1
|
Teipel S, Akmatov M, Michalowsky B, Riedel-Heller S, Bohlken J, Holstiege J. Timing of risk factors, prodromal features, and comorbidities of dementia from a large health claims case-control study. Alzheimers Res Ther 2025; 17:22. [PMID: 39819557 PMCID: PMC11736938 DOI: 10.1186/s13195-024-01662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Many risk factors for dementia have been identified, but the timing of risk is less well understood. Here, we analyzed risk factors in a case-control study covering 10 years before an incident dementia diagnosis. METHODS We designed a case-control study using insurance claims of outpatient consultations of patients with German statutory health insurance between January 1, 2012, and December 31, 2022. We included patients with an incident diagnosis of dementia and controls without a diagnosis of dementia matched 1:2 for age, sex, region, and earliest year of outpatient encounter. We selected exposures based on previous systematic reviews, case-control and cohort studies reporting on risk factors, comorbidities, and prodromal features of dementia. We calculated the prevalence of risk factors in cases and controls and odds ratios for each year before the index date, along with Bonferroni-corrected confidence intervals, using conditional logistic regression. RESULTS We identified a total of 1,686,759 patients with incident dementia (mean (SD) age, 82.15 (6.90) years; 61.70% female) and 3,373,518 matched controls (mean (SD) age, 82.15 (6.90) years; 61.70% female). Study participants were followed up for a mean (SD) of 6.6 (2.3) years. Of the 63 risk factors and prodromal features examined, 56 were associated with an increased risk of dementia in all years during the 10th and the 1st year before the index date. These included established risk factors, such as depression, hypertension, hearing impairment, nicotine and alcohol abuse, obesity, hypercholesterolaemia, traumatic brain injury, and diabetes. The greatest risk, with odds ratios greater than 2.5, was conferred by delirium, memory impairment, mental retardation, personality and behavioral disorders, sensory disorders, schizophrenia, and psychosis. Cancer was associated with a reduced risk of dementia. CONCLUSIONS This large case-control study confirmed established risk factors of dementia. In addition, the study identified non-specific diagnoses that showed a steep increase in risk close to the index date, such as psychosis, conduct disorder, and other sensory disorders. Consideration of these diagnoses, which may represent prodromal features rather than risk factors for dementia, may help to identify people with dementia in routine care.
Collapse
Affiliation(s)
- Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, Rostock, 18147, Germany.
- Department of Psychosomatic Medicine, University Medicine Rostock, Gehlsheimer Str. 20, Rostock, 18147, Germany.
| | - Manas Akmatov
- Department of Epidemiology and Healthcare Atlas, Central Research Institute of Ambulatory Health Care in Germany, Berlin, Germany
| | - Bernhard Michalowsky
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jens Bohlken
- Institute of Social Medicine, Occupational Health and Public Health, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jakob Holstiege
- Department of Epidemiology and Healthcare Atlas, Central Research Institute of Ambulatory Health Care in Germany, Berlin, Germany
| |
Collapse
|
2
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
3
|
Lanza G, Mogavero MP, Salemi M, Ferri R. The Triad of Sleep, Immunity, and Cancer: A Mediating Perspective. Cells 2024; 13:1246. [PMID: 39120277 PMCID: PMC11311741 DOI: 10.3390/cells13151246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The triadic interplay between sleep, immunity, and cancer represents a growing area of biomedical research with significant clinical implications. This review synthesizes the current knowledge on how sleep influences immune function, the immune system's role in cancer dynamics, and the direct connections between sleep patterns and cancer risk. After a comprehensive overview of the interrelationships among these three domains, the mechanisms of sleep in immune function are described, detailing how sleep regulates the immune system, the effects of sleep duration and quality on immune responses, and the underlying molecular and cellular mechanisms. Also, the complex relationship between immunity and cancer is explored, highlighting the immune system's role in cancer prevention and progression, immune surveillance, tumor microenvironment, and the implications of immunodeficiency and immune modulation on cancer risk. The direct connections between sleep and cancer are then described, presenting epidemiological evidence linking sleep patterns to cancer risk, biological mechanisms that influence cancer development, and the role of sleep disorders in cancer prognosis. The mediating role of sleep between immunity and cancer is highlighted, proposing hypothesized pathways, summarizing evidence from experimental and clinical studies, and evaluating the impact of sleep interventions on immune function and cancer outcomes. This review concludes by discussing the clinical implications and future directions, emphasizing the potential for sleep-based interventions in cancer prevention and treatment, the integration of sleep management in oncology and immunotherapy, and outlining a future research agenda. This agenda includes understanding the mechanisms of the sleep-immunity-cancer interplay, conducting epidemiological studies on sleep and cancer risk, assessing the impact of sleep management in cancer treatment protocols, exploring sleep and tumor microenvironment interactions, and considering policy and public health implications. Through a detailed examination of these interconnected pathways, this review underscores the critical importance of sleep in modulating immune function and cancer outcomes, advocating for interdisciplinary research and clinical strategies to harness this knowledge for improved health outcomes.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | - Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Division of Neuroscience, Sleep Disorders Center, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (G.L.); (M.S.)
