1
|
Sahabandu N, Okada K, Khan A, Elnatan D, Starr DA, Ori-McKenney KM, Luxton G, McKenney RJ. Active microtubule-actin cross-talk mediated by a nesprin-2G-kinesin complex. SCIENCE ADVANCES 2025; 11:eadq4726. [PMID: 39982998 PMCID: PMC11844729 DOI: 10.1126/sciadv.adq4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Nesprin-2 Giant (N2G) is a large integral membrane protein that physically connects the nucleus to the cytoskeleton, but how N2G performs this activity to maintain nuclear positioning and drive nuclear movement is unclear. This study investigates N2G's role in nucleocytoskeletal coupling, a process critical for cellular function and development. We uncover multiple roles for N2G, including its activity as an F-actin bundler, an adapter that activates kinesin-1 motors, and a mediator of cytoskeletal cross-talk. Notably, N2G directly links kinesin-1 to F-actin, enabling the transport of actin filaments along microtubule tracks, establishing active cross-talk between the actin and microtubule cytoskeletons. These findings provide crucial insights into nuclear movement, advancing our understanding of fundamental cellular processes and their implications in development and disease.
Collapse
Affiliation(s)
- Natalie Sahabandu
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kyoko Okada
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Aisha Khan
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel Elnatan
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel A. Starr
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | - Gant Luxton
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard J. McKenney
- Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Nishijo D, Inoue S, Dai Z, Nomura S, Abe R, Hiruma T, Bujo C, Oshima T, Katoh M, Shimizu Y, Ito M, Yamagata K, Ishida J, Amiya E, Takeda N, Fujiu K, Hatano M, Morita H, Takeda N, Komuro I. Genetic cardiomyopathy mimicking isolated cardiac sarcoidosis: Diagnostic challenges with positron emission tomography. ESC Heart Fail 2025. [PMID: 39905734 DOI: 10.1002/ehf2.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
- Daigo Nishijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhehao Dai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Abe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Hiruma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chie Bujo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Oshima
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Yamagata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
3
|
Balakrishnan ID, Lakdawala NK. Contemporary Insights into LMNA Cardiomyopathy. Curr Cardiol Rep 2025; 27:40. [PMID: 39869235 DOI: 10.1007/s11886-025-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore how a diagnosis of LMNA-related cardiomyopathy (LMNA-CM) informs clinical management, focusing on the prevention and management of its complications, through practical clinical strategies. RECENT FINDINGS Longitudinal studies have enhanced our understanding of the natural history of LMNA-CM including its arrhythmic and non-arrhythmic complications. A LMNA specific ventricular arrhythmia risk prediction strategy has been integrated into clinical practice guidelines. Although less robust, observational studies are shaping gene-specific strategies for mitigating other complications including atrioventricular block, atrial fibrillation and cardiomyopathy, while novel therapies have been evaluated in clinical trials. LMNA-CM follows an aggressive yet generally stereotyped course. Early recognition of anticipated complications allows for more effective prevention and management in both symptomatic and asymptomatic patients.
Collapse
Affiliation(s)
- Iswaree D Balakrishnan
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Morton GM, Toledo MP, Zheng C, Zheng Y, Megraw TL. A distinct isoform of Msp300 (nesprin) organizes the perinuclear microtubule organizing center in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601268. [PMID: 38979285 PMCID: PMC11230431 DOI: 10.1101/2024.06.28.601268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In many cell types, disparate non-centrosomal microtubule-organizing centers (ncMTOCs) replace functional centrosomes and serve the unique needs of the cell types in which they are formed. In Drosophila fat body cells (adipocytes), an ncMTOC is organized on the nuclear surface. This perinuclear ncMTOC is anchored by Msp300, encoded by one of two nesprin-encoding genes in Drosophila. Msp300 and the spectraplakin short stop (shot) are co-dependent for localization to the nuclear envelope to generate the ncMTOC where they recruit the microtubule minus-end stabilizer Patronin (CAMSAP). The Msp300 gene is complex, encoding at least eleven isoforms. Here we show that two Msp300 isoforms, Msp300-PE and - PG, are required and only one, Msp300-PE, appears sufficient for generation of the ncMTOC. Loss of Msp300-PE and -PG results in severe loss of localization of shot and Patronin, disruption of the MT array, nuclear mispositioning and loss of endosomal trafficking. Furthermore, upon loss of Msp300-PE and -PG, other isoforms are retained at the nuclear surface despite the loss of nuclear positioning and MT organization, indicating that they are not sufficient to generate the ncMTOC. Msp300-PE has an unusual domain structure including a lack of a KASH domain and very few spectrin repeats and appears therefore to have a highly derived function to generate an ncMTOC on the nuclear surface.
