1
|
Verma R, Bota M, Ram K, Jayakumar J, Folkerth R, Pandurangan K, Ramesh JJ, Majumder M, Raveendran R, Nanda R, K S, S AD, Karthik S, Kumarasami R, S S, Lata S, Kumar EH, Rangasami R, Srinivasan C, Kumutha J, Vasudevan S, Bhat K, Sam C C, Neelakantan S, Savoia S, Mitra PP, Joseph J, Manger PR, Sivaprakasam M. DHARANI: A 3D Developing Human-Brain Atlas Resource to Advance Neuroscience Internationally Integrated Multimodal Imaging and High-Resolution Histology of the Second Trimester. J Comp Neurol 2025; 533:e70006. [PMID: 39905665 DOI: 10.1002/cne.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
We introduce DHARANI, the first online platform with three-dimensional (3D) histological reconstructions of the developing human brain from 14 to 24 gestational weeks (GW) across the five fetal brains. DHARANI features 5132 Nissl, hematoxylin and eosin stained, 20 µm coronal and sagittal sections, postmortem MRI, and a neuroanatomical atlas with 466 annotated sections covering ∼500 brain structures. It is accessible online at https://brainportal.humanbrain.in/publicview/index.html. The 3D reconstruction enables a volumetric view of the fetal brain, allowing visualization in all three planes akin to MRI, previously unachievable with histological datasets from the fetal brain. This allowed qualitative assessment of the growth of brain regions and layers throughout the second trimester. "DHARANI" documents the initiation of sulci, with the lateral fissure, calcarine, parieto-occipital, and cingulate sulci, at 14 GW. The central and postcentral sulci appear by 24 GW; however, cytoarchitectonic boundaries become visible before sulcal patterns. Cortical plate (CP) lamination begins at 24 GW in the parietal and occipital cortices. The frontal cortex lacks lamination at 24 GW, although putative Betz cells are already visible and show early patterning in the intermediate zone. The cell-sparse layer between the CP and subplate, containing late migratory neurons, begins in the orbital cortex at 14 GW and reaches the frontal cortex by 17 GW. The appearance of the honeycomb pattern in the occipital and parietal cortex occurs after 14 GW. Additionally, we describe the development of the thalamic pregeniculate with the rotation of the lateral geniculate nucleus. Cerebellar nuclei and an early Purkinje cell layer appear by 21 GW in the already foliated cerebellar cortex.
Collapse
Affiliation(s)
- Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Mihail Bota
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Keerthi Ram
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Healthcare Technology Innovation Centre, Research Park, Indian Institute of Technology, Madras, Chennai, India
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Center for Computational Brain Research, Indian Institute of Technology, Madras, Chennai, India
| | - Rebecca Folkerth
- Brain Injury Research Center, Department of Rehabilitation and Human Potential, Icahn, School of Medicine at Mount Sinai, New York, USA
| | - Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Jivitha Jyothi Ramesh
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Moitrayee Majumder
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Rakshika Raveendran
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Sivamani K
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Amal Dhivahar S
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | - Srinivasa Karthik
- Healthcare Technology Innovation Centre, Research Park, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Suresh S
- Mediscan Systems, Chennai, India
| | - S Lata
- Department of Perinatal Pathology, Mediscan, Chennai, India
| | | | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Jayaraman Kumutha
- Department of Neonatology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Sudha Vasudevan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Koushik Bhat
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Chrisline Sam C
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Sivathanu Neelakantan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
| | | | - Partha P Mitra
- Center for Computational Brain Research, Indian Institute of Technology, Madras, Chennai, India
- Cold Spring Harbor Laboratory, New York, USA
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Healthcare Technology Innovation Centre, Research Park, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology, Madras, Chennai, India
- Healthcare Technology Innovation Centre, Research Park, Indian Institute of Technology, Madras, Chennai, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India
| |
Collapse
|
2
|
Kopić J, Haldipur P, Millen KJ, Kostović I, Krasić J, Krsnik Ž. Initial regional cytoarchitectonic differences in dorsal and orbitobasal human developing frontal cortex revealed by spatial transcriptomics. Brain Struct Funct 2024; 230:13. [PMID: 39692769 DOI: 10.1007/s00429-024-02865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Early development of the human fetal cerebral cortex involves a set of precisely coordinated molecular processes that remains rather underexplored. Previous studies indicate that the laminar identity and the molecular specification of cortical neurons driven by genetic programming, as well as associated histogenetic events begin during early fetal development. Our recent study discovered unique regional cytoarchitectonic features in the developing human frontal lobe, including migratory waves of postmitotic neurons in the dorsal frontal cortex and the "double plate" feature in orbitobasal cortex (Kopić et al. in Cells 12:231, 2023). Notably, neurons of these two cytoarchitectonic features typically express deep projection neuron (DPN) markers (TBR1, TLE4, SOX5). This paper aims to conduct an in-depth investigation of these cytoarchitectonic features at the transcriptomic level, whilst preserving spatial information. Here, we employed NanoString GeoMx™ Digital Spatial Profiler (DSP) technology to examine gene expression differences in the transient cortical compartments of the dorsal and ventral regions of the developing frontal lobe, focusing specifically on 15 post-conceptional weeks (PCW), that is a critical period for subplate formation. We identified multiple differentially expressed genes between the transient cellular compartments of the dorsal and orbitobasal regions of the developing human frontal cortex. These new findings additionally confirm that regional patterning and specification of the prospective higher-order association prefrontal cortex emerges early in fetal development, contributing to the highly organized cortical architecture of the human brain.