| |
Collapse
|
4
|
Mogavero MP, Ferri R, Ferini-Strambi L. A mouse model of MEIS1-associated restless legs syndrome: insights and challenges. Sleep 2024; 47:zsad326. [PMID: 38150482 PMCID: PMC11082464 DOI: 10.1093/sleep/zsad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre and Clinical Neurophysiology Research Unit, Oasi Research Institute - IRCCS, Troina, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Mogavero MP, Salemi M, Lanza G, Rinaldi A, Marchese G, Ravo M, Salluzzo MG, Antoci A, DelRosso LM, Bruni O, Ferini-Strambi L, Ferri R. Unveiling the pathophysiology of restless legs syndrome through transcriptome analysis. iScience 2024; 27:109568. [PMID: 38617564 PMCID: PMC11015462 DOI: 10.1016/j.isci.2024.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
The aim of this study was to analyze signaling pathways associated with differentially expressed messenger RNAs in people with restless legs syndrome (RLS). Seventeen RLS patients and 18 controls were enrolled. Coding RNA expression profiling of 12,857 gene transcripts by next-generation sequencing was performed. Enrichment analysis by pathfindR tool was carried-out, with p-adjusted ≤0.001 and fold-change ≥2.5. Nine main different network groups were significantly dysregulated in RLS: infections, inflammation, immunology, neurodegeneration, cancer, neurotransmission and biological, blood and metabolic mechanisms. Genetic predisposition plays a key role in RLS and evidence indicates its inflammatory nature; the high involvement of mainly neurotropic viruses and the TORCH complex might trigger inflammatory/immune reactions in genetically predisposed subjects and activate a series of biological pathways-especially IL-17, receptor potential channels, nuclear factor kappa-light-chain-enhancer of activated B cells, NOD-like receptor, mitogen-activated protein kinase, p53, mitophagy, and ferroptosis-involved in neurotransmitter mechanisms, synaptic plasticity, axon guidance, neurodegeneration, carcinogenesis, and metabolism.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- University of Catania, Department of Surgery and Medical-Surgical Specialties, 95123 Catania, Italy
| | - Antonio Rinaldi
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | | | | | | | - Oliviero Bruni
- Sapienza University of Rome, Developmental and Social Psychology, 00185 Rome, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | |
Collapse
|
6
|
Masoudi M, Torabi P, Judson-Torres RL, Khodarahmi R, Moradi S. Natural resistance to cancer: A window of hope. Int J Cancer 2024; 154:1131-1142. [PMID: 37860922 DOI: 10.1002/ijc.34766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Parisa Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
7
|
Salemi M, Ravo M, Lanza G, Schillaci FA, Ventola GM, Marchese G, Salluzzo MG, Cappelletti G, Ferri R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson's Disease Patients and Healthy Controls. Int J Mol Sci 2024; 25:707. [PMID: 38255780 PMCID: PMC10815072 DOI: 10.3390/ijms25020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group. RNA sequencing was conducted using the TapeStation 4200 system from Agilent Technologies. A total of 16,148 transcripts were identified, with 92 mRNAs displaying differential expression between the PD and control groups. Specifically, 33 mRNAs were significantly up-regulated, while 59 mRNAs were down-regulated in PD compared to the controls. The identification of statistically significant signaling pathways, with an adjusted p-value threshold of 0.05, unveiled noteworthy insights. Specifically, the enriched categories included cardiac muscle contraction (involving genes such as ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), solute carrier family 8 member A1 (SLC8A1), and cytochrome c oxidase subunit II (COX2)), GABAergic synapse (involving GABA type A receptor-associated protein-like 1 (GABARAPL1), G protein subunit beta 5 (GNB5), and solute carrier family 38 member 2 (SLC38A2), autophagy (involving GABARAPL1 and tumor protein p53-inducible nuclear protein 2 (TP53INP2)), and Fc gamma receptor (FcγR) mediated phagocytosis (involving amphiphysin (AMPH)). These findings uncover new pathophysiological dimensions underlying PD, implicating genes associated with heart muscle contraction. This knowledge enhances diagnostic accuracy and contributes to the advancement of targeted therapies.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giuseppe Lanza
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | | | - Giovanna Maria Ventola
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | | | - Raffaele Ferri
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| |
