such as miR antagonists or inhibitors, miR agonists or mimics, miR sponges, and miR antisense oligonucleotides) to target specific pathogenic mechanisms in AD.
Collapse
Affiliation(s)
- Mounisha Bandakinda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam 781101, India.
| |
Collapse
|
25
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
26
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
27
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
28
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS BIO & MED CHEM AU 2023; 3:114-136. [PMID: 37101812 PMCID: PMC10125326 DOI: 10.1021/acsbiomedchemau.2c00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 04/28/2023]
Abstract
RNA therapy is a disruptive technology comprising a rapidly expanding category of drugs. Further translation of RNA therapies to the clinic will improve the treatment of many diseases and help enable personalized medicine. However, in vivo delivery of RNA remains challenging due to the lack of appropriate delivery tools. Current state-of-the-art carriers such as ionizable lipid nanoparticles still face significant challenges, including frequent localization to clearance-associated organs and limited (1-2%) endosomal escape. Thus, delivery vehicles must be improved to further unlock the full potential of RNA therapeutics. An emerging strategy is to modify existing or new lipid nanocarriers by incorporating bioinspired design principles. This method generally aims to improve tissue targeting, cellular uptake, and endosomal escape, addressing some of the critical issues facing the field. In this review, we introduce the different strategies for creating bioinspired lipid-based RNA carriers and discuss the potential implications of each strategy based on reported findings. These strategies include incorporating naturally derived lipids into existing nanocarriers and mimicking bioderived molecules, viruses, and exosomes. We evaluate each strategy based on the critical factors required for delivery vehicles to succeed. Finally, we point to areas of research that should be furthered to enable the more successful rational design of lipid nanocarriers for RNA delivery.
Collapse
Affiliation(s)
- Alex Golubovic
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shannon Tsai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Bowen Li
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
30
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
31
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
32
|
New method for microRNA detection based on multimerization. Anal Biochem 2023; 664:115049. [PMID: 36639117 DOI: 10.1016/j.ab.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Detection of specific microRNA (miRNA) is of great demand due to their essential role in genes regulation, stress response and development of diseases. However, mature miRNAs are small molecules that make it difficult to use routine amplification-based methods. Here, we report an approach for detection of miRNA based on a new type of isothermal amplification, namely, multimerization. The proposed technique is simple and versatile, excludes a reverse transcription step, and requires two conventional primers only and no additional stem-loop or fluorogenic probes. Only mature miRNAs can initiate multimerization, thereby, pri- or pre-miRNA are excluded from analysis, ensuring high accuracy of the assay. The approach was approved on miRNA from common wheat Triticum aestivum; the increase of Tae-miRNA159 level for plants affected by Stagonospora nodorum Berk infection was demonstrated. The obtained results allow to perform quantitative analysis, providing determination of specific targets with high reliability (detection limit of about 20 pM).
Collapse
|
33
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
34
|
Circular RNAs-New Kids on the Block in Cancer Pathophysiology and Management. Cells 2023; 12:cells12040552. [PMID: 36831219 PMCID: PMC9953808 DOI: 10.3390/cells12040552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The ever-increasing number of cancer cases and persistently high mortality underlines the urgent need to acquire new perspectives for developing innovative therapeutic approaches. As the research on protein-coding genes brought significant yet only incremental progress in the development of anticancer therapy, much attention is now devoted to understanding the role of non-coding RNAs (ncRNAs) in various types of cancer. Recent years have brought about the awareness that ncRNAs recognized previously as "dark matter" are, in fact, key players in shaping cancer development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs, circular RNAs, have evidenced their high importance in many diseases, including malignancies. Therefore, in the following review, we focus on the role of circular RNAs in cancer, particularly in cancer stem-like cells, summarize their mechanisms of action, and provide an overview of the state-of-the-art toolkits to study them.
Collapse
|
35
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
36
|
Trideva Sastri K, Vishal Gupta N, Kannan A, Balamuralidhara V, Ramkishan A. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today 2022; 27:103357. [PMID: 36115632 DOI: 10.1016/j.drudis.2022.103357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder attributed to neurodegeneration and demyelination, resulting in neurological impairment. miRNA has a significant role in biological processes in MS. In this review, we focus on the feasibility of delivering miRNAs through nanoformulations for managing MS. We provide a brief discussion of miRNA synthesis and evidence for miRNA dysregulation in MS. We also highlight formulation strategies and resulting technologies for the effective delivery of miRNAs through nanocarrier systems for achieving high therapeutic benefits.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - V Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| |
Collapse
|
37
|
Olejárová S, Moravčík R, Herichová I. 2.4 GHz Electromagnetic Field Influences the Response of the Circadian Oscillator in the Colorectal Cancer Cell Line DLD1 to miR-34a-Mediated Regulation. Int J Mol Sci 2022; 23:13210. [PMID: 36361993 PMCID: PMC9656412 DOI: 10.3390/ijms232113210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMF) exert pleiotropic effects on biological processes including circadian rhythms. miR-34a is a small non-coding RNA whose expression is modulated by RF-EMF and has the capacity to regulate clock gene expression. However, interference between RF-EMF and miR-34a-mediated regulation of the circadian oscillator has not yet been elucidated. Therefore, the present study was designed to reveal if 24 h exposure to 2.4 GHz RF-EMF influences miR-34a-induced changes in clock gene expression, migration and proliferation in colorectal cancer cell line DLD1. The effect of up- or downregulation of miR-34a on DLD1 cells was evaluated using real-time PCR, the scratch assay test and the MTS test. Administration of miR-34a decreased the expression of per2, bmal1, sirtuin1 and survivin and inhibited proliferation and migration of DLD1 cells. When miR-34a-transfected DLD1 cells were exposed to 2.4 GHz RF-EMF, an increase in cry1 mRNA expression was observed. The inhibitory effect of miR-34a on per2 and survivin was weakened and abolished, respectively. The effect of miR-34a on proliferation and migration was eliminated by RF-EMF exposure. In conclusion, RF-EMF strongly influenced regulation mediated by the tumour suppressor miR-34a on the peripheral circadian oscillator in DLD1 cells.
