1
|
Long Q, Song S, Xue J, Yu W, Zheng Y, Li J, Wu J, Hu X, Jiang M, Ye H, Zheng B, Wang M, Wu F, Li K, Gao Z, Zheng Y. The CD38 +HLA-DR + T cells with activation and exhaustion characteristics as predictors of severity and mortality in COVID-19 patients. Front Immunol 2025; 16:1577803. [PMID: 40370439 PMCID: PMC12074963 DOI: 10.3389/fimmu.2025.1577803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Background The COVID-19 pandemic remains a global health challenge. Severe cases often respond poorly to standard treatments, highlighting the necessity for novel therapeutic targets and early predictive biomarkers. Methods We utilized flow cytometry to analyze peripheral immune cells from healthy, bacterial pneumonia patients, and COVID-19 patients. The expansion of activated T cells (CD38+HLA-DR+), monocytes, and myeloid-derived suppressor cells (MDSCs) were detected and correlated with clinical outcomes to evaluate prognostic potential. The single-cell RNA sequencing (scRNA-seq) was applied to characterize the critical cell subset associated with prognosis and elucidate its phenotype in COVID-19. Results We revealed a significant increase in CD38+HLA-DR+ T cells in non-survivor COVID-19 patients, establishing them as an independent risk factor for 28-day mortality. The scRNA-seq analysis identified the CD38+HLA-DR+ T cell as a terminally differentiated, Treg-like subset exhibiting both activation and exhaustion characteristics. This subset presented the highest IL-6 and IL-10 mRNA levels among all T-cell subsets. Further functional analysis demonstrated its enhanced major histocompatibility complex class II (MHC-II) cross-signaling and correspondingly enriched cytoskeletal rearrangement processes. In addition, there was dysregulated NAD+ metabolism in CD38+HLA-DR+ T cells via scRNA-seq, accompanied by elevated adenosine and decreased NAD+ levels in serums from COVID-19 patients. Conclusions We identified the selective expansion of CD38+HLA-DR+ T cells as a novel prognostic indicator for COVID-19 outcomes. These cells' unique activated-exhausted phenotype, along with their impact on NAD+ metabolism, provides new insights into COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Yaolin Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jiwei Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiaoyi Hu
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Binghan Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Minghui Wang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
| |
Collapse
|
2
|
Tewari M, Rana P, Pande V. Nanomaterial-Based Biosensors for the Detection of COVID-19. Indian J Microbiol 2025; 65:120-136. [PMID: 40371045 PMCID: PMC12069788 DOI: 10.1007/s12088-024-01336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/12/2024] [Indexed: 05/16/2025] Open
Abstract
The COVID-19 outbreak began in December 2019 and has affected people worldwide. It was declared a pandemic in 2020 by the World Health Organization. Developing rapid and reliable diagnostic techniques is crucial for identifying COVID-19 early and preventing the disease from becoming severe. In addition to conventional diagnostic techniques such as RT-PCR, computed tomography, serological assays, and sequencing methods, biosensors have become widely accepted for identifying and screening COVID-19 infection with high accuracy and sensitivity. Their low cost, high sensitivity, specificity, and portability make them ideal for diagnostics. The use of nanomaterials improves the performance of biosensors by increasing their sensitivities and limiting detection by several orders of magnitude. This manuscript briefly reviews the COVID-19 outbreak and its pathogenesis. Furthermore, it comprehensively discusses the currently available biosensors for SARS-CoV-2 detection, with a special emphasis on nanomaterials-based biosensors developed to detect this emerging virus and its variants efficiently.