Collapse
|
8
|
Mogavero MP, Lanza G, DelRosso LM, Ferri R. Psychophysiology of Sleep. NEUROMETHODS 2024:263-286. [DOI: 10.1007/978-1-0716-3545-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Krasowska D, Małek A, Kurzepa J, Kapka-Skrzypczak L, Krasowska D, Kurzepa J. Melanin-The Éminence Grise of Melanoma and Parkinson's Disease Development. Cancers (Basel) 2023; 15:5541. [PMID: 38067245 PMCID: PMC10705212 DOI: 10.3390/cancers15235541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2025] Open
Abstract
A common feature of Parkinson's disease (PD) and melanoma is their starting points being based on cells capable of converting tyrosine into melanin. Melanocytes produce two types of melanin: eumelanin and pheomelanin. These dyes are designed to protect epidermal cells from the harmful effects of UV radiation. Neurones of the substantia nigra, which degenerate during PD, produce neuromelanin, the physiological role of which is not fully explained. This article discusses the potential role of melanins in the pathogenesis of both diseases. Melanins, due to their ability to accumulate toxic substances, may become their sources over time. The use of glutathione for the synthesis of pheomelanins and neuromelanins may reduce the antioxidant capacity of cells, leading to an excessive synthesis of free radicals. This study also tested the hypothesis that certain drugs used in the treatment of PD (L-DOPA, MAO-B and COMT inhibitors, and amantadine), aimed at increasing dopamine concentration, could potentially contribute to the development of melanoma. The role and properties of melanins should continue to be researched. Whether excessive melanin synthesis or its accumulation in the extracellular space may be factors initiating the development of diseases remains an open question.
Collapse
Affiliation(s)
- Danuta Krasowska
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland; (A.M.); (J.K.)
| | - Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland; (A.M.); (J.K.)
| | - Joanna Kurzepa
- 1st Department of Medical Radiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland; (A.M.); (J.K.)
| |
Collapse
|
10
|
Ke H, Liu K, Jiao B, Zhao L. Implications of TDP-43 in non-neuronal systems. Cell Commun Signal 2023; 21:338. [PMID: 37996849 PMCID: PMC10666381 DOI: 10.1186/s12964-023-01336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.
Collapse
Affiliation(s)
- Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
11
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Mogavero MP, Godos J, Grosso G, Caraci F, Ferri R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023; 15:3679. [PMID: 37686711 PMCID: PMC10489991 DOI: 10.3390/nu15173679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Orexin plays a significant role in the modulation of REM sleep, as well as in the regulation of appetite and feeding. This review explores, first, the current evidence on the role of orexin in the modulation of sleep and wakefulness and highlights that orexin should be considered essentially as a neurotransmitter inhibiting REM sleep and, to a much lesser extent, a wake promoting agent. Subsequently, the relationship between orexin, REM sleep, and appetite regulation is examined in detail, shedding light on their interconnected nature in both physiological conditions and diseases (such as narcolepsy, sleep-related eating disorder, idiopathic hypersomnia, and night eating syndrome). Understanding the intricate relationship between orexin, REM sleep, and appetite regulation is vital for unraveling the complex mechanisms underlying sleep-wake patterns and metabolic control. Further research in this field is encouraged in order to pave the way for novel therapeutic approaches to sleep disorders and metabolic conditions associated with orexin dysregulation.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Department of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
14
|
