1
|
Lin YY, Warren E, Macklin BL, Ramirez L, Gerecht S. Endothelial-pericyte interactions regulate angiogenesis via VEGFR2 signaling during retinal development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642174. [PMID: 40161680 PMCID: PMC11952325 DOI: 10.1101/2025.03.08.642174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pericytes stabilize the microvasculature by enhancing endothelial barrier integrity, resulting in functional networks. During retinal development, pericyte recruitment is crucial for stabilizing nascent angiogenic vasculature. However, in adulthood, disrupted endothelial-pericyte interactions lead to vascular dropout and pathological angiogenesis in ocular microvascular diseases, and strategies to stabilize the retinal vasculature are lacking. We demonstrate that direct endothelial-pericyte contact downregulates pVEGFR2 in endothelial cells, which enhances pericyte migration and promotes endothelial cell barrier function. Intravitreal injection of a VEGFR2 inhibitor in mouse models of the developing retina and oxygen-induced retinopathy increased pericyte recruitment and aided vascular stability. The VEGFR2 inhibitor further rescued ischemic retinopathy by enhancing vascularization and tissue growth while reducing vascular permeability. Our findings offer a druggable target to support the growth of functional and mature microvasculature in ocular microvascular diseases and tissue regeneration overall.
Collapse
|
2
|
Bakker N, Croes AA, Prevaes E, van Noorden CJF, Schlingemann RO, Klaassen I. Development of Immunostaining Protocols for 3D Visualization of Pericytes in Human Retinal Flatmounts. J Histochem Cytochem 2025; 73:147-170. [PMID: 40098221 PMCID: PMC11915233 DOI: 10.1369/00221554251323655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Vascular pericytes are widely present across the human body and crucial in regulating vascular flow, permeability, and homeostasis. In the human retina, pericytes are important for forming and maintaining the blood-retinal barrier, as well as for autoregulation of blood flow. Pericyte loss has been implicated in various pathological conditions. Visualization of pericytes by immunofluorescence (IF) staining provides valuable information on pericyte number, morphology, location, and on expression of anatomic and functional markers. However, species-specific differences in pericyte marker expression exist. In this study, we aimed to develop a novel IF co-staining protocol to detect the pericyte markers NG2, PDGFRβ, αSMA, CD13, and RFC1 in human retinal flatmounts. Unlike retinal sections, retinal flatmounts enable 3D visualization of pericyte distribution across the entire vascular network. Key optimizations included tailoring the fixation method, blocking buffer composition and antibody solvent, as well as using jasplakinolide to enhance αSMA detection. Our protocol successfully enabled double staining of NG2 and PDGFRβ, as well as αSMA and PDGFRβ, whereas CD13 and RFC1 expression was not detectable in human retinal flatmounts. This novel 3D IF protocol enhances in situ visualization of human retinal pericytes, enabling accurate studies of their role in vascular health and disease to aid targeted therapy development.
Collapse
Affiliation(s)
- Noëlle Bakker
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Aïcha A. Croes
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Prevaes
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J. F. van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland (ROS)
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Klouda T, Kim Y, Baek SH, Bhaumik M, Li Y, Liu Y, Wu JC, Raby BA, Perez VDJ, Yuan K. Specialized pericyte subtypes in the pulmonary capillaries. EMBO J 2025; 44:1074-1106. [PMID: 39806101 PMCID: PMC11833098 DOI: 10.1038/s44318-024-00349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Pericytes are essential for capillary stability and homeostasis, with impaired pericyte function linked to diseases like pulmonary arterial hypertension. Investigating pericyte biology has been challenging due to the lack of specific markers, making it difficult to distinguish pericytes from other stromal cells. Using bioinformatic analysis and RNAscope, we identified Higd1b as a unique gene marker for pericytes and subsequently generated a knock-in mouse line, Higd1b-CreERT2, that accurately labels pericytes in the lung and heart. Single-cell RNA sequencing revealed two distinct Higd1b+ pericyte subtypes: while Type 1 pericytes support capillary homeostasis, Type 2 pericytes accumulate in arterioles, and co-express smooth muscle markers and higher levels of vimentin under hypoxic conditions. Lastly, healthy human lung pericytes with upregulation of vimentin exhibited increased adhesion, migration, and higher expression levels of the smooth muscle marker SM22 in vitro. These findings highlight the specialization of pulmonary pericytes and their contribution to vascular remodeling during hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Seung-Han Baek
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mantu Bhaumik
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan Li
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Allergy Critical Care Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA.