Collapse
Affiliation(s)
- Garret M Morton
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Maria Pilar Toledo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Yiming Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China, 361102, and Shenzhen Research Institute of Xiamen University, Shenzhen, China, 518057
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Mudassir BU, Mudassir M, Williams JB, Agha Z. Genetic Heterogeneity in Four Probands Reveals HGSNAT, KDM6B, LMNA and WFS1 Related Neurodevelopmental Disorders. Biomedicines 2024; 12:2736. [PMID: 39767643 PMCID: PMC11727043 DOI: 10.3390/biomedicines12122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. Methods: We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. Results: Whole exome sequencing identifies a novel, bi-allelic, missense variant in the HGSNAT gene [NM_152419.3: c.1411G > A (p. Glu471Lys) exon 14] for proband family E-1 and a rare, bi-allelic, non-frameshift variant in the KDM6B gene [NM_001348716.2: c.786_791dupACCACC (p. Pro263_Pro264dup) exon 10] for proband family E-2, and a novel, mono-allelic, missense variant in the LMNA gene [NM_170707.4: c. 1328 A > G (p. Glu443Gly) exon 8] for proband family E-3 and an ultra-rare, mono-allelic, missense variant in the WFS1 gene [NM_006005.3: c.2131G > A (p. Asp711Asn) exon 8] for proband family E-4. Protein modelling shows conformation and size modifications in mutated residues causing damage to the conserved domains expressed as neurocognitive pathology. Conclusions: The current study broadens the distinctly cultural and genetically inbred pool of the Pakistani population for harmful mutations, contributing to the ever-expanding phenotypic palette. The greatest aspirations are molecular genetic profiling and personalized treatment for individuals with complex neurological symptoms to improve their life activities.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
| | - Mujaddid Mudassir
- Rawalpindi Institute of Cardiology, Rawal Road, Rawalpindi 46000, Pakistan;
| | - Jamal B. Williams
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan;
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
7
|
van der Graaf K, Srivastav S, Nishad R, Stern M, McNew JA. The Drosophila Nesprin-1 homolog MSP300 is required for muscle autophagy and proteostasis. J Cell Sci 2024; 137:jcs262096. [PMID: 38757366 PMCID: PMC11213522 DOI: 10.1242/jcs.262096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.
