1
|
Lin B, Jiang X, Bhandari A, Chen Q, Pan Y. FAM20C Promotes Papillary Thyroid Cancer Proliferation and Metastasis via Epithelial-Mesenchymal Transition. Mol Carcinog 2025; 64:152-161. [PMID: 39436102 DOI: 10.1002/mc.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Thyroid cancer (TC) is the prevailing malignancy that impacts the endocrine system, accounting for 1% of all recently diagnosed malignancies in humans. The incidence of TC has been continuously increasing, which can be attributed to advancements in clinical diagnostic technology. However, the mechanisms behind the development of TC are still not well understood. TC is classified into four pathological forms: medullary thyroid cancer, papillary thyroid cancer (PTC), follicular thyroid cancer, and poorly differentiated TC. PTC constitutes more than 80% of all TC cases globally. Current research indicates that complex genetic and cellular processes could be responsible for the growth and spread of TC. Next-generation sequencing (RNA-seq) of 79 PTC samples and their corresponding normal thyroid tissues was performed to investigate the molecular mechanisms of PTC. An analysis of RNA-seq data from a local cohort from The Cancer Genome Atlas (TCGA) revealed that, compared with normal tissues, PTC tissues presented elevated FAM20C expression levels. In vitro, the function of FAM20C was validated with small interfering RNA (siRNA). Gene set enrichment analysis (GSEA) revealed the pathways influenced by FAM20C. A western blot experiment was used to investigate protein expression levels associated with epithelial‒mesenchymal transition (EMT). In conclusion, by regulating EMT, FAM20C facilitates PTC cell proliferation and metastasis.
Collapse
Affiliation(s)
- Bangyi Lin
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | | | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yin Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
2
|
Landeros N, Vargas-Roig L, Denita S, Mampel A, Hasbún R, Araya H, Castillo I, Valdes C, Flores M, Salter JS, Vasquez K, Romero J, Pérez-Castro R. Regional Hereditary Cancer Program in Chile: A scalable model of genetic counseling and molecular diagnosis to improve clinical outcomes for patients with hereditary cancer across Latin America. Biol Res 2024; 57:99. [PMID: 39710803 DOI: 10.1186/s40659-024-00579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related mortality worldwide, with hereditary forms accounting for approximately 10% of cases. In Chile, significant gaps exist in genetic counseling and testing, particularly within the public health system. This study presents the implementation and outcomes of the first regional hereditary cancer program in the Maule region of Chile, aimed at improving detection and management of hereditary breast cancer. METHODS A cohort of 48 high-risk breast cancer patients from the Hospital Regional de Talca received genetic counseling and underwent Next-Generation Sequencing multigene panel testing. The program was established through collaboration between multiple institutions, leveraging telemedicine and outsourcing sequencing analysis to address regional gaps. RESULTS Pathogenic or likely pathogenic variants were identified in 12% of patients, including in BRCA1, BRCA2, TP53, and PALB2. Notably, novel pathogenic variants in BRCA1 (rs80357505) and TP53 (rs1131691022) were discovered, highlighting the unique genetic landscape of the Chilean population. Additionally, 70 variants of uncertain significance were found across 42 genes, particularly in FAN1, MSH6, and FANCI, underscoring the need for further research. The program's collaborative approach effectively bridged critical gaps in genetic services, providing high-quality care within the public health system despite limited resources. CONCLUSIONS The Regional Hereditary Cancer Program addresses significant gaps in genetic counseling and testing in Chile's public health system. This scalable model enhances early detection and personalized treatment for hereditary cancer patients and could be adapted to other regions across Latin America.
