1
|
Abbas K, Mustafa M, Alam M, Habib S, Ahmad W, Adnan M, Hassan MI, Usmani N. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics 2025; 26:39. [PMID: 40167826 DOI: 10.1007/s10048-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation, neurofibrillary tangles, neuroinflammation, and progressive cognitive decline, posing a significant global health challenge. Growing evidence suggests that dietary polyphenols may reduce the risk and progression of AD through multifaceted neuroprotective mechanisms. Polyphenols regulate amyloid proteostasis by inhibiting β/γ-secretase activity, preventing Aβ aggregation, and enhancing clearance pathways. Their strong antioxidant properties neutralize reactive oxygen species, chelate redox-active metals, and activate cytoprotective enzymes via Nrf2 signaling. This review examines the potential therapeutic targets, signaling pathways, and molecular mechanisms by which dietary polyphenols exert neuroprotective effects in AD, focusing on their roles in modulating amyloid proteostasis, oxidative stress, neuroinflammation, and cerebrovascular health. Polyphenols mitigate neuroinflammation by suppressing NF-κB signaling and upregulating brain-derived neurotrophic factor, supporting neuroplasticity and neurogenesis. They also enhance cerebrovascular health by improving cerebral blood flow, maintaining blood-brain barrier integrity, and modulating angiogenesis. This review examines the molecular and cellular pathways through which polyphenols exert neuroprotective effects, focusing on their antioxidant, anti-inflammatory, and amyloid-modulating roles. We also discuss their influence on key AD pathologies, including Aβ deposition, tau hyperphosphorylation, oxidative stress, and neuroinflammation. Insights from clinical and preclinical studies highlight the potential of polyphenols in preventing or slowing AD progression. Future research should explore personalized dietary strategies that integrate genetic and lifestyle factors to optimize the neuroprotective effects of polyphenols.
Collapse
Affiliation(s)
- Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'Il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Aynekin B, Akbaş S, Gulec A, Gumus UGO, Guner AE, Efthymiou S, Houlden H, Sayın GY, Per H. Phenotypic variability in progressive encephalopathy with brain atrophy and thin corpus callosum: insights from two families. Neurogenetics 2025; 26:23. [PMID: 39853547 DOI: 10.1007/s10048-025-00799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder. We report three cases from two consanguineous families with varying clinical presentations of PEBAT syndrome due to homozygous pathogenic variants in the TBCD. In Family 1, two siblings (F1C1 and F1C2) harboring the homozygous c.2314C > T, p.(Arg772Cys) variant exhibited severe neurodevelopmental regression, spastic tetraplegia, seizures, and brain atrophy. In contrast, Family 2, Case 3 (F2C3), with the homozygous c.230A > G, p.(His77Arg) variant, presented a milder phenotype, including absence seizures, slight developmental delay, and less pronounced neuroanatomical abnormalities. These findings contribute to the expanding phenotypic spectrum of PEBAT and suggesting that modifier genes or epigenetic factors may influence disease severity.
Collapse
Affiliation(s)
- Busra Aynekin
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sinan Akbaş
- Istanbul Medical Faculty, Department of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayten Gulec
- Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | | | - Abdullah Emre Guner
- Faculty of Medicine Department of Public Health, Health Sciences University Hamidiye, Hamidiye, Turkey
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Gözde Yesil Sayın
- Istanbul Medical Faculty, Department of Medical Genetics, Istanbul University, Istanbul, Turkey.
| | - Huseyin Per
- Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.
| |
Collapse
|
3
|
Tosolini AP, Abatecola F, Negro S, Sleigh JN, Schiavo G. The node of Ranvier influences the in vivo axonal transport of mitochondria and signaling endosomes. iScience 2024; 27:111158. [PMID: 39524336 PMCID: PMC11544082 DOI: 10.1016/j.isci.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient long-range axonal transport is essential for maintaining neuronal function, and perturbations in this process underlie severe neurological diseases. Nodes of Ranvier (NoR) are short, specialized unmyelinated axonal domains with a unique molecular and structural composition. Currently, it remains unresolved how the distinct molecular structures of the NoR impact axonal transport dynamics. Using intravital time-lapse microscopy of sciatic nerves in live, anesthetized mice, we reveal (1) similar morphologies of the NoR in fast and slow motor axons, (2) signaling endosomes and mitochondria accumulate specifically at the distal node, and (3) unique axonal transport profiles of signaling endosomes and mitochondria transiting through the NoR. Collectively, these findings provide important insights into the fundamental physiology of peripheral nerve axons, motor neuron subtypes, and diverse organelle dynamics at the NoR. Furthermore, this work has relevance for several pathologies affecting peripheral nerves and the NoR.
Collapse
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Federico Abatecola
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Cordeiro A, Gomes C, Bicker J, Fortuna A. Aging and cognitive resilience: Molecular mechanisms as new potential therapeutic targets. Drug Discov Today 2024; 29:104093. [PMID: 38992420 DOI: 10.1016/j.drudis.2024.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
As the global population ages, the need to prolong lifespan and healthspan becomes increasingly imperative. Understanding the molecular determinants underlying cognitive resilience, together with changes during aging and the (epi)genetic factors that predispose an individual to decreased cognitive resilience, open avenues for researching novel therapies. This review provides a critical and timely appraisal of the molecular mechanisms underlying cognitive resilience, framed within a critical analysis of emerging therapeutic strategies to mitigate age-related cognitive decline. Significant insights from both animals and human subjects are discussed herein, directed either toward active pharmaceutical ingredients (drug repositioning or macromolecules), or, alternatively, advanced cellular therapies.
Collapse
Affiliation(s)
- Ana Cordeiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catarina Gomes
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
6
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
7
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
8
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|