1
|
Roe T, Talbot T, Terrington I, Johal J, Kemp I, Saeed K, Webb E, Cusack R, Grocott MPW, Dushianthan A. Physiology and pathophysiology of mucus and mucolytic use in critically ill patients. Crit Care 2025; 29:68. [PMID: 39920835 PMCID: PMC11806889 DOI: 10.1186/s13054-025-05286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Airway mucus is a highly specialised secretory fluid which functions as a physical and immunological barrier to pathogens whilst lubricating the airways and humifying atmospheric air. Dysfunction is common during critical illness and is characterised by changes in production rate, chemical composition, physical properties, and inflammatory phenotype. Mucociliary clearance, which is determined in part by mucus characteristics and in part by ciliary function, is also dysfunctional in critical illness via disease related and iatrogenic mechanisms. The consequences of mucus dysfunction are potentially devastating, contributing to prolonged ventilator dependency, increased risk of secondary pneumonia, and worsened lung injury. Mucolytic therapies are designed to decrease viscosity, improve expectoration/suctioning, and thereby promote mucus removal. Mucolytics, including hypertonic saline, dornase alfa/rhDNase, nebulised heparin, carbocisteine/N-Acetyl cysteine, are commonly used in critically ill patients. This review summarises the physiology and pathophysiology of mucus and the existing evidence for the use of mucolytics in critically ill patients and speculates on journey to individualised mucolytic therapy.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Thomas Talbot
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Isis Terrington
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Jayant Johal
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ivan Kemp
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kordo Saeed
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Webb
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Rebecca Cusack
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK.
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
2
|
Luo Y, Ren J, Liang L, Qu J, Chang C, Sun Y. Correlation of Aspergillus fumigatus Sensitization with Mucus Plugging in COPD. Int J Chron Obstruct Pulmon Dis 2025; 20:57-63. [PMID: 39802040 PMCID: PMC11724664 DOI: 10.2147/copd.s496521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Both Aspergillus fumigatus sensitization and mucus plugs are associated with poor clinical outcomes in COPD. However, little is known about the association between Aspergillus hypersensitivity and mucus plugging in patients with COPD. Methods We retrospectively enrolled COPD patients who had visited Peking University Third Hospital and received measurement of the Aspergillus Fumigatus specific IgE (Af sIgE) from Oct 1, 2018 to Sep 30, 2023. The clinical, laboratory, and chest CT features were analyzed, with mucus plugging evaluation using the bronchopulmonary segment-based scoring system. Comparison was performed between COPD patients with and without Aspergillus hypersensitivity (AH). Results Among the 378 COPD patients with measurement of Af sIgE, 29 (7.7%) were classified as having AH (Af sIgE>0.35KU/L). By propensity score matching (1:2), 58 patients without AH were included for comparison. Patients with AH had lower FEV1%pred (P=0.008) and FEV1/FVC (%) (P=0.023), and were more likely to have a blood eosinophil count exceeding 300/µL and higher white blood cell and neutrophil counts. The prevalence of luminal plugging on chest CT in subjects with AH was 58.6%, compared to 31.0% in those without AH (P=0.013). Multivariate regression analyses showed that Af sIgE more than 0.70 KU/L and blood neutrophil count were associated with mucus plugging. Conclusion In patients with COPD, Aspergillus sensitization was associated with lower lung function and mucus plugging on chest CT.
Collapse
MESH Headings
- Humans
- Aspergillus fumigatus/immunology
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/microbiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Male
- Female
- Retrospective Studies
- Aged
- Middle Aged
- Mucus/microbiology
- Immunoglobulin E/blood
- Lung/physiopathology
- Lung/microbiology
- Lung/immunology
- Lung/diagnostic imaging
- Tomography, X-Ray Computed
- Forced Expiratory Volume
- Antibodies, Fungal/blood
- Aspergillosis, Allergic Bronchopulmonary/immunology
- Aspergillosis, Allergic Bronchopulmonary/diagnosis
- Aspergillosis, Allergic Bronchopulmonary/physiopathology
- Aspergillosis, Allergic Bronchopulmonary/blood
- Aspergillosis, Allergic Bronchopulmonary/microbiology
- Vital Capacity
- Risk Factors
Collapse
Affiliation(s)
- Ying Luo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Jiaqi Ren
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Long Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Jingge Qu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
4
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
5
|
Birkhead M, Otido S, Mabaso T, Mopeli K, Tlhapi D, Verwey C, Dangor Z. Ultrastructure for the diagnosis of primary ciliary dyskinesia in South Africa, a resource-limited setting. Front Pediatr 2023; 11:1247638. [PMID: 37645034 PMCID: PMC10461090 DOI: 10.3389/fped.2023.1247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction International guidelines recommend a multi-faceted approach for successful diagnoses of primary ciliary dyskinesia (PCD). In the absence of a gold standard test, a combination of genetic testing/microscopic analysis of structure and function/nasal nitric oxide measurement is used. In resource-limited settings, often none of the above tests are available, and in South Africa, only transmission electron microscopy (TEM) is available in central anatomical pathology departments. The aim of this study was to describe the clinical and ultrastructural findings of suspected PCD cases managed by pediatric pulmonologists at a tertiary-level state funded hospital in Johannesburg. Methods Nasal brushings were taken from 14 children with chronic respiratory symptoms in keeping with a PCD phenotype. Ultrastructural analysis in accordance with the international consensus guidelines for TEM-PCD diagnostic reporting was undertaken. Results TEM observations confirmed 43% (6) of the clinically-suspected cases (hallmark ultrastructural defects in the dynein arms of the outer doublets), whilst 57% (8) required another PCD testing modality to support ultrastructural observations. Of these, 25% (2) had neither ultrastructural defects nor did they present with bronchiectasis. Of the remaining cases, 83% (5) had very few ciliated cells (all of which were sparsely ciliated), together with goblet cell hyperplasia. There was the apparent absence of ciliary rootlets in 17% (1) case. Discussion In resource-limited settings in which TEM is the only available testing modality, confirmatory and probable diagnoses of PCD can be made to facilitate early initiation of treatment of children with chronic respiratory symptoms.