Collapse
Affiliation(s)
- Natalia Landeros
- Unidad de Innovación en Prevención y Oncología de Precisión Centro Oncológico, Facultad de Medicina, Unidad de Innovación en Prevención y Oncología de Precisión Universidad Católica del Maule, Talca, 3480094, Chile
- In Vivo Tumor Biology Research Facility, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile
- Biomedical Research Labs, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile
| | - Laura Vargas-Roig
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Research Council of Argentine, Mendoza, Argentina
- Medical School, National University of Cuyo, Mendoza, Argentina
| | | | - Alejandra Mampel
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Research Council of Argentine, Mendoza, Argentina
- Medical School, National University of Cuyo, Mendoza, Argentina
- University Hospital, Mendoza, Argentina
| | - Rafael Hasbún
- Hospital Regional de Talca (HRT), Talca, 3480094, Chile
| | - Hernán Araya
- Hospital Regional de Talca (HRT), Talca, 3480094, Chile
| | - Iván Castillo
- Unidad de Innovación en Prevención y Oncología de Precisión Centro Oncológico, Facultad de Medicina, Unidad de Innovación en Prevención y Oncología de Precisión Universidad Católica del Maule, Talca, 3480094, Chile
- Hospital Regional de Talca (HRT), Talca, 3480094, Chile
| | - Camila Valdes
- Hospital Regional de Talca (HRT), Talca, 3480094, Chile
| | | | | | - Katherin Vasquez
- Biomedical Research Labs, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile
| | - Jacqueline Romero
- Biomedical Research Labs, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile
| | - Ramón Pérez-Castro
- Unidad de Innovación en Prevención y Oncología de Precisión Centro Oncológico, Facultad de Medicina, Unidad de Innovación en Prevención y Oncología de Precisión Universidad Católica del Maule, Talca, 3480094, Chile.
- In Vivo Tumor Biology Research Facility, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile.
- Biomedical Research Labs, Facultad de Medicina, Universidad Católica del Maule, Talca, 3480094, Chile.
| |
Collapse
|
3
|
Galoian K, Bilbao D, Denny C, Campos Gallego N, Roberts E, Martinez D, Temple H. Targeting cancer stem cells by TPA leads to inhibition of refractory sarcoma and extended overall survival. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200905. [PMID: 39640862 PMCID: PMC11617462 DOI: 10.1016/j.omton.2024.200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Refractory cancer recurrence in patients is a serious challenge in modern medicine. Tumor regrowth in a more aggressive and invasive drug-resistant form is caused by a specific sub-population of tumor cells defined as cancer stem cells (CSCs). While the role of CSCs in cancer relapse is recognized, the signaling pathways of CSCs-driven chemoresistance are less well understood. Moreover, there are no effective therapeutic strategies that involve specific inhibition of CSCs responsible for cancer recurrence and drug resistance. There is a clinical need to develop new therapies for patients with refractory sarcomas, particularly fibrosarcoma. These aggressive tumors, with poor overall survival, do not respond to conventional therapies. Standard systemic chemotherapy for these tumors includes doxorubicin (DOX). A Tyr peptide analog (TPA), developed in our laboratory, specifically targets CSCs by drastically reducing expression of the polycomb group protein enhancer of zester (EZH2) and its downstream targets, specifically ALDH1A1 and Nanog. In vivo experiments demonstrated that TPA inhibited tumor growth in nu/nu mice with relapsed DOX-treated fibrosarcoma 7-fold and led to improved overall (2-fold) survival. In an experimental metastatic model, the combination of TPA with DOX treatment extended overall survival 3-fold, suggesting that targeting CSC can become an effective strategy in the treatment of refractory/relapse fibrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Carina Denny
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Daniel Martinez
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - H.T. Temple
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Hussen BM, Taheri M, Yashooa RK, Abdullah GH, Abdullah SR, Kheder RK, Mustafa SA. Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg 2024; 110:8002-8024. [PMID: 39497543 PMCID: PMC11634165 DOI: 10.1097/js9.0000000000002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Stem-cell therapy is a revolutionary frontier in modern medicine, offering enormous capacity to transform the treatment landscape of numerous debilitating illnesses and injuries. This review examines the revolutionary frontier of treatments utilizing stem cells, highlighting the distinctive abilities of stem cells to undergo regeneration and specialized cell differentiation into a wide variety of phenotypes. This paper aims to guide researchers, physicians, and stakeholders through the intricate terrain of stem-cell therapy, examining the processes, applications, and challenges inherent in utilizing stem cells across diverse medical disciplines. The historical journey from foundational contributions in the late 19th and early 20th centuries to recent breakthroughs, including ESC isolation and iPSC discovery, has set the stage for monumental leaps in medical science. Stem cells' regenerative potential spans embryonic, adult, induced pluripotent, and perinatal stages, offering unprecedented therapeutic opportunities in cancer, neurodegenerative disorders, cardiovascular ailments, spinal cord injuries, diabetes, and tissue damage. However, difficulties, such as immunological rejection, tumorigenesis, and precise manipulation of stem-cell behavior, necessitate comprehensive exploration and innovative solutions. This manuscript summarizes recent biotechnological advancements, critical trial evaluations, and emerging technologies, providing a nuanced understanding of the triumphs, difficulties, and future trajectories in stem cell-based regenerative medicine. Future directions, including precision medicine integration, immune modulation strategies, advancements in gene-editing technologies, and bioengineering synergy, offer a roadmap in stem cell treatment. The focus on stem-cell therapy's potential highlights its significant influence on contemporary medicine and points to a future in which individualized regenerative therapies will alleviate various medical disorders.