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Li P, Liu L, Halushka PV, Trojanowska M, Wang G, Ergul A, Fan H. Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice. Inflamm Res 2025; 74:28. [PMID: 39862276 PMCID: PMC11762421 DOI: 10.1007/s00011-025-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1. However, the role of pericyte Fli-1 in neuroinflammation during sepsis remains largely unknown. METHODS WT and pericyte-specific Fli-1 knockout mice were subjected to endotoxemia through LPS injection or sepsis via cecal ligation and puncture (CLP). In vitro, Fli-1 was knocked down using small interfering RNA in cultured mouse brain pericytes, followed by LPS stimulation. RESULTS Elevated Fli-1 levels were observed in isolated brain pericytes 2 h after LPS administration, in brain tissues 4 h after CLP, and in cultured mouse brain pericytes 2 h after LPS stimulation in vitro. In endotoxemic mice, pericyte-specific Fli-1 knockout reduced expression of MCP-1 and IL-6 in brain tissue 2 h after LPS injection. At 24 h post-LPS administration, protein levels of MCP-1 and IL-6, and microglia activation were suppressed in pericyte-Fli-1 knockout mice. Additionally, Fli-1 deficiency in pericytes significantly reduced MCP-1 and IL-6 mRNA levels in the brain tissue 4 h after CLP. Moreover, in cultured brain pericytes, Fli-1 knockdown markedly decreased MCP-1 and IL-6 levels after LPS stimulation. Notably, LPS stimulation increased Fli-1 levels via TLR4-Myd88 signaling, which subsequently led to elevated production of MCP-1 in brain pericytes. CONCLUSIONS Fli-1 in pericytes may serve as a crucial mediator of neuroinflammation during sepsis by directly regulating pivotal cytokines such as MCP-1 and IL-6. Therefore, Fli-1 has the potential to serve as a therapeutic target in SAE and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Liu Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Boston University, Boston, MA, 02118, USA
| | - Guirong Wang
- Departments of Surgery and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
5
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
6
|
Sun Z, Zhao H, Yang S, Liu R, Yi L, Gao J, Liu S, Chen Y, Zhang Z. Edaravone Dexborneol protects against blood-brain barrier disruption following cerebral ischemia/reperfusion by upregulating pericyte coverage via vitronectin-integrin and PDGFB/PDGFR-β signaling. Free Radic Biol Med 2024; 225:758-766. [PMID: 39486750 DOI: 10.1016/j.freeradbiomed.2024.10.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Recent advancements in brain cytoprotection therapies following cerebral ischemia-reperfusion (I/R) injury have become an emerging interest. Pericytes were vulnerable during the early stages of ischemia. This study aims to explore the protective effects of Edaravone dexborneol (Eda.B) on pericyte loss, as well as and the underlying mechanisms, given its potential in alleviating I/R injury. METHODS The rat transient middle cerebral artery occlusion (tMCAO) model was established. Rats were randomly divided into Sham group (Sham, n = 24), tMCAO group (tMCAO, n = 24), Edaravone group (Eda, n = 24), Dexborneol group (Dexborneol, n = 24), and Eda.B group (Eda.B, n = 24). Neurological function recovery, infarct volume, and blood-brain barrier (BBB) disruption were assessed using Zea-Longa scoring, TTC staining, and Evans Blue extravasation, respectively. Alterations in Basement membrane (BM) and pericyte coverage were assessed by transmission electron microscopy (TEM). The expression levels of pericyte marker NG2 and PDGFR-β in the ischemic region, as well as BBB transcellular transport-related proteins vitronectin (VTN), α5 and PDGFB were detected by western blotting. Furthermore, a specific inhibitor of PDGFB, MOR8457, was employed (Eda.B + MOR8457, n = 8) to explore the protective effects of Eda.B on pericyte injury via PDGFB/PDGFR-β. RESULTS Eda.B significantly reduced cerebral infarct volume and promoted neurological function recovery in comparison to the tMCAO, Eda and Dexborneol groups. Additionally, Eda.B significantly ameliorated BBB leakage, mitigated the decrease in pericyte coverage, and reduced vesicle density in endothelial cells and BM thickness following I/R. Mechanically, Eda.B inhibited the downregulation of NG2, PDGFB/PDGFR-β, VTN, while preventing upregulation of α5 protein expression in tMCAO rats. Blocking PDGFB with MOR8457 demonstrated that Eda.B improved pericyte loss and BBB permeability by activating PDGFB/PDGFR-β signaling. CONCLUSIONS We elucidated that vitronectin-integrin and PDGFB/PDGFR-β signaling contributed to Eda.B's protective effects against pericyte loss and BBB permeability following I/R injury, unraveling new insights into mechanisms of pericyte as a promising therapeutic target.
