1
|
Mianesaz H, Göczi L, Nagy G, Póliska S, Fadel L, Bojcsuk D, Penyige A, Szirák K, AlHaman F, Nagy L, Vámosi G, Széles L. Genomic regions occupied by both RARα and VDR are involved in the convergence and cooperation of retinoid and vitamin D signaling pathways. Nucleic Acids Res 2025; 53:gkaf230. [PMID: 40167329 PMCID: PMC11959543 DOI: 10.1093/nar/gkaf230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/03/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Retinoic acid receptors (RARs) and the vitamin D receptor (VDR) regulate distinct but overlapping gene sets in multiple cell types. The abundance and characteristics of regulatory regions, occupied by both RARs and VDR are largely unexplored. We used global approaches (ChIP-seq, RNA-seq, and ATAC-seq) and bioinformatics tools to map and characterize common binding regions of RARα and VDR in differentiated human THP-1 cells. We found that the cistromes of ligand-activated RARα and VDR largely overlapped, and their agonists (AM580 and calcitriol) co-regulated several genes, often cooperatively. Common binding regions were frequently (but not exclusively) annotated with co-regulated genes and exhibited increased MED1 occupancy upon ligand stimulation, suggesting their involvement in gene regulation. Chromatin accessibility was typically higher in the common regions than in regions occupied exclusively by RARα or VDR. DNA response elements for RARα (DR1/2/5) and VDR (DR3) were enriched in the common regions, albeit the co-occurrence of the two types of canonical motifs was low (8.4%), suggesting that "degenerate" DR1/2/5 and DR3 motifs or other sequences could mediate the binding. In summary, common binding regions of RARα and VDR are at the crossroads of the retinoid and vitamin D pathways, playing important roles in their convergence and cooperation.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Loránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Dóra Bojcsuk
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Farah AlHaman
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida 33701, United States
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
2
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
3
|
Han X, Ni J, Li B, Bao J, Wan R, Hu G, Chen C. Predictive value of serum retinol binding protein in severity and complications of acute pancreatitis: a retrospective cohort study. Scand J Gastroenterol 2024; 59:92-99. [PMID: 37608609 DOI: 10.1080/00365521.2023.2249570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Retinol binding protein (RBP) is associated with an increased risk of insulin resistance, metabolic syndrome, atherosclerosis and hypertension. This study aimed to evaluate serum RBP levels in patients with acute pancreatitis (AP). METHODS The study included 1,871 AP patients, including 1,411 with mild AP (MAP), 244 with moderately severe AP (MSAP), and 186 with severe AP (SAP). Retrospective analysis was conducted on RBP concentrations and other clinical data of AP patients. RESULTS AP patients were subgrouped by RBP level into low RBP (LRBP), normal RBP (NRBP), and high RBP (HRBP) groups. The LRBP group showed a significantly higher proportion of SAP patients than NRBP and HRBP groups. Additionally, the LRBP group had the highest BISAP and CTSI scores among the three groups; WBC and CRP levels in the NRBP group were significantly lower than those in the LRBP and HRBP groups. RBP was better at predicting acute necrotic collection (ANC) than other local complications, with an area under the curve (AUC) of 0.821. RBP was also an independent risk factor for acute lung injury (ALI) and ANC in AP patients. The AUC of RBP for predicting ALI was 0.829, with 30.45 mg/L as the optimal cutoff value, and the sensitivity and specificity were 59.70% and 96.50%, respectively. The AUC of RBP for predicting ANC was 0.821, with 28.35 mg/L as the optimal cutoff value, and the sensitivity and specificity were 61.20% and 95.50%, respectively. CONCLUSIONS Serum RBP had predictive value for AP severity, local and systemic complications.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Adil Ali M, Garabuczi É, Tarban N, Sarang Z. All-trans retinoic acid and dexamethasone regulate phagocytosis-related gene expression and enhance dead cell uptake in C2C12 myoblast cells. Sci Rep 2023; 13:21001. [PMID: 38017321 PMCID: PMC10684882 DOI: 10.1038/s41598-023-48492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Extensive mechanical stress frequently causes micro-traumas in skeletal muscle, followed by a regeneration period. The effective removal of dead myofibers is a prerequisite for proper regeneration, and several cell types, including professional phagocytes, were reported to be active in this process. Myoblasts express several molecules of the phagocytic machinery, such as BAI1, stabilin-2, and TAM (Tyro3, Axl, Mertk) tyrosine kinase receptors, but these molecules were reported to serve primarily cell fusion and survival, and their role in the phagocytosis was not investigated. Therefore, we aimed to investigate the in vitro phagocytic capacity of the C2C12 mouse myoblast cell line. RNA sequencing data were analyzed to determine the level and changes of phagocytosis-related gene expression during the differentiation process of C2C12 cells. To study the phagocytic capacity of myoblasts and the effect of dexamethasone, all-trans retinoic acid, hemin, and TAM kinase inhibitor treatments on phagocytosis, C2C12 cells were fed dead thymocytes, and their phagocytic capacity was determined by flow cytometry. The effect of dexamethasone and all-trans retinoic acid on phagocytosis-related gene expression was determined by quantitative PCR. Both undifferentiated and differentiated cells engulfed dead cells being the undifferentiated cells more effective. In line with this, we observed that the expression of several phagocytosis-related genes was downregulated during the differentiation process. The phagocytosis could be increased by dexamethasone and all-trans retinoic acid and decreased by hemin and TAM kinase inhibitor treatments. Our results indicate that myoblasts not only express phagocytic machinery genes but are capable of efficient dead cell clearance as well, and this is regulated similarly, as reported in professional phagocytes.