Collapse
Affiliation(s)
- Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
4
|
Verma R, Jayakumar J, Folkerth R, Manger PR, Bota M, Majumder M, Pandurangan K, Savoia S, Karthik S, Kumarasami R, Joseph J, Rohini G, Vasudevan S, Srinivasan C, Lata S, Kumar EH, Rangasami R, Kumutha J, Suresh S, Šimić G, Mitra PP, Sivaprakasam M. Histological characterization and development of mesial surface sulci in the human brain at 13-15 gestational weeks through high-resolution histology. J Comp Neurol 2024; 532:e25612. [PMID: 38591638 DOI: 10.1002/cne.25612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.
Collapse
Affiliation(s)
- Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Rebecca Folkerth
- Department of Forensic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mihail Bota
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Moitrayee Majumder
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Srinivasa Karthik
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - G Rohini
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Sudha Vasudevan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India
| | | | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jayaraman Kumutha
- Department of Neonatology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Suresh
- Mediscan Systems, Chennai, Tamil Nadu, India
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Hrvatska, Croatia
| | - Partha P Mitra
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Cold Spring Harbor Laboratory, New York, New York, USA
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Georgiev DD. Evolution of Consciousness. Life (Basel) 2023; 14:48. [PMID: 38255663 PMCID: PMC10817314 DOI: 10.3390/life14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The natural evolution of consciousness in different animal species mandates that conscious experiences are causally potent in order to confer any advantage in the struggle for survival. Any endeavor to construct a physical theory of consciousness based on emergence within the framework of classical physics, however, leads to causally impotent conscious experiences in direct contradiction to evolutionary theory since epiphenomenal consciousness cannot evolve through natural selection. Here, we review recent theoretical advances in describing sentience and free will as fundamental aspects of reality granted by quantum physical laws. Modern quantum information theory considers quantum states as a physical resource that endows quantum systems with the capacity to perform physical tasks that are classically impossible. Reductive identification of conscious experiences with the quantum information comprised in quantum brain states allows for causally potent consciousness that is capable of performing genuine choices for future courses of physical action. The consequent evolution of brain cortical networks contributes to increased computational power, memory capacity, and cognitive intelligence of the living organisms.
Collapse
Affiliation(s)
- Danko D Georgiev
- Institute for Advanced Study, 30 Vasilaki Papadopulu Str., 9010 Varna, Bulgaria
| |
Collapse
|
6
|
Karolis VR, Fitzgibbon SP, Cordero-Grande L, Farahibozorg SR, Price AN, Hughes EJ, Fetit AE, Kyriakopoulou V, Pietsch M, Rutherford MA, Rueckert D, Hajnal JV, Edwards AD, O'Muircheartaigh J, Duff EP, Arichi T. Maturational networks of human fetal brain activity reveal emerging connectivity patterns prior to ex-utero exposure. Commun Biol 2023; 6:661. [PMID: 37349403 PMCID: PMC10287667 DOI: 10.1038/s42003-023-04969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which can capture the constituent developmental transformations. Here, we introduce a novel analytical framework, termed "maturational networks" (matnets), that achieves this by modelling functional networks as an emerging property of the developing brain. Compared to standard network analysis methods that assume consistent patterns of connectivity across development, our method incorporates age-related changes in connectivity directly into network estimation. We test its performance in a large neonatal sample, finding that the matnets approach characterises adult-like features of functional network architecture with a greater specificity than a standard group-ICA approach; for example, our approach is able to identify a nearly complete default mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging functional connections and the hierarchy of their maturational relationships with remarkable anatomical specificity. We show that the associative areas play a central role within prenatal functional architecture, therefore indicating that functional connections of high-level associative areas start emerging prior to exposure to the extra-utero environment.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ahmed E Fetit
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
- UKRI CDT in Artificial Intelligence for Healthcare, Department of Computing, Imperial College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK
- Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Oka Y, Sato M, Chou SJ. Editorial: The earliest-born cortical neurons as multi-tasking pioneers: expanding roles for subplate neurons in cerebral cortex organization and function, volume II. Front Neuroanat 2023; 17:1211678. [PMID: 37265998 PMCID: PMC10230060 DOI: 10.3389/fnana.2023.1211678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Yuichiro Oka
- Division of Developmental Neuroscience, United Graduate School of Child Development (UGSCD), Osaka University, Suita, Japan
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Sato
- Division of Developmental Neuroscience, United Graduate School of Child Development (UGSCD), Osaka University, Suita, Japan
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|