1
|
Benavides FFW, Veldhuis Kroeze EJB, Leijten L, Schmitz KS, van Run P, Kuiken T, de Vries RD, Bauer L, van Riel D. Neuroinvasive and neurovirulent potential of SARS-CoV-2 in the acute and post-acute phase of intranasally inoculated ferrets. PLoS One 2025; 20:e0311449. [PMID: 40193353 PMCID: PMC11975070 DOI: 10.1371/journal.pone.0311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/12/2025] [Indexed: 04/09/2025] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) can cause systemic disease, including neurological complications, even after mild respiratory disease. Previous studies have shown that SARS-CoV-2 infection can induce neurovirulence through microglial activation in the brains of patients and experimentally inoculated animals, which are models representative for moderate to severe respiratory disease. Here, we aimed to investigate the neuroinvasive and neurovirulent potential of SARS-CoV-2 in intranasally inoculated ferrets, a model for subclinical to mild respiratory disease. The presence of viral RNA, histological lesions, virus-infected cells, and the number and surface area of microglia and astrocytes were investigated. Viral RNA was detected in various respiratory tissue samples by qPCR at 7 days post inoculation (dpi). Virus antigen was detected in the nasal turbinates of ferrets sacrificed at 7 dpi and was associated with inflammation. Viral RNA was detected in the brains of ferrets sacrificed 7 dpi, but in situ hybridization nor immunohistochemistry did confirm evidence for viral RNA or antigen in the brain. Histopathological analysis of the brains showed no evidence for an influx of inflammatory cells. Despite this, we observed an increased number of Alzheimer type II astrocytes in the hindbrains of SARS-CoV-2 inoculated ferrets. Additionally, we detected increased microglial activation in the olfactory bulb and hippocampus, and a decrease in the astrocytic activation status in the white matter and hippocampus of SARS-CoV-2 inoculated ferrets. In conclusion, although SARS-CoV-2 has limited neuroinvasive potential in this model for subclinical to mild respiratory disease, there is evidence for neurovirulent potential. This study highlights the value of this ferret model to study the neuropathogenecity of SARS-CoV-2 and reveals that a mild SARS-CoV-2 infection can affect both microglia and astrocytes in different parts of the brain.
Collapse
Affiliation(s)
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Krstanović F, Mihalić A, Rashidi AS, Sitnik KM, Ruzsics Z, Čičin-Šain L, Verjans GMGM, Jonjić S, Brizić I. Neuron-restricted cytomegalovirus latency in the central nervous system regulated by CD4 + T-cells and IFN-γ. J Neuroinflammation 2025; 22:95. [PMID: 40158177 PMCID: PMC11954325 DOI: 10.1186/s12974-025-03422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
All human herpesviruses establish latency following the resolution of the primary infection. Among these, α-herpesviruses HSV-1, HSV-2 and VZV establish latency in neurons, whereas neurons are not traditionally considered a site of latency for other herpesviruses. Using a combination of in vivo murine models and ex vivo human fetal tissues, we discovered that cytomegalovirus (CMV), a ubiquitous β-herpesvirus, can persist in neurons and that CD4+ T-cell-derived interferon-gamma is critical in restricting active viral replication in this cell type. Furthermore, we show that mouse CMV can establish latency in neurons and that CD4+ T-cells are essential in preventing viral reactivation. Our findings may have translational significance because human cytomegalovirus (HCMV) is the leading cause of congenital viral infections resulting in neurodevelopmental and neuroinflammatory lesions with long-term functional sequelae.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | - Ahmad Seyar Rashidi
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Katarzyna M Sitnik
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Viral Immunology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, 79104 , Freiburg, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Centre for Individualized Infection Medicine, Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Georges M G M Verjans
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, 51000, Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia.