Collapse
Affiliation(s)
- Bashdar M. Hussen
- Department of Biomedical Sciences, Cihan University-Erbil
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Raya Kh. Yashooa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| | | | - Snur R. Abdullah
- Department of Medical Laboratory Science, College of Health sciences, Lebanese French University, Erbil, Kurdistan Region, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Suhad A. Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| |
Collapse
|
5
|
Wu J, Li Y, Sun S, Li W, Sun J, Zhu L, Wang Z, Yang F, Wang Q, Ding H, Ding X, Guo Z. The pH-sensitive chondroitin sulphate-based nanoparticles for co-delivery of doxorubicin and berberine enhance the treatment of breast cancer. Int J Biol Macromol 2024; 281:136484. [PMID: 39414206 DOI: 10.1016/j.ijbiomac.2024.136484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
In the tumor microenvironment (TME), cancer associated fibroblasts (CAFs) facilitate drug resistance and tumor metastasis. Therefore, more and more attention has been focused on the regulation of TME by preventing the cross-talk between tumor cells and CAFs in the treatment of breast cancer. In this study, we have combined the benefits of deep drug penetration, pH sensitivity, and tumor-targeting delivery to prepare chondroitin sulphate (CS)-based nanomicelles (BBR/CS-DOX) for the co-delivery of doxorubicin (DOX) and berberine (BBR). A unique MCF-7 + MRC-5 co-cultured cell model and 4 T1 + NIH3T3 co-implanted mice model, were established to simulate the TME of breast cancer (BC). As expected, BBR/CS-DOX could accumulate in tumor egion, be taken up by both tumor cells and CAFs, and improve drug absorption and retention. Compared with free drugs, BBR/CS-DOX demonstrated stonger pro-apoptotic and anti-metastatic effect in vitro and in vivo, respectively the histological studies showed that BBR/CS-DOX efficiently prevented the activation of fibroblasts, inhibited extracellular matrix (ECM) deposition, and decreased tumor angiogenesis, showing superior anti-tumor efficacy. In summary, BBR/CS-DOX has the potential to significantly enhance the therapeutic effect of breast cancer through inhibiting the "CAFs-tumor cells" crosstalk, and has promising clinical application prospects.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Medicine, Weifang University of Science and Technology, Weifang 262700, PR China
| | - Yanying Li
- School of Medicine, Weifang University of Science and Technology, Weifang 262700, PR China
| | - Shujie Sun
- School of Medicine, Weifang University of Science and Technology, Weifang 262700, PR China.
| | - Wenjun Li
- Department of Stomatology, Weifang People's Hospital, Weifang 261000, PR China
| | - Jingui Sun
- Department of Oncology, Shouguang People's Hospital, Weifang 262700, PR China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, 262700, PR China
| | - Zhiqiang Wang
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, 262700, PR China
| | - Fan Yang
- Shandong Kanghua Biotechnology Co., Ltd., Weifang 261023, PR China
| | - Qing Wang
- Department of Stomatology, Weifang People's Hospital, Weifang 261000, PR China
| | - Huajie Ding
- School of Medicine, Weifang University of Science and Technology, Weifang 262700, PR China
| | - Xueying Ding
- School of Medicine, Weifang University of Science and Technology, Weifang 262700, PR China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, PR China.