Collapse
Affiliation(s)
- Maysaa Adil Ali
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Éva Garabuczi
- Department of Integrative Health Science, Faculty of Health Science, Institute of Health Science, University of Debrecen, Debrecen, Hungary
| | - Nastaran Tarban
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Jaroonwitchawan T, Arimochi H, Sasaki Y, Ishifune C, Kondo H, Otsuka K, Tsukumo SI, Yasutomo K. Stimulation of the farnesoid X receptor promotes M2 macrophage polarization. Front Immunol 2023; 14:1065790. [PMID: 36776885 PMCID: PMC9911659 DOI: 10.3389/fimmu.2023.1065790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
FXR is a key molecule that modulates anti-inflammatory activity in the intestinal-liver axis. Although FXR has pleiotropic functions including regulation of liver inflammation and activation of macrophages, it remains unclear whether it is involved in macrophage polarization. In this paper we demonstrated that stimulation of macrophages derived from the bone marrow using an FXR agonist activated polarization toward M2 but not M1 macrophages. The treatment of mice with chitin skewed macrophage polarization towards M2 macrophages, while co-treatment with an FXR agonist further promoted the polarization toward M2 macrophages in vivo. This skewed polarization towards M2 macrophages by an FXR agonist was accompanied by increased expression of signaling molecules related to the retinoic acid receptor. Inhibition of the retinoic acid receptor suppressed FXR agonist-mediated M2 macrophage polarization, indicating that this polarization was, at least, partly dependent on the retinoic acid receptor pathway. These data demonstrate that FXR has a role in polarization toward M2 macrophages and suggest a possible therapeutic potential of FXR agonists in M2 macrophage-related conditions.
Collapse
Affiliation(s)
- Thiranut Jaroonwitchawan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Palmitate Inhibits Mouse Macrophage Efferocytosis by Activating an mTORC1-Regulated Rho Kinase 1 Pathway: Therapeutic Implications for the Treatment of Obesity. Cells 2022; 11:cells11213502. [PMID: 36359898 PMCID: PMC9657837 DOI: 10.3390/cells11213502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Every day, billions of our cells die and get cleared without inducing inflammation. When, clearance is improper, uncleared cells undergo secondary necrosis and trigger inflammation. In addition, proper efferocytosis would be required for inducing resolution of inflammation, thus clearance deficiencies in the long term lead to development of various chronic inflammatory diseases. Increasing evidence indicates that obesity, itself being a low-grade inflammatory disease, predisposes to a variety of other chronic inflammatory diseases. Previous studies indicated that this later might be partially related to an impaired efferocytosis induced by increased uptake of circulating saturated fatty acids by macrophages in obese people. Here, we show that palmitate inhibits efferocytosis by bone marrow-derived macrophages in a dose-dependent manner. Palmitate triggers autophagy but also activates an energy-sensing mTORC1/ROCK1 signaling pathway, which interferes with the autophagosome–lysosome fusion, resulting in accumulation of the cellular membranes in autophagosomes. We propose that lack of sufficient plasma membrane supply attenuates efferocytosis of palmitate-exposed macrophages. AMP-activated protein kinase activators lead to mTORC1 inhibition and, consequently, released the palmitate-induced efferocytosis block in macrophages. Thus, they might be useful in the treatment of obesity not only by affecting metabolism thought so far. ROCK1 inhibitors could also be considered.
Collapse
|
7
|
Nuclear Proteomics of Induced Leukemia Cell Differentiation. Cells 2022; 11:cells11203221. [PMID: 36291090 PMCID: PMC9600443 DOI: 10.3390/cells11203221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Studies of induced granulocytic differentiation help to reveal molecular mechanisms of cell maturation. The nuclear proteome represents a rich source of regulatory molecules, including transcription factors (TFs). It is important to have an understanding of molecular perturbations at the early stages of the differentiation processes. By applying the proteomic quantitative profiling using isobaric labeling, we found that the contents of 214, 319, 376, 426, and 391 proteins were altered at 3, 6, 9, 12, and 72 h, respectively, compared to 0 h in the HL-60 cell nuclear fraction under all-trans-retinoid acid (ATRA) treatment. From 1860 identified nuclear proteins, 231 proteins were annotated as proteins with transcription factor (TF) activity. Six TFs (RREB1, SRCAP, CCDC124, TRIM24, BRD7, and BUD31) were downregulated and three TFs EWSR1, ENO1, and FUS were upregulated at early time points (3–12 h) after ATRA treatment. Bioinformatic annotation indicates involvement of the HL-60 nuclear proteome in DNA damage recognition in the RUNX1-triggered pathway, and in the p53-regulation pathway. By applying scheduled multiple reaction monitoring using stable isotopically labeled peptide standards (MRM/SIS), we found a persistent increase in the content of the following proteins: PRAM1, CEPBP, RBPJ, and HIC1 in the HL-60 cell nuclear fraction during ATRA-induced granulocytic differentiation. In the case of STAT1, CASP3, PARP1, and PRKDC proteins, a transient increase in their content was observed at early time points (3–12 h) after the ATRA treatment. Obtained data on nuclear proteome composition and dynamics during granulocytic differentiation could be beneficial for the development of new treatment approaches for leukemias with the mutated p53 gene.
Collapse
|