1
|
Su S, Bao W, Liu Y, Shi PA, Manwani D, Murakhovskaya I, Campbell-Lee S, Lobo CA, Mendelson A, An X, Zhong H, Yi W, Yazdanbakhsh K. IFN-I promotes T-cell-independent immunity and RBC autoantibodies via modulation of B-1 cell subsets in murine SCD. Blood 2025; 145:334-347. [PMID: 39656114 PMCID: PMC11775509 DOI: 10.1182/blood.2024025175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/11/2024] [Indexed: 01/18/2025] Open
Abstract
ABSTRACT The pathophysiology of sickle cell disease (SCD) is characterized by hemolytic anemia and vaso-occlusion, although its impact on the adaptive immune responses remains incompletely understood. To comprehensibly profile the humoral immune responses, we immunized SCD mice with T-cell-independent (TI) and T-cell-dependent (TD) antigens (Ags). Our study showed that SCD mice have significantly enhanced type 2 TI (TI-2) immune responses in a manner dependent on the level of type I interferons (IFN-I), while maintaining similar or decreased TD immune responses depending on the route of Ag administration. Consistent with the enhanced TI-2 immune responses in SCD mice, the frequencies of B-1b cells (B-1 cells in humans), a major cell type responding to TI-2 Ags, were significantly increased in both the peritoneal cavity and spleens of SCD mice and in the blood of patients with SCD. In support of expanded B-1 cells, elevated levels of anti-red blood cell (anti-RBC) autoantibodies were detected in both SCD mice and patients. Both the levels of TI-2 immune responses and anti-RBC autoantibodies were significantly reduced after IFN-I receptor (IFNAR) antibody blockades and in IFNAR1-deficient SCD mice. Moreover, the alterations of B-1 cell subsets were reversed in IFNAR1-deficient SCD mice, uncovering a critical role for IFN-I in the enhanced TI-2 immune responses and the increased production of anti-RBC autoantibodies by modulating the innate B-1 cell subsets in SCD. Overall, our study provides experimental evidence that the modulation of B-1 cells and IFN-I can regulate TI immune responses and the levels of anti-RBC autoantibodies in SCD.
Collapse
Affiliation(s)
- Shan Su
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Weili Bao
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Patricia A. Shi
- Clinical Research in Sickle Cell Disease, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - Irina Murakhovskaya
- Department of Hematology and Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | | | - Cheryl A. Lobo
- Laboratory of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Xiuli An
- Laboratory of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Hui Zhong
- Laboratory of Immune Regulation, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Woelsung Yi
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
2
|
Gonçalves MP, Farah R, Bikorimana JP, Abusarah J, EL-Hachem N, Saad W, Talbot S, Stanga D, Beaudoin S, Plouffe S, Rafei M. A1-reprogrammed mesenchymal stromal cells prime potent antitumoral responses. iScience 2024; 27:109248. [PMID: 38433914 PMCID: PMC10907831 DOI: 10.1016/j.isci.2024.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have been modified via genetic or pharmacological engineering into potent antigen-presenting cells-like capable of priming responding CD8 T cells. In this study, our screening of a variant library of Accum molecule revealed a molecule (A1) capable of eliciting antigen cross-presentation properties in MSCs. A1-reprogrammed MSCs (ARM) exhibited improved soluble antigen uptake and processing. Our comprehensive analysis, encompassing cross-presentation assays and molecular profiling, among other cellular investigations, elucidated A1's impact on endosomal escape, reactive oxygen species production, and cytokine secretion. By evaluating ARM-based cellular vaccine in mouse models of lymphoma and melanoma, we observe significant therapeutic potency, particularly in allogeneic setting and in combination with anti-PD-1 immune checkpoint inhibitor. Overall, this study introduces a strong target for developing an antigen-adaptable vaccination platform, capable of synergizing with immune checkpoint blockers to trigger tumor regression, supporting further investigation of ARMs as an effective and versatile anti-cancer vaccine.
Collapse
Affiliation(s)
| | - Roudy Farah
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Nehme EL-Hachem
- Pediatric Hematology-Oncology Division, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Wael Saad
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Daniela Stanga
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Moutih Rafei
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
3
|
Shi CM. [To strengthen the basic and translational research of mesenchymal stem cell-based therapy for refractory wounds]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:999-1003. [PMID: 36418256 DOI: 10.3760/cma.j.cn501225-20220913-00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, the application of cell-based therapy in the field of refractory wound repair has shown broad prospects, among which the mesenchymal stem cell is the most concerned and widely studied cell type. Despite the rapid development of clinical translational research, the therapeutic effect of cell-based therapy is not consistent, and most clinical trials have not achieved the desired results. Further studies have found that heterogeneity is an important issue that restricts the further development of cell-based therapy and urgently needs to be studied. Based on the research progress of mesenchymal stem cells, in the review, we discuss the current status and challenges of cell-based therapy strategies for refractory wounds.
Collapse
Affiliation(s)
- C M Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400038, China
| |
Collapse
|
4
|
LSD1 Inhibition Enhances the Immunogenicity of Mesenchymal Stromal Cells by Eliciting a dsRNA Stress Response. Cells 2022; 11:cells11111816. [PMID: 35681511 PMCID: PMC9180800 DOI: 10.3390/cells11111816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are commonly known for their immune-suppressive abilities. However, our group provided evidence that it is possible to convert MSCs into potent antigen presenting cells (APCs) using either genetic engineering or pharmacological means. Given the capacity of UM171a to trigger APC-like function in MSCs, and the recent finding that this drug may modulate the epigenome by inhibiting the lysine-specific demethylase 1 (LSD1), we explored whether the direct pharmacological inhibition of LSD1 could instill APC-like functions in MSCs akin to UM171a. The treatment of MSCs with the LSD1 inhibitor tranylcypromine (TC) elicits a double-stranded (ds)RNA stress response along with its associated responsive elements, including pattern recognition receptors (PRRs), Type-I interferon (IFN), and IFN-stimulated genes (ISGs). The net outcome culminates in the enhanced expression of H2-Kb, and an increased stability of the cell surface peptide: MHCI complexes. As a result, TC-treated MSCs stimulate CD8 T-cell activation efficiently, and elicit potent anti-tumoral responses against the EG.7 T-cell lymphoma in the context of prophylactic vaccination. Altogether, our findings reveal a new pharmacological protocol whereby targeting LSD1 in MSCs elicits APC-like capabilities that could be easily exploited in the design of future MSC-based anti-cancer vaccines.
Collapse
|