Collapse
Affiliation(s)
| | | | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
38
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
39
|
Perez-Vizcaino F, Mondejar-Parreño G. Antiproliferative miR-212-5p: Promising RNA therapy for pulmonary hypertension. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:689-690. [PMID: 36090757 PMCID: PMC9440269 DOI: 10.1016/j.omtn.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Corresponding author Francisco Perez-Vizcaino, PhD, Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Gema Mondejar-Parreño
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Zeng Q, Xi L, Zeng Y, Liu W, Zhou L. Osteopontin mediated eosinophils activation by group II innate lymphoid cells. World Allergy Organ J 2022; 15:100659. [PMID: 36017066 PMCID: PMC9389302 DOI: 10.1016/j.waojou.2022.100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Osteopontin (OPN) can regulate Th2 inflammation in allergic rhinitis (AR). A recent study suggested that group II innate lymphoid cells (ILC2s) were very important for airway inflammation. But the role of OPN in ILC2s regulation is not explored. Methods Purified ILC2s were stimulated by human recombinant OPN. The expression of GATA3 and RORα was assayed using real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay. MiR-181a was transfected into eosinophils to test the OPN production. The protein concentrations of interleukin (IL)-5 and IL-13 were examined using ELISA. Purified eosinophils and ILC2s were cocultured and stimulated by OPN and the activation of eosinophils was detected by ELISA. Results After OPN stimulation, the ILC2s proliferation, the mRNA levels of GATA3 and RORα, the protein of GATA3, RORα, IL-5 and IL-13 expression were up-regulated significantly in a dose dependent manner. Eosinophils cultured alone transfected with miR-181a mimics produced less OPN protein compared with eosinophils transfected with miR-control, whereas OPN production was significantly promoted when miR-181a inhibitor was transfected. In the eosinophils and ILC2s coculture system, eosinophil cationic protein (ECP) production induced by OPN or IL-33 were significantly higher than ECP production in eosinophils culture system. OPN presented similar potency with IL-33 in the activation of eosinophils. When anti-IL-5 antibody was added, the production of ECP was significantly inhibited. Conclusions Our data for the first time provided new evidence that OPN played important roles in innate immunity of AR by regulation of ILC2s and the interaction between ILC2s and eosinophils.
Collapse
Affiliation(s)
| | | | | | - Wenlong Liu
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Lifeng Zhou
- Corresponding author. Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, China
| |
Collapse
|
41
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
42
|
Nenna A, Loreni F, Giacinto O, Chello C, Nappi P, Chello M, Nappi F. miRNAs in Cardiac Myxoma: New Pathologic Findings for Potential Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23063309. [PMID: 35328730 PMCID: PMC8954653 DOI: 10.3390/ijms23063309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, contributing to all major cellular processes. The importance of miRNAs in cardiac development, heart function, and valvular heart disease has been shown in recent years, and aberrant expression of miRNA has been reported in various malignancies, such as gastric cancer and breast cancer. Different from other fields of investigation, the role of miRNAs in cardiac tumors still remains difficult to interpret due to the scarcity publications and a lack of narrative focus on this topic. In this article, we summarize the available evidence on miRNAs and cardiac myxomas and propose new pathways for future research. miRNAs play a part in modifying the expression of cardiac transcription factors (miR-335-5p), increasing cell cycle trigger factors (miR-126-3p), interfering with ceramide synthesis (miR-320a), inducing apoptosis (miR-634 and miR-122), suppressing production of interleukins (miR-217), and reducing cell proliferation (miR-218). As such, they have complex and interconnected roles. At present, the study of the complete mechanistic control of miRNA remains a crucial issue, as proper understanding of signaling pathways is essential for the forecasting of therapeutic implications. Other types of cardiac tumors still lack adequate investigation with regard to miRNA. Further research should aim at investigating the causal relationship between different miRNAs and cell overgrowth, considering both myxoma and other histological types of cardiac tumors. We hope that this review will help in understanding this fascinating molecular approach.
Collapse
Affiliation(s)
- Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (F.L.); (O.G.); (M.C.)
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (F.L.); (O.G.); (M.C.)
| | - Omar Giacinto
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (F.L.); (O.G.); (M.C.)
| | - Camilla Chello
- Integrated Biomedical Science and Bioethics, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Pierluigi Nappi
- Cardiology, Università degli Studi di Messina, 98122 Messina, Italy;
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.N.); (F.L.); (O.G.); (M.C.)
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint Denis, 93200 Paris, France
- Correspondence: ; Tel.: +33-149334104; Fax: +33-149334119
| |
Collapse
|
43
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
The Enticing Path of miR Therapeutics: Difficult but Not without Prospects. Cells 2022; 11:cells11030418. [PMID: 35159228 PMCID: PMC8833969 DOI: 10.3390/cells11030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRs) are short non-coding RNAs that regulate the translation and stability of mRNAs to fine-tune gene expression [...].
Collapse
|