1
|
Balahbib A, Aguerd O, El Omari N, Benali T, Akhazzane M, Ullah R, Iqbal Z, Zhang W, Shahat AA, Zengin G, Chamkhi I, Bouyahya A. Unlocking the Potential of Origanum Grosii Essential Oils: A Deep Dive into Volatile Compounds, Antioxidant, Antibacterial, and Anti-Enzymatic Properties within Silico Insights. Chem Biodivers 2025; 22:e202401426. [PMID: 39402876 DOI: 10.1002/cbdv.202401426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC50 values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC50 values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, 46030, Morocco
| | - Mohamed Akhazzane
- Université Sidi Mohamed Ben Abdellah, Cité de l'innovation, Fès, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
2
|
Egriboz O, Fehrholz M, Tsutsumi M, Sousa M, Cheret J, Funk W, Kückelhaus M, Paus R, Kajiya K, Piccini I, Bertolini M. The Melanocyte and Nerve Fiber Cross-Talk, Facilitated Also by Semaphorin-4A, Enhances UV-B-Induced Melanogenesis. Pigment Cell Melanoma Res 2025; 38:e13217. [PMID: 39835739 DOI: 10.1111/pcmr.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture. Comparative transcriptomic analysis between laser-capture-microdissected melanocytes from freshly embedded human skin and published microarray data on in vitro primary melanocytes identified Semaphorin-4A (SEMA4A) as possible mediator of melanocyte-nerve fibers interactions. SEMA4A protein levels in Gp100+-epidermal melanocytes were significantly higher in re-innervated skin, and reduced by UV-B treatment. Analysis of melanocytes in vitro showed reduced SEMA4A protein expression 24 h after UV-B-irradiation while SEMA4A secretion into the medium was increased. Beta-tubulin expression and axon growth in sensory neurons were stimulated by conditioned media (CM) from UV-B irradiated melanocytes. When this neuronal-conditioned medium was transferred to fresh melanocytes, melanin content increased, but only if neurons had been treated with CM from UV-B irradiated melanocytes. These findings highlight the importance of melanocyte-neuron interactions for UV-B-induced melanogenesis and suggest that secreted proteins (e.g., SEMA4A) can function as a novel target to treat hypo- and hyperpigmentation disorders.
Collapse
Affiliation(s)
- Onur Egriboz
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
- DWI Labs, Deriworks A.S., Istanbul, Turkiye
| | | | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Marta Sousa
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | - Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery Dr. Dr. Med. Funk, Munich, Germany
| | | | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Ilaria Piccini
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | | |
Collapse
|
3
|
El-Tanani M, Rabbani SA, Ali AA, Alfaouri IGA, Al Nsairat H, Al-Ani IH, Aljabali AA, Rizzo M, Patoulias D, Khan MA, Parvez S, El-Tanani Y. Circadian rhythms and cancer: implications for timing in therapy. Discov Oncol 2024; 15:767. [PMID: 39692981 PMCID: PMC11655929 DOI: 10.1007/s12672-024-01643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Circadian rhythms, intrinsic cycles spanning approximately 24 h, regulate numerous physiological processes, including sleep-wake cycles, hormone release, and metabolism. These rhythms are orchestrated by the circadian clock, primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Disruptions in circadian rhythms, whether due to genetic mutations, environmental factors, or lifestyle choices, can significantly impact health, contributing to disorders such as sleep disturbances, metabolic syndrome, and cardiovascular diseases. Additionally, there is a profound link between the disruption of circadian rhythms and development of various cancer, the influence on disease incidence and progression. This incurred regulation by circadian clock on pathways has its implication in tumorigenesis, such as cell cycle control, DNA damage response, apoptosis, and metabolism. Furthermore, the circadian timing system modulates the efficacy and toxicity of cancer treatments. In cancer treatment, the use of chronotherapy to optimize the timing of medical treatments, involves administering chemotherapy, radiation, or other therapeutic interventions at specific intervals to enhance efficacy and minimize side effects. This approach capitalizes on the circadian variations in cellular processes, including DNA repair, cell cycle progression, and drug metabolism. Preclinical and clinical studies have demonstrated that chronotherapy can significantly improve the therapeutic index of chemotherapeutic agents like cisplatin and 5-fluorouracil by enhancing anticancer activity and reducing toxicity. Further research is needed to elucidate the mechanisms underlying circadian regulation of cancer and to develop robust chronotherapeutic protocols tailored to individual patients' circadian profiles, potentially transforming cancer care into more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areeg Anwer Ali
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Ghaleb Ali Alfaouri
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Hamdi Al Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Israa Hamid Al-Ani
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Dimitrios Patoulias
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
4
|
Brandlmaier M, Hoellwerth M, Koelblinger P, Lang R, Harrer A. Adjuvant PD-1 Checkpoint Inhibition in Early Cutaneous Melanoma: Immunological Mode of Action and the Role of Ultraviolet Radiation. Cancers (Basel) 2024; 16:1461. [PMID: 38672543 PMCID: PMC11047851 DOI: 10.3390/cancers16081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma ranks as the fifth most common solid cancer in adults worldwide and is responsible for a significant proportion of skin-tumor-related deaths. The advent of immune checkpoint inhibition with anti-programmed death protein-1 (PD-1) antibodies has revolutionized the adjuvant treatment of high-risk, completely resected stage III/IV melanoma. However, not all patients benefit equally. Current strategies for improving outcomes involve adjuvant treatment in earlier disease stages (IIB/C) as well as perioperative treatment approaches. Interfering with T-cell exhaustion to counteract cancer immune evasion and the immunogenic nature of melanoma is key for anti-PD-1 effectiveness. Yet, the biological rationale for the efficacy of adjuvant treatment in clinically tumor-free patients remains to be fully elucidated. High-dose intermittent sun exposure (sunburn) is a well-known primary risk factor for melanomagenesis. Also, ultraviolet radiation (UVR)-induced immunosuppression may impair anti-cancer immune surveillance. In this review, we summarize the current knowledge about adjuvant anti-PD-1 blockade, including a characterization of the main cell types most likely responsible for its efficacy. In conclusion, we propose that local and systemic immunosuppression, to some extent UVR-mediated, can be restored by adjuvant anti-PD-1 therapy, consequently boosting anti-melanoma immune surveillance and the elimination of residual melanoma cell clones.