| |
Collapse
|
6
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
7
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
8
|
Ros M, Riesco-Llach G, Polonio-Alcalá E, Morla-Barcelo PM, Ruiz-Martínez S, Feliu L, Planas M, Puig T. Inhibition of Cancer Stem-like Cells by Curcumin and Other Polyphenol Derivatives in MDA-MB-231 TNBC Cells. Int J Mol Sci 2024; 25:7446. [PMID: 39000554 PMCID: PMC11242520 DOI: 10.3390/ijms25137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is highly aggressive. Despite an initial positive response to chemotherapy, most patients experience rapid disease progression leading to relapse and metastasis. This is attributed to the presence of breast cancer stem cells (BCSCs) within the tumor, which are characterized by self-renewal, pluripotency, and resistance mechanisms. Targeting BCSCs has become critical as conventional therapies fail to eradicate them due to a lack of specific targets. Curcumin, a polyphenol derived from turmeric (Curcuma longa), exhibits anticancer effects against breast cancer cells and BCSCs. The use of curcumin derivatives has been suggested as an approach to overcome the bioavailability and solubility problems of curcumin in humans, thereby increasing its anticancer effects. The aim of this study was to evaluate the cellular and molecular effects of six synthetic compounds derived from the natural polyphenol epigallocatechin gallate (EGCG) (TL1, TL2) and curcumin derivatives (TL3, TL4, TL5, and TL6) on a TNBC mesenchymal stem-like cell line. The activity of the compounds against BCSCs was also determined by a mammosphere inhibition assay and studying different BCSC markers by Western blotting. Finally, a drug combination assay was performed with the most promising compounds to evaluate their potential synergistic effects with the chemotherapeutic agents doxorubicin, cisplatin, and paclitaxel. The results showed that compounds exhibited specific cytotoxicity against the TNBC cell line and BCSCs. Interestingly, the combination of the curcumin derivative TL3 with doxorubicin and cisplatin displayed a synergistic effect in TNBC cells.
Collapse
Affiliation(s)
- Maria Ros
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Gerard Riesco-Llach
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Department of Chemistry, University of Girona, 17003 Girona, Spain
| | - Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain
| | - Santiago Ruiz-Martínez
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lidia Feliu
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Department of Chemistry, University of Girona, 17003 Girona, Spain
| | - Marta Planas
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Department of Chemistry, University of Girona, 17003 Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| |
Collapse
|
9
|
González-Callejo P, García-Astrain C, Herrero-Ruiz A, Henriksen-Lacey M, Seras-Franzoso J, Abasolo I, Liz-Marzán LM. 3D Bioprinted Tumor-Stroma Models of Triple-Negative Breast Cancer Stem Cells for Preclinical Targeted Therapy Evaluation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27151-27163. [PMID: 38764168 PMCID: PMC11145592 DOI: 10.1021/acsami.4c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Breast cancer stem cells (CSCs) play a pivotal role in therapy resistance and tumor relapse, emphasizing the need for reliable in vitro models that recapitulate the complexity of the CSC tumor microenvironment to accelerate drug discovery. We present a bioprinted breast CSC tumor-stroma model incorporating triple-negative breast CSCs (TNB-CSCs) and stromal cells (human breast fibroblasts), within a breast-derived decellularized extracellular matrix bioink. Comparison of molecular signatures in this model with different clinical subtypes of bioprinted tumor-stroma models unveils a unique molecular profile for artificial CSC tumor models. We additionally demonstrate that the model can recapitulate the invasive potential of TNB-CSC. Surface-enhanced Raman scattering imaging allowed us to monitor the invasive potential of tumor cells in deep z-axis planes, thereby overcoming the depth-imaging limitations of confocal fluorescence microscopy. As a proof-of-concept application, we conducted high-throughput drug testing analysis to assess the efficacy of CSC-targeted therapy in combination with conventional chemotherapeutic compounds. The results highlight the usefulness of tumor-stroma models as a promising drug-screening platform, providing insights into therapeutic efficacy against CSC populations resistant to conventional therapies.
Collapse
Affiliation(s)
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Ada Herrero-Ruiz
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Malou Henriksen-Lacey
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
| | - Joaquín Seras-Franzoso
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron
Research Institute (VHIR), Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Department
of Genetics and Microbiology, Universitat
Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Ibane Abasolo
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron
Research Institute (VHIR), Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry Service, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Barcelona 08035, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
10
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
12
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|