Collapse
Affiliation(s)
- Zhiyu Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hanshu Zhao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Shanshan Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Ruijia Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Lian Yi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Jiadi Gao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Sihan Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Yilin Chen
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China
| | - Zhongling Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
7
|
Shang Y, Wang Z, Yang F, Wang W, Tang Q, Guo X, Du X, Zhang X, Hao J, Lin H. FUT8 upregulates CD36 and its core fucosylation to accelerate pericyte-myofibroblast transition through the mitochondrial-dependent apoptosis pathway during AKI-CKD. Mol Med 2024; 30:222. [PMID: 39563263 PMCID: PMC11577590 DOI: 10.1186/s10020-024-00994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Activation of pericytes leads to renal interstitial fibrosis, but the regulatory mechanism of pericytes in the progression from AKI to CKD remains poorly understood. CD36 activation plays a role in the progression of CKD. However, the significance of CD36 during AKI-CKD, especially in pericyte, remains to be fully defined. METHODS GEO and DISCO database were used to analyze the expression of CD36 in pericyte during AKI-CKD; IRI to conduct AKI-CKD mouse model; Hypoxia/Reoxygenation (H/R) to induce the cell model; RT-qPCR and Western blotting to detect gene expression; IP and confocal-IF to determine the core fucosylation (CF) level of CD36. Flow cytometry (AV/PI staining) to detect the cell apoptosis and JC-1 staining to react to the change of mitochondrial membrane potential. RESULTS During AKI to CKD progression, CD36 expression in pericytes is higher and may be influenced by CF. Moreover, we confirmed the positive association of CD36 expression with pericyte-myofibroblast transition and the progression of AKI-CKD in an IRI mouse model and hypoxia/reoxygenation (H/R) pericytes. Notably, we discovered that FUT8 upregulates both CD36 expression and its CF level, contributing to the activation of the mitochondrial-dependent apoptosis signaling pathway in pericytes, ultimately leading to the progression of AKI-CKD. CONCLUSION These results further identify FUT8 and CD36 as potential targets for the treatment in the progression of AKI-CKD.
Collapse
Affiliation(s)
- Yaxi Shang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Ziran Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Fan Yang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Qingzhu Tang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xianan Guo
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xiangning Du
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Xu Zhang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China
| | - Jiaojiao Hao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China.
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China.
| |
Collapse
|
8
|
Suzuki H, Murata J, Unekawa M, Kanno I, Izawa Y, Tomita Y, Tanaka KF, Nakahara J, Masamoto K. Microfluctuations in Capillary Lumens Independent of Pericyte Lining Density in the Anesthetized Mouse Cortex. Microcirculation 2024; 31:e12885. [PMID: 39283679 DOI: 10.1111/micc.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 11/12/2024]
Abstract
OBJECTIVE This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice. METHODS Two-photon microscopic angiography data (previously published) were reanalyzed, and spatial variations in capillary diameter fluctuations at rest and in capillary lining with vascular mural cells were measured along capillary centerlines. RESULTS Relatively large diameters of the capillaries (5.5 μm) coincided with a dense pericyte lining, while small capillaries (4.3 μm) had a sparse pericyte lining. Temporal variations had a frequency of about 0.1 Hz with an amplitude of 0.5 μm, which were negatively correlated with pericyte lining density. Spatial frequency analysis further revealed a common pattern of spatial variations in capillary diameter and pericyte lining, but temporal variations differed. The temporal variations in capillary lumens were locally distinct from those in neighboring locations, suggesting intrinsic fluctuations independent of the pericyte lining. CONCLUSIONS Capillary lumens in the brain exhibit slow microfluctuations that are independent of pericyte lining. These microfluctuations could affect the distribution of flowing blood cells and may be important for homogenizing their distribution in capillary networks.