Collapse
Affiliation(s)
| | | | - Rajkishor Nishad
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
8
|
Tagami Y, Horita N, Kaneko M, Muraoka S, Fukuda N, Izawa A, Kaneko A, Somekawa K, Kamimaki C, Matsumoto H, Tanaka K, Murohashi K, Aoki A, Fujii H, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Whole-Genome Sequencing Predicting Phenotypic Antitubercular Drug Resistance: Meta-analysis. J Infect Dis 2024; 229:1481-1492. [PMID: 37946558 DOI: 10.1093/infdis/jiad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For simultaneous prediction of phenotypic drug susceptibility test (pDST) for multiple antituberculosis drugs, the whole genome sequencing (WGS) data can be analyzed using either a catalog-based approach, wherein 1 causative mutation suggests resistance, (eg, World Health Organization catalog) or noncatalog-based approach using complicated algorithm (eg, TB-profiler, machine learning). The aim was to estimate the predictive ability of WGS-based tests with pDST as the reference, and to compare the 2 approaches. METHODS Following a systematic literature search, the diagnostic test accuracies for 14 drugs were pooled using a random-effect bivariate model. RESULTS Of 779 articles, 44 with 16 821 specimens for meta-analysis and 13 not for meta-analysis were included. The areas under summary receiver operating characteristic curve suggested test accuracy was excellent (0.97-1.00) for 2 drugs (isoniazid 0.975, rifampicin 0.975), very good (0.93-0.97) for 8 drugs (pyrazinamide 0.946, streptomycin 0.952, amikacin 0.968, kanamycin 0.963, capreomycin 0.965, para-aminosalicylic acid 0.959, levofloxacin 0.960, ofloxacin 0.958), and good (0.75-0.93) for 4 drugs (ethambutol 0.926, moxifloxacin 0.896, ethionamide 0.878, prothionamide 0.908). The noncatalog-based and catalog-based approaches had similar ability for all drugs. CONCLUSIONS WGS accurately identifies isoniazid and rifampicin resistance. For most drugs, positive WGS results reliably predict pDST positive. The 2 approaches had similar ability. CLINICAL TRIALS REGISTRATION UMIN-ID UMIN000049276.
Collapse
Affiliation(s)
- Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Megumi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Storey EC, Holt I, Brown S, Synowsky S, Shirran S, Fuller HR. Proteomic characterization of human LMNA-related congenital muscular dystrophy muscle cells. Neuromuscul Disord 2024; 38:26-41. [PMID: 38554696 DOI: 10.1016/j.nmd.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.
Collapse
Affiliation(s)
- Emily C Storey
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Sharon Brown
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK
| | - Silvia Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Sally Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, KY16 9ST, UK
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; The School of Pharmacy and Bioengineering, Keele University, ST5 5BG, UK.
| |
Collapse
|
10
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Sirtori R, J Gregoire M, M Potts E, Collins A, Donatelli L, Fallini C. LINC complex alterations are a key feature of sporadic and familial ALS/FTD. Acta Neuropathol Commun 2024; 12:69. [PMID: 38664831 PMCID: PMC11046770 DOI: 10.1186/s40478-024-01778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.
Collapse
Affiliation(s)
- Riccardo Sirtori
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
| | - Michelle J Gregoire
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Emily M Potts
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Alicia Collins
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Liviana Donatelli
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Claudia Fallini
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America.
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America.
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, United States of America.
| |
Collapse
|
12
|
Sirtori R, Gregoire M, Potts E, Collins A, Donatelli L, Fallini C. LINC complex alterations are a hallmark of sporadic and familial ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584123. [PMID: 38559165 PMCID: PMC10979905 DOI: 10.1101/2024.03.08.584123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex biopsies. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.
Collapse
|
13
|
van Heerden D, Klima S, van den Bout I. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr Opin Cell Biol 2024; 86:102290. [PMID: 38048657 DOI: 10.1016/j.ceb.2023.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.
Collapse
Affiliation(s)
- David van Heerden
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Stefanie Klima
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
14
|
Gregory EF, Ragle JM, Ward JD, Starr DA. Split-GFP lamin as a tool for studying C. elegans LMN-1 dynamics in vivo. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001022. [PMID: 38152058 PMCID: PMC10751582 DOI: 10.17912/micropub.biology.001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
We engineered a fluorescent fusion protein of C. elegans lamin, by fusing the eleventh beta strand of GFP to the N-terminus of LMN-1 at the endogenous lmn-1 locus. When co-expressed with GFP1-10, GFP11::LMN-1 was observed at the nuclear periphery of a wide variety of somatic cells. Homozygous gfp11::lmn-1 animals had normal numbers of viable embryos. However, the gfp11::lmn-1 animals had a mild swimming defect. While not completely functional, the GFP11::LMN-1 strain is more healthy than other published fluorescent LMN-1 lines, making it a valuable reagent for studying lamins.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States
| |
Collapse
|
15
|
McGillivary RM, Starr DA, Luxton GWG. Building and breaking mechanical bridges between the nucleus and cytoskeleton: Regulation of LINC complex assembly and disassembly. Curr Opin Cell Biol 2023; 85:102260. [PMID: 37857179 PMCID: PMC10859145 DOI: 10.1016/j.ceb.2023.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The nucleus is physically coupled to the cytoskeleton through LINC complexes, macromolecular bridges composed of SUN and KASH proteins that span the nuclear envelope. LINC complexes are involved in a wide variety of critical cellular processes. For these processes to occur, cells regulate the composition, assembly, and disassembly of LINC complexes. Here we discuss recent studies on the regulation of the SUN-KASH interaction that forms the core of the LINC complex. These new findings encompass the stages of LINC complex assembly, from the formation of SUN-KASH heterooligomers to higher-order assemblies of LINC complexes. There is also new work on how components of the LINC complex are selectively dismantled, particularly by proteasomal degradation. It is becoming increasingly clear that LINC complexes are subject to multiple layers of regulation.