Collapse
Affiliation(s)
- Matthias Brandlmaier
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Magdalena Hoellwerth
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Andrea Harrer
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Shastri M, Sharma M, Sharma K, Sharma A, Minz RW, Dogra S, Chhabra S. Cutaneous-immuno-neuro-endocrine (CINE) system: A complex enterprise transforming skin into a super organ. Exp Dermatol 2024; 33:e15029. [PMID: 38429868 DOI: 10.1111/exd.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Skin is now emerging as a complex realm of three chief systems viz. immune system, nervous system, and endocrine system. The cells involved in their intricate crosstalk, namely native skin cells, intra-cutaneous immune cells and cutaneous sensory neurons have diverse origin and distinct functions. However, recent studies have explored their role beyond their pre-defined functional boundaries, such that the cells shun their traditional functions and adopt unconventional roles. For example, the native skin cells, apart from providing for basic structural framework of skin, also perform special immune functions and participate in extensive neuro-endocrine circuitry, which were traditionally designated as functions of cutaneous resident immune cells and sensory neurons respectively. At the cellular level, this unique collaboration is brought out by special molecules called neuromediators including neurotransmitters, neuropeptides, neurotrophins, neurohormones and cytokines/chemokines. While this intricate crosstalk is essential for maintaining cutaneous homeostasis, its disruption is seen in various cutaneous diseases. Recent study models have led to a paradigm shift in our understanding of pathophysiology of many such disorders. In this review, we have described in detail the interaction of immune cells with neurons and native skin cells, role of neuromediators, the endocrine aspect in skin and current understanding of cutaneous neuro-immuno-endocrine loop in one of the commonest skin diseases, psoriasis. An accurate knowledge of this unique crosstalk can prove crucial in understanding the pathophysiology of different skin diseases and allow for generation of targeted therapeutic modalities.
Collapse
Affiliation(s)
- Malvika Shastri
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head & Neck Surgery, Nehru Extension Block, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ayush Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Ferreira BR, Aguirre CC, Rapoport‐Hubschman N, Adewuya AO, Canchy L, Morizet D, Vincenzi F, McGlone FP. The skin-brain connection and pleasant touch as supportive care for psychocutaneous disorders. SKIN HEALTH AND DISEASE 2024; 4:e310. [PMID: 38312257 PMCID: PMC10831560 DOI: 10.1002/ski2.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 02/06/2024]
Abstract
Psychodermatology is a subdiscipline of dermatology at the intersection of dermatology, psychiatry, and psychology. In dermatology clinical practice, patients may present with skin disease that affects their mental health, or skin disorders induced or worsened by psychological/psychiatric problems so there is a need for specialised education of dermatologists, as well as multidisciplinary teams, to achieve better management of these patients. Understanding the interaction between the central nervous system and the skin underlying psychocutaneous disorders could help identify alternative therapies that may improve patient well-being. The concept of pleasurable touch has received increasing attention following the discovery of C-tactile (CT) fibres. While afferent C-fibre stimulation is usually associated with pain, temperature, or itch, CT-fibres are stimulated optimally by a stimulus not in the nociceptor range but by a gentle, low-force stroking. As this affective touch may counteract unpleasurable sensations, such as pain and itch, and elicit positive feelings, the potential benefits of gentle touch and massage are interesting for dermatological, especially psychocutaneous, disorders. Here we provide an overview of the skin-brain connection to help understand the benefits of touch and massage, as illustrated with studies on atopic dermatitis and burns, as an adjunct to dermatological treatment for improving patient well-being and optimising treatment outcomes.
Collapse
Affiliation(s)
- Bárbara Roque Ferreira
- Department of DermatologyCentre Hospitalier de MouscronHainautBelgium
- University of BrestLaboratoire interactions épithéliums‐neurones (LIEN)BrestFrance
- Centre for Philosophy of ScienceUniversity of LisbonLisbonPortugal
| | | | | | | | - Ludivine Canchy
- La Roche‐Posay Laboratoire DermatologiqueLevallois‐PerretFrance
| | - David Morizet
- L’Oréal Research & Innovation, Evaluation IntelligenceClichyFrance
| | | | | |
Collapse
|
7
|
Slominski RM, Raman C, Chen JY, Slominski AT. How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci 2023; 46:263-275. [PMID: 36803800 PMCID: PMC10038913 DOI: 10.1016/j.tins.2023.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 02/19/2023]
Abstract
During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
8
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|