Collapse
Affiliation(s)
- Manju Tewari
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| | - Prerna Rana
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Sir J.C. Bose Technical Campus, Bhimtal, Uttarakhand 263136 India
| |
Collapse
|
3
|
Carriero F, Rubino V, Gelzo M, Scalia G, Raia M, Ciccozzi M, Gentile I, Pinchera B, Castaldo G, Ruggiero G, Terrazzano G. Immune Profile in COVID-19: Unveiling T R3-56 Cells in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:10465. [PMID: 39408792 PMCID: PMC11477006 DOI: 10.3390/ijms251910465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of COronaVIrus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presented a global health challenge since its identification in December 2019. With clinical manifestations ranging from mild respiratory symptoms to severe multi-organ dysfunction, COVID-19 continues to affect populations worldwide. The complex interactions between SARS-CoV-2 variants and the human immune system are crucial for developing effective therapies, vaccines, and preventive measures. Understanding these immune responses highlights the intricate nature of COVID-19 pathogenesis. This retrospective study analyzed, by flow cytometry approach, a cohort of patients infected with SARS-CoV-2 during the initial pandemic waves from 2020 to 2021. It focused on untreated individuals at the time of hospital admission and examined the presence of TR3-56 cells in their immune profiles during the anti-viral immune response. Our findings provide additional insights into the complex immunological dynamics of SARS-CoV-2 infection and highlight the potential role of TR3-56 cells as crucial components of the immune response. We suggest that TR3-56 cells could serve as valuable biomarkers for identifying more severe cases of COVID-19, aiding in the assessment and management of the disease.
Collapse
Affiliation(s)
- Flavia Carriero
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giulia Scalia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Massimo Ciccozzi
- Unità di Epidemiologia e Statistica Medica, Università Campus Biomedico, 00128 Rome, Italy;
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
4
|
Arcas VC, Fratila AM, Moga DFC, Roman-Filip I, Arcas AMC, Roman-Filip C, Sava M. A Literature Review and Meta-Analysis on the Potential Use of miR-150 as a Novel Biomarker in the Detection and Progression of Multiple Sclerosis. J Pers Med 2024; 14:815. [PMID: 39202006 PMCID: PMC11355600 DOI: 10.3390/jpm14080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a critical role in immune regulation and has been implicated in autoimmune diseases like Multiple Sclerosis (MS). This review aims to evaluate miR-150's potential as a biomarker for MS, necessitating this review to consolidate current evidence and highlight miR-150's utility in improving diagnostic accuracy and monitoring disease progression. METHODS A comprehensive literature search was conducted in databases like PubMed, Scopus, Google Scholar, SciSpace, MDPI and Web of Science, adhering to PRISMA guidelines. Studies focusing on miR-150 implications in MS were included. Data extraction was conducted, while quality assessment was done using the NOS and AMSTAR 2 tools. With the extracted data a statistical analyses conducted. RESULTS 10 eligible articles were included in review. Findings show that miR-150 levels were consistently deregulated in MS patients compared to healthy controls, correlating with disease severity and clinical parameters such as (EDSS) scores and disease activity. Additionally, miR-150 is implicated in the inflammatory pathogenesis of MS, affecting immune cell regulation and inflammatory pathways. CONCLUSIONS MiR-150 is a promising biomarker for MS, showing significant potential for improving diagnostic accuracy and monitoring disease progression. Its consistent deregulation in MS patients and correlation with clinical parameters underscore its clinical utility. Further research should validate miR-150's salivary presence and its possible usage as a novel biomarker and therapeutic potential in the development of MS.
Collapse
Affiliation(s)
- Vasile Calin Arcas
- Doctoral School, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Anca Maria Fratila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Doru Florian Cornel Moga
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania;
| | - Ana-Maria Cristina Arcas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| |
Collapse
|
5
|
Abdolmohammadi-Vahid S, Baradaran B, Sadeghi A, Bezemer GFG, Kiaee F, Adcock IM, Folkerts G, Garssen J, Mortaz E. Effects of toll-like receptor agonists and SARS-CoV-2 antigens on interferon (IFN) expression by peripheral blood CD3 + T cells from COVID-19 patients. Exp Mol Pathol 2024; 137:104897. [PMID: 38691979 DOI: 10.1016/j.yexmp.2024.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-β+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-β gene expression was assessed by qRT-PCR. RESULTS The frequency of CD3+IFN-β+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-β+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-β+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-β gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-β mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-β-producing T cells and IFN-β gene expression.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gillina F G Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Impact Station, Hilversum, the Netherlands
| | - Fatemeh Kiaee
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, NSW, Australia
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Gainullin M, Federico L, Røkke Osen J, Chaban V, Kared H, Alirezaylavasani A, Lund-Johansen F, Wildendahl G, Jacobsen JA, Sarwar Anjum H, Stratford R, Tennøe S, Malone B, Clancy T, Vaage JT, Henriksen K, Wüsthoff L, Munthe LA. People who use drugs show no increase in pre-existing T-cell cross-reactivity toward SARS-CoV-2 but develop a normal polyfunctional T-cell response after standard mRNA vaccination. Front Immunol 2024; 14:1235210. [PMID: 38299149 PMCID: PMC10827924 DOI: 10.3389/fimmu.2023.1235210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.