Collapse
Affiliation(s)
- Hiroki Suzuki
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Juri Murata
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Tomita Hospital, Nagoya, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Masamoto
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
9
|
Kurmann L, Azzarito G, Leeners B, Rosselli M, Dubey RK. 17β-Estradiol Abrogates TNF-α-Induced Human Brain Vascular Pericyte Migration by Downregulating miR-638 via ER-β. Int J Mol Sci 2024; 25:11416. [PMID: 39518968 PMCID: PMC11547073 DOI: 10.3390/ijms252111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Pericytes (PCs) contribute to brain capillary/BBB integrity and PC migration is a hallmark for brain capillary leakage following pro-inflammatory insults. Estradiol promotes endothelial barrier integrity by inhibiting tumor necrosis factor-alpha (TNF-α)-induced PC migration. However, the underlying mechanisms remain unclear. Since micro-RNAs (miRs) regulate BBB integrity and increases in miR638 and TNF-α occur in pathological events associated with capillary leakage, we hypothesize that TNF-α mediates its capillary disruptive actions via miR638 and that estradiol blocks these actions. Using quantitative reverse transcription PCR, we first assessed the modulatory effects of TNF-α on miR638. The treatment of PCs with TNF-α significantly induced miR638. Moreover, transfection with miR638 mimic induced PC migration, whereas inhibitory miR638 (anti-miR) abrogated the pro-migratory actions of TNF-α, suggesting that TNF-α stimulates PC migration via miR638. At a molecular level, the pro-migratory effects of miR638 involved the phosphorylation of ERK1/2 but not Akt. Interestingly, estradiol downregulated the constitutive and TNF-α-stimulated expression of miR638 and inhibited the TNF-α-induced migration of PCs. In PCs treated with estrogen receptor (ER) ER-α, ER-β, and GPR30 agonists, a significant downregulation in miR638 expression was solely observed in response to DPN, an ER-β agonist. DPN inhibited the pro-migratory effects of TNF-α but not miR638. Additionally, the ectopic expression of miR638 prevented the inhibitory effects of DPN on TNF-α-induced PC migration, suggesting that interference in miR638 formation plays a key role in mediating the inhibitory actions of estradiol/DPN. In conclusion, these findings provide the first evidence that estradiol inhibits TNF-α-induced PC migration by specifically downregulating miR638 via ER-β and may protect the neurovascular unit during injury/stroke via this mechanism.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (G.A.); (B.L.); (M.R.)
| | - Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (G.A.); (B.L.); (M.R.)
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (G.A.); (B.L.); (M.R.)
| | - Marinella Rosselli
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (G.A.); (B.L.); (M.R.)
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (G.A.); (B.L.); (M.R.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
10
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
11
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Daisley H, Acco O, Daisley M, George D, Paul L, Rampersad A, Daisley J. COVID-19 shed light on Virchow's law of thrombosis. Autops Case Rep 2024; 14:e2024512. [PMID: 39372069 PMCID: PMC11452080 DOI: 10.4322/acr.2024.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Virchow's law of thrombosis states that thrombosis in a vessel occurs as a combination of the following: (i) injury to the vessel wall, (ii) stasis of blood flow, and (iii) blood hypercoagulability. Injury to the wall includes infection/inflammation and/or injury to the resident cells of the wall. We postulate that in COVID-19, the SARS-CoV-2 virus directly infects the alveolar type II cell or directly or indirectly infects/injures the pericyte, promoting inflammation and interaction with endothelial cells, thereby causing a cascade of events leading to our observation that thrombosis occurred within the walls of the pulmonary vessels and not in the lumen of the vascular circulation.
Collapse
Affiliation(s)
- Hubert Daisley
- General Hospital, Department of Pathology, San Fernando, Trinidad and Tobago
- Scarborough General Hospital, Department of Pathology, Signal Hill, Trinidad and Tobago
| | - Oneka Acco
- The University of the West Indies, Department of Pathology, Mona, Jamaica
| | - Martina Daisley
- Princes Alexandra Hospital, Accident and Emergency Department The Valley, Anguilla
| | - Dennecia George
- Scarborough General Hospital, Department of Pathology, Signal Hill, Trinidad and Tobago
| | - Lilly Paul
- The University of the West Indies, Department of Pathology, Mona, Jamaica
| | - Arlene Rampersad
- General Hospital, Department of Pathology, San Fernando, Trinidad and Tobago
| | - Johann Daisley
- Scarborough General Hospital, Department of Pathology, Signal Hill, Trinidad and Tobago
| |
Collapse
|
13
|
Fazio A, Neri I, Koufi FD, Marvi MV, Galvani A, Evangelisti C, McCubrey JA, Cocco L, Manzoli L, Ratti S. Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. Int J Mol Sci 2024; 25:6592. [PMID: 38928298 PMCID: PMC11203602 DOI: 10.3390/ijms25126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFβ/ PDGFRβ, TGF-β, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Irene Neri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Foteini-Dionysia Koufi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Andrea Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| |
Collapse
|
14
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Martinez-Morga M, Garrigos D, Rodriguez-Montero E, Pombero A, Garcia-Lopez R, Martinez S. Pericytes Are Immunoregulatory Cells in Glioma Genesis and Progression. Int J Mol Sci 2024; 25:5072. [PMID: 38791110 PMCID: PMC11120873 DOI: 10.3390/ijms25105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.