Collapse
Affiliation(s)
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, USA.
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, USA.
| |
Collapse
|
16
|
Bannasch DL, Oertle DT, Vo J, Batcher KL, Stern JA, Kaplan JL, Li RHL, Madden IE, Christen M, Leeb T, Joshi N. Naturally occurring canine laminopathy leading to a dilated and fibrosing cardiomyopathy in the Nova Scotia Duck Tolling Retriever. Sci Rep 2023; 13:19077. [PMID: 37925523 PMCID: PMC10625583 DOI: 10.1038/s41598-023-46601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by decreased systolic function and dilation of one or both ventricles, often leading to heart failure or sudden death. Two 10-month-old sibling Nova Scotia Duck Tolling Retrievers (NSDTR) died acutely with evidence of dilated cardiomyopathy with myocardial fibrosis. Association analysis using two cases and 35 controls identified three candidate regions homozygous in the two cases. Whole genome sequencing identified a frameshift deletion in the LMNA gene (NC_049228.1:g.41688530del, NP_001274080:p.(Asp576ThrfsTer124)). Three retrospectively identified NSDTRs with sudden death before 2 years of age and severe myocardial fibrosis were also homozygous for the deletion. One 5 year old with sudden death and myocardial fibrosis was heterozygous for the deletion. This variant was not identified in 722 dogs of other breeds, nor was it identified to be homozygous in 784 NSDTR. LMNA codes for lamin A/C proteins, which are type V intermediate filaments that provide structural support to the nuclear membrane. In humans, LMNA variants can cause DCM with sudden death as well as diseases of striated muscles, lipodystrophy, neuropathies, and accelerated aging disorders. This frameshift deletion is predicted to affect processing of prelamin A into lamin A. Pedigree analysis in the NSDTR and functional evaluation of heterozygotes is consistent with a predominantly recessive mode of inheritance and possibly low penetrance in heterozygotes in contrast to people, where most pathogenic LMNA variants are dominantly inherited.
Collapse
Affiliation(s)
- Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Danielle T Oertle
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Julia Vo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ronald H L Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Indiana E Madden
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Nikhil Joshi
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
18
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
19
|
Walker SG, Langland CJ, Viles J, Hecker LA, Wallrath LL. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023; 12:cells12081142. [PMID: 37190051 DOI: 10.3390/cells12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Sydney G Walker
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent Researcher, Gowrie, IA 50543, USA
| | - Laura A Hecker
- Department of Biology, Clarke University, Dubuque, IA 52001, USA
| | - Lori L Wallrath
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Mackels L, Liu X, Bonne G, Servais L. TOR1AIP1-Associated Nuclear Envelopathies. Int J Mol Sci 2023; 24:ijms24086911. [PMID: 37108075 PMCID: PMC10138496 DOI: 10.3390/ijms24086911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- Adult Neurology Department, Citadelle Hospital, 4000 Liège, Belgium
| | - Xincheng Liu
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Gisèle Bonne
- Sorbonne University, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Laurent Servais
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|