Collapse
Affiliation(s)
- Monica Birkhead
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases – a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Samuel Otido
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Theodore Mabaso
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Keketso Mopeli
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Dorcas Tlhapi
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Charl Verwey
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Huijghebaert S, Parviz S, Rabago D, Baxter A, Chatterjee U, Khan FR, Fabbris C, Poulas K, Hsu S. Saline nasal irrigation and gargling in COVID-19: a multidisciplinary review of effects on viral load, mucosal dynamics, and patient outcomes. Front Public Health 2023; 11:1161881. [PMID: 37397736 PMCID: PMC10312243 DOI: 10.3389/fpubh.2023.1161881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
With unrelenting SARS-CoV-2 variants, additional COVID-19 mitigation strategies are needed. Oral and nasal saline irrigation (SI) is a traditional approach for respiratory infections/diseases. As a multidisciplinary network with expertise/experience with saline, we conducted a narrative review to examine mechanisms of action and clinical outcomes associated with nasal SI, gargling, spray, or nebulization in COVID-19. SI was found to reduce SARS-CoV-2 nasopharyngeal loads and hasten viral clearance. Other mechanisms may involve inhibition of viral replication, bioaerosol reduction, improved mucociliary clearance, modulation of ENaC, and neutrophil responses. Prophylaxis was documented adjunctive to personal protective equipment. COVID-19 patients experienced significant symptom relief, while overall data suggest lower hospitalization risk. We found no harm and hence recommend SI use, as safe, inexpensive, and easy-to-use hygiene measure, complementary to hand washing or mask-wearing. In view of mainly small studies, large well-controlled or surveillance studies can help to further validate the outcomes and to implement its use.
Collapse
Affiliation(s)
| | - Shehzad Parviz
- Medstar Health, Brooke Grove Rehabilitation Village, Sandy Spring, MD, United States
- Infectious Disease, Adventist Healthcare, White Oak Medical Center, Silver Spring, MD, United States
| | - David Rabago
- Departments of Family and Community Medicine and Public Health Sciences, Penn State College of Medicine, Pennsylvania, PA, United States
| | - Amy Baxter
- Department of Emergency Medicine, Augusta University, Augusta, GA, United States
| | - Uday Chatterjee
- Department of Paediatric Surgery, Park Medical Research and Welfare Society, Kolkata, West Bengal, India
| | - Farhan R. Khan
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | | | - Stephen Hsu
- Department of Oral Biology, Augusta University, Augusta, GA, United States
- Department of Oral Health and Diagnostic Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Sputum-Rheology-Based Strategy for Guiding Azithromycin Prescription in COPD Patients with Frequent Exacerbations: A Randomized, Controlled Study (“COPD CARhE”). Biomedicines 2023; 11:biomedicines11030740. [PMID: 36979719 PMCID: PMC10045420 DOI: 10.3390/biomedicines11030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Background: We have previously shown that sputum rheology can discriminate between patients with COPD and other muco-obstructive lung diseases, and that it is correlated with mucin content and sputum eosinophilia. We now hypothesize that it could be a more-accurate guide than clinical evaluation for the prescription of azithromycin to prevent exacerbations of COPD and to reduce exposure to antibiotics; (2) Methods: “COPD CaRhe” is a multicentric, randomized, controlled trial comparing outcomes in two parallel arms (36 vs. 36 patients). Patients will be recruited in the university hospitals of Montpellier, Bordeaux, and Toulouse, in France, and they should have a diagnosis of COPD with frequent exacerbations (≥3/year). Enrollment will occur during a routine visit to a respiratory department, and follow-up visits will occur every 3 months for a period of 1 year. At each visit, a 3-month prescription of azithromycin will be provided to those patients who obtain a score of <70 on the Cough and Sputum Assessment Questionnaire (CASA-Q) or a critical stress score of σc > 39 on a rheological assessment of sputum, depending upon their randomization group. The primary outcome will be the number of exacerbations of COPD; (3) Discussion: By using sputum rheology, the COPD CaRhe study may provide clinicians with an objective biomarker to guide the prescription of azithromycin while reducing the cumulative exposure to macrolides.
Collapse
|