Collapse
Affiliation(s)
- Murat Gainullin
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NEC OncoImmunity AS, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Lorenzo Federico
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Julie Røkke Osen
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Viktoriia Chaban
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | - John T. Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen Henriksen
- Agency for Social and Welfare Services, Oslo, Norway
- Student Health Services, University of Oslo, Oslo, Norway
| | - Linda Wüsthoff
- Unit for Clinical Research on Addictions, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Addiction Reasearch, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A. Munthe
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Chen H, Wang J, Ding K, Xu J, Yang Y, Tang C, Zhou Y, Yu W, Wang H, Huang Q, Li B, Kuang D, Wu D, Luo Z, Gao J, Zhao Y, Liu J, Peng X, Lu S, Liu H. Gastrointestinal microbiota and metabolites possibly contribute to distinct pathogenicity of SARS-CoV-2 proto or its variants in rhesus monkeys. Gut Microbes 2024; 16:2334970. [PMID: 38563680 PMCID: PMC10989708 DOI: 10.1080/19490976.2024.2334970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Junbin Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Kaiyun Ding
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jingwen Xu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yun Yang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Cong Tang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yanan Zhou
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Wenhai Yu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Haixuan Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Qing Huang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Bai Li
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Dexuan Kuang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Daoju Wu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Zhiwu Luo
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiahong Gao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yuan Zhao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiansheng Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
- Institute of Laboratory Animal Sciences, IMBCAMS & PUMC, Beijing, China
- Institute of Basic Medical Sciences, IMBCAMS & PUMC, Beijing, China
| | - Shuaiyao Lu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Hongqi Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| |
Collapse
|
9
|
Jain R, Mathew D. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. MEDICAL RESEARCH ARCHIVES 2023; 11:4540. [PMID: 38933091 PMCID: PMC11198970 DOI: 10.18103/mra.v11i10.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.
Collapse
Affiliation(s)
- Roshni Jain
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| |
Collapse
|
10
|
Gerlach J, Baig AM, Fabrowski M, Viduto V. The immune paradox of SARS-CoV-2: Lymphocytopenia and autoimmunity evoking features in COVID-19 and possible treatment modalities. Rev Med Virol 2023; 33:e2423. [PMID: 36727514 DOI: 10.1002/rmv.2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
SARS-CoV-2 causes multiorgan damage to vital organs and tissue that are known to be due to a combination of tissue tropisms and cytokine-mediated damage that it can incite in COVID-19. The effects of SARS-Co-2 on the lymphocytes and therefore on the immune response have attracted attention recently in COVID-19 to understand its effects in causing a chronic state of ongoing infection with Long-COVID. The associated lymphopaenia and autoimmune disease state, which is an apparent paradox, needs to be researched to dissect possible mechanisms underlying this state. This paper attempts to unravel the aforesaid immune paradox effects of SARS-CoV-2 on the lymphocytes and discusses appropriate treatment modalities with antiviral drugs and nutraceuticals which could prove virucidal in SARS-CoV-2 seeding monocytes and lymphocytes in patients with COVID-19 and Long-COVID. Importantly it proposes a new in vitro treatment modality of immune regulating cells that can help patients fight the lymphopaenia associated with COVID-19 and Long-COVID.
Collapse
Affiliation(s)
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | | |
Collapse
|