Collapse
Affiliation(s)
- Marta Martinez-Morga
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Daniel Garrigos
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Elena Rodriguez-Montero
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Ana Pombero
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-ISCIII, 46010 Valencia, Spain
| |
Collapse
|
16
|
Hein M, Qambari H, An D, Balaratnasingam C. Current understanding of subclinical diabetic retinopathy informed by histology and high-resolution in vivo imaging. Clin Exp Ophthalmol 2024; 52:464-484. [PMID: 38363022 DOI: 10.1111/ceo.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
The escalating incidence of diabetes mellitus has amplified the global impact of diabetic retinopathy. There are known structural and functional changes in the diabetic retina that precede the fundus photography abnormalities which currently are used to diagnose clinical diabetic retinopathy. Understanding these subclinical alterations is important for effective disease management. Histology and high-resolution clinical imaging reveal that the entire neurovascular unit, comprised of retinal vasculature, neurons and glial cells, is affected in subclinical disease. Early functional manifestations are seen in the form of blood flow and electroretinography disturbances. Structurally, there are alterations in the cellular components of vasculature, glia and the neuronal network. On clinical imaging, changes to vessel density and thickness of neuronal layers are observed. How these subclinical disturbances interact and ultimately manifest as clinical disease remains elusive. However, this knowledge reveals potential early therapeutic targets and the need for imaging modalities that can detect subclinical changes in a clinical setting.
Collapse
Affiliation(s)
- Martin Hein
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Hassanain Qambari
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Dong An
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Mateus Gonçalves L, Andrade Barboza C, Almaça J. Diabetes as a Pancreatic Microvascular Disease-A Pericytic Perspective. J Histochem Cytochem 2024; 72:131-148. [PMID: 38454609 PMCID: PMC10956440 DOI: 10.1369/00221554241236535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
18
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
19
|
Whitehead B, Corbin D, Albowaidey A, Zhang N, Karelina K, Weil ZM. Mild traumatic brain injury induces pericyte detachment independent of stroke vulnerability. Neurosci Lett 2024; 818:137552. [PMID: 37949292 PMCID: PMC10913758 DOI: 10.1016/j.neulet.2023.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Mild traumatic brain injury (mTBI) is an independent risk factor for ischemic stroke and can result in poorer outcomes- an effect presumed to involve the cerebral vasculature. Here we tested the hypothesis that mTBI-induced pericyte detachment from the cerebrovascular endothelium is responsible for worsened stroke outcomes. We performed a mild closed-head injury and/or treated C57/bl6 mice with imatinib mesylate, a tyrosine kinase inhibitor that induces pericyte detachment. The time course of pericyte detachment was assessed 7, 14, and 28 days post injury (DPI). To test the role of pericytes in TBI-induced exacerbation of ischemic stroke outcomes, we induced mTBI and/or treated mice with imatinib for one week prior to transient middle cerebral artery occlusion. We found that injury promoted pericyte detachment from the vasculature commensurate with the levels of detachment seen in imatinib-only treated animals, and that the detachment persisted for at least 14DPI, but recovered to sham levels by 28DPI. Further, mTBI, but not imatinib-induced pericyte detachment, increased infarct volume. Thus, we conclude that the transient detachment of pericytes caused by mTBI may not be sufficient to exacerbate subsequent ischemic stroke damage. These data have important implications for understanding cerebrovascular dysfunction following mTBI and potential mechanisms of increased risk for future ischemic strokes.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA.
| | - Deborah Corbin
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Ali Albowaidey
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Zachary M Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| |
Collapse
|