Koros C, Simitsi AM, Bougea A, Papagiannakis N, Antonelou R, Pachi I, Angelopoulou E, Prentakis A, Zachou A, Chrysovitsanou C, Beratis I, Fragkiadaki S, Kontaxopoulou D, Eftymiopoulou E, Stanitsa E, Potagas C, Papageorgiou SG, Karavasilis E, Velonakis G, Prassopoulos V, Geronicola-Trapali X, Stefanis L. Double Trouble: Association of Malignant Melanoma with Sporadic and Genetic Forms of Parkinson's Disease and Asymptomatic Carriers of Related Genes: A Brief Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1360. [PMID: 37629650 PMCID: PMC10456316 DOI: 10.3390/medicina59081360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Introduction: Previous epidemiological evidence has established the co-occurrence of malignant melanoma (MM) and Parkinson's disease (PD). Shared molecular mechanisms have been proposed to be implicated in this relationship. The aim of the present study was to assess the prevalence of MM in patients with sporadic and genetic types of PD, as well as in asymptomatic carriers of PD-related genes. Methods: Data regarding past medical history and concomitant disease of 1416 patients with PD (including 20 participants with prodromal disease who phenoconverted to PD), 275 healthy controls (HCs) and 670 asymptomatic carriers of PD-related genes were obtained from the database of the Parkinson's Progression Markers Initiative (PPMI). Focus was placed on information about a medical record of MM. We also retrieved data regarding the genetic status of selected PPMI participants with a positive MM history. Results: In total, 46 patients with PD reported a positive MM history. Concerning the genetic forms of PD, nine of these PD patients (2.47%) carried a Leucine Rich Repeat Kinase 2 (LRRK2) gene mutation (mainly the G2019S), while eight (4.49%) harbored a Glucocerebrosidase (GBA) gene mutation (mainly the N370S). No alpha-synuclein (SNCA) gene mutation was identified in patients with an MM history. The remaining 29 PD patients (3.5%) were genetically undetermined. In total, 18 asymptomatic carriers of PD-related genes had a positive medical history for MM: among them, 10 carried an LRRK2 gene mutation (2.69%) and 10 a GBA gene mutation (3.51%) (2 were dual carriers). MM history was identified for seven HCs (2.5%). Conclusions: We replicated the previously reported association between genetically undetermined PD (GU-PD) and MM. A correlation of LRRK2 mutations with the development of MM could not be verified in either symptomatic PD patients or asymptomatic carriers, implicating distinct pathogenetic mechanisms as compared to GU-PD. Importantly, despite the limited literature evidence on Gaucher disease, this study highlights for the first time the relatively high prevalence of MM among asymptomatic and symptomatic PD GBA mutation carriers, with potential clinical implications.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Andreas Prentakis
- Nuclear Medicine Unit, Attikon Hospital, 12462 Athens, Greece; (A.P.); (X.G.-T.)
| | - Athena Zachou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Chrysa Chrysovitsanou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthymia Eftymiopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efstratios Karavasilis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | | | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| |
Collapse
|
15
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
16
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
17
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
18
|
Sharma A, Wüllner U, Schmidt-Wolf IGH, Maciaczyk J. Marginalizing the genomic architecture to identify crosstalk across cancer and neurodegeneration. Front Mol Neurosci 2023; 16:1155177. [PMID: 36923654 PMCID: PMC10008880 DOI: 10.3389/fnmol.2023.1155177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Affiliation(s)
- Amit Sharma
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital of Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Jarek Maciaczyk
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany.,Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Role and Dysregulation of miRNA in Patients with Parkinson's Disease. Int J Mol Sci 2022; 24:ijms24010712. [PMID: 36614153 PMCID: PMC9820759 DOI: 10.3390/ijms24010712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls. Additionally, we investigated the pathways influenced by differentially expressed miRNAs and assessed whether a specific pathway could potentially be associated with PD susceptibility (enrichment analyses performed using the Ingenuity Pathway Analysis tools). Overall, considering that the upregulation of miRNAs might be related with the downregulation of their messenger RNA targets, and vice versa, we found several putative targets of dysregulated miRNAs (i.e., upregulated: hsa-miR-1275, hsa-miR-23a-5p, hsa-miR-432-5p, hsa-miR-4433b-3p, and hsa-miR-4443; downregulated: hsa-miR-142-5p, hsa-miR-143-3p, hsa-miR-374a-3p, hsa-miR-542-3p, and hsa-miR-99a-5p). An inverse connection between cancer and neurodegeneration, called "inverse comorbidity", has also been noted, showing that some genes or miRNAs may be expressed oppositely in neurodegenerative disorders and in some cancers. Therefore, it may be reasonable to consider these miRNAs as potential diagnostic markers and outcome measures.
Collapse
|