| |
Collapse
|
3
|
Santos DE, Silva Lima SA, Moreira LS, Lima Costa S, de Sampaio Schitine C. New perspectives on heterogeneity in astrocyte reactivity in neuroinflammation. Brain Behav Immun Health 2025; 44:100948. [PMID: 40028234 PMCID: PMC11871470 DOI: 10.1016/j.bbih.2025.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The inflammatory response is a fundamental aspect of all insults to the central nervous system (CNS), which includes acute trauma, infections, and chronic neurodegenerative conditions. As methods for investigating astrocytes have progressed, recent findings indicate that astrocytes can react to a diverse spectrum of insults affecting the central nervous system. Astrocytes respond to external and internal stimuli from the nervous system in a process called glial reactivity. Astrocyte reactivity, previously considered uniform and functionally inactive, is currently a very diverse event in different inflammatory processes. These differences can occur due to the nature, the intensity of the stimulus, the brain region involved and can range from subtle changes in astrocytic morphology to protein expression alteration, gene transcription profile shifts, and variations in the secretory pattern of molecules. The elucidation of the diverse roles of astrocytes in both normal and pathological conditions has led to increased interest in the notion that various astrocyte subtypes may exist, each contributing with distinct functions. Our study will prioritize the characterization of astrocytic response patterns in the context of the development and progression of neurodegenerative diseases, particularly Alzheimer's and Parkinson's. In addition, we will investigate the astrocyte's response during bacterial and viral infections, given the potential to enhance specific therapeutic interventions based on the reactivity profiles of astrocytes.
Collapse
Affiliation(s)
| | | | - Leticia Santos Moreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Clarissa de Sampaio Schitine
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| |
Collapse
|
4
|
Piacentini R, Grassi C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1. Neural Regen Res 2025; 20:416-423. [PMID: 38819045 PMCID: PMC11317954 DOI: 10.4103/nrr.nrr-d-23-01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Abstract
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer's disease. However, the molecular mechanisms underlying this association are not completely understood. Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role. Here, we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain, highlighting the role of interleukins and, in particular, interleukin 1β as a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Khodaverdi K, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int J Biol Macromol 2024; 278:134962. [PMID: 39179064 DOI: 10.1016/j.ijbiomac.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.
Collapse
Affiliation(s)
- Khashayar Khodaverdi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
6
|
Stillman JM, Kiniwa T, Schafer DP. Nucleic acid sensing in the central nervous system: Implications for neural circuit development, function, and degeneration. Immunol Rev 2024; 327:71-82. [PMID: 39503567 PMCID: PMC11653434 DOI: 10.1111/imr.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Nucleic acids are a critical trigger for the innate immune response to infection, wherein pathogen-derived RNA and DNA are sensed by nucleic acid sensing receptors. This subsequently drives the production of type I interferon and other inflammatory cytokines to combat infection. While the system is designed such that these receptors should specifically recognize pathogen-derived nucleic acids, it is now clear that self-derived RNA and DNA can also stimulate these receptors to cause aberrant inflammation and autoimmune disease. Intriguingly, similar pathways are now emerging in the central nervous system in neurons and glial cells. As in the periphery, these signaling pathways are active in neurons and glia to present the spread of pathogens in the CNS. They further appear to be active even under steady conditions to regulate neuronal development and function, and they can become activated aberrantly during disease to propagate neuroinflammation and neurodegeneration. Here, we review the emerging new roles for nucleic acid sensing mechanisms in the CNS and raise open questions that we are poised to explore in the future.
Collapse
Affiliation(s)
- Jacob M. Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Tsuyoshi Kiniwa
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
7
|
Brenner M, Parpura V. The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells 2024; 13:1388. [PMID: 39195276 PMCID: PMC11352414 DOI: 10.3390/cells13161388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
This Special Issue of Cells presents a collection of 22 published, peer-reviewed articles on the theme of "Astrocytes in CNS Disorders," including 9 reviews of the evidence implicating astrocytes in the etiology of specific disorders, and 13 original research papers providing such evidence [...].
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
8
|
Pociūtė A, Kriaučiūnaitė K, Kaušylė A, Zablockienė B, Alčauskas T, Jelinskaitė A, Rudėnaitė A, Jančorienė L, Ročka S, Verkhratsky A, Pivoriūnas A. Plasma of COVID-19 Patients Does Not Alter Electrical Resistance of Human Endothelial Blood-Brain Barrier In Vitro. FUNCTION 2024; 5:zqae002. [PMID: 38486975 PMCID: PMC10935481 DOI: 10.1093/function/zqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 03/17/2024] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.
Collapse
Affiliation(s)
- Agnė Pociūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Aida Kaušylė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Birutė Zablockienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Tadas Alčauskas
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Augustė Jelinskaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Akvilė Rudėnaitė
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Ligita Jančorienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Saulius Ročka
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
- Center of Neurosurgery, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110052, China
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| |
Collapse
|