1
|
Coleman PD, Delvaux E, Kordower JH, Boehringer A, Huseby CJ. Massive changes in gene expression and their cause(s) can be a unifying principle in the pathobiology of Alzheimer's disease. Alzheimers Dement 2025; 21:e14555. [PMID: 39912452 PMCID: PMC11851168 DOI: 10.1002/alz.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Understanding of the biology of Alzheimer's disease (AD) has long been fragmented, with various investigators concentrating on amyloid beta (Aβ) or tau, inflammation, cell death pathways, misfolded proteins, glia, and more. Yet data from multiple authors has repeatedly shown altered expression of myriad genes related to these seemingly disparate phenomena. In 2022, Morgan et al. organized the massive data on changes in AD in a meticulous survey of the literature and related these changes to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Their data showed that 91% of the known KEGG pathways are involved in AD and that many of these pathways are represented by the known cellular/molecular phenomena of AD. Such data then raise the fundamental question: What mechanism(s) may be responsible for such widespread changes in gene expression? We review evidence for a unifying model based on sequestrations in stress granules and alteration of nucleocytoplasmic transport in AD. HIGHLIGHTS: In Alzheimer's disease (AD), critical changes take place in neurons before the appearance of plaques or tangles. Addressing these early changes provides a path to early detection and effective intervention in AD.
Collapse
Affiliation(s)
- Paul D. Coleman
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Elaine Delvaux
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Jeffrey H. Kordower
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ashley Boehringer
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Carol J. Huseby
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| |
Collapse
|
2
|
Kalarikkal M, Saikia R, Oliveira L, Bhorkar Y, Lonare A, Varshney P, Dhamale P, Majumdar A, Joseph J. Nup358 restricts ER-mitochondria connectivity by modulating mTORC2/Akt/GSK3β signalling. EMBO Rep 2024; 25:4226-4251. [PMID: 39026009 PMCID: PMC11466962 DOI: 10.1038/s44319-024-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3β, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3β inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3β, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3β axis.
Collapse
Affiliation(s)
- Misha Kalarikkal
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Rimpi Saikia
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Lizanne Oliveira
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Yashashree Bhorkar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Akshay Lonare
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Pallavi Varshney
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, Maharashtra, 411007, India.
| |
Collapse
|
3
|
Nan Y, Chen W, Chen F, Wei L, Zeng A, Lin X, Zhou W, Yang Y, Li Q. Endosome mediated nucleocytoplasmic trafficking and endomembrane allocation is crucial to polyglutamine toxicity. Cell Biol Toxicol 2024; 40:48. [PMID: 38900277 PMCID: PMC11189978 DOI: 10.1007/s10565-024-09891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.
Collapse
Affiliation(s)
- Yuyu Nan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Lili Wei
- Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi, 541001, China
| | - Aiyuan Zeng
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China
| | - Xiaohui Lin
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China.
| | - Qinghua Li
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China.
| |
Collapse
|
4
|
Zheng T, Zilman A. Kinetic cooperativity resolves bidirectional clogging within the nuclear pore complex. Biophys J 2024; 123:1085-1097. [PMID: 38640928 PMCID: PMC11079998 DOI: 10.1016/j.bpj.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
As the main gatekeeper of the nucleocytoplasmic transport in eukaryotic cells, the nuclear pore complex (NPC) faces the daunting task of facilitating the bidirectional transport of a high volume of macromolecular cargoes while ensuring the selectivity, speed, and efficiency of this process. The competition between opposing nuclear import and export fluxes passing through the same channel is expected to pose a major challenge to transport efficiency. It has been suggested that phase separation-like radial segregation of import and export fluxes within the assembly of intrinsically disordered proteins that line the NPC pore could be a mechanism for ensuring efficient bidirectional transport. We examine the impact of radial segregation on the efficiency of bidirectional transport through the NPC using a coarse-grained computational model of the NPC. We find little evidence that radial segregation improves transport efficiency. By contrast, surprisingly, we find that NTR crowding may enhance rather than impair the efficiency of bidirectional transport although it decreases the available space in the pore. We identify mechanisms of this novel crowding-induced transport cooperativity through the self-regulation of cargo density and flux in the pore. These findings explain how the functional architecture of the NPC resolves the problem of efficient bidirectional transport, and provide inspiration for the alleviation of clogging in artificial selective nanopores.
Collapse
Affiliation(s)
- Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Chen L, Chen G, Zhang M, Zhang X. Modeling sporadic juvenile ALS in iPSC-derived motor neurons explores the pathogenesis of FUS R503fs mutation. Front Cell Neurosci 2024; 18:1364164. [PMID: 38711616 PMCID: PMC11070534 DOI: 10.3389/fncel.2024.1364164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, Hunan, China
| | - Mengting Zhang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
6
|
Liu Y, Liu Y, He Y, Zhang N, Zhang S, Li Y, Wang X, Liang Y, Chen X, Zhao W, Chen B, Wang L, Luo D, Yang Q. Hypoxia-Induced FUS-circTBC1D14 Stress Granules Promote Autophagy in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204988. [PMID: 36806670 PMCID: PMC10074116 DOI: 10.1002/advs.202204988] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Indexed: 05/27/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is suggested to be associated with hypoxia. This study is the first to identify a novel circular RNA (circRNA), circTBC1D14, whose expression is significantly upregulated in TNBC. The authors confirm that high circTBC1D14 expression is associated with a poor prognosis in patients with breast cancer. circTBC1D14-associated mass spectrometry and RNA-binding protein-related bioinformatics strategies indicate that FUS can interact with circTBC1D14, which can bind to the downstream flanking sequence of circTBC1D14 to induce cyclization. FUS is an essential biomarker associated with stress granules (SGs), and the authors find that hypoxic conditions can induce FUS-circTBC1D14-associated SG formation in the cytoplasm after modification by protein PRMT1. Subsequently, circTBC1D14 increases the stability of PRMT1 by inhibiting its K48-regulated polyubiquitination, leading to the upregulation of PRMT1 expression. In addition, FUS-circTBC1D14 SGs can initiate a cascade of SG-linked proteins to recognize and control the elimination of SGs by recruiting LAMP1 and enhancing lysosome-associated autophagy flux, thus contributing to the maintenance of cellular homeostasis and promoting tumor progression in TNBC. Overall, these findings reveal that circTBC1D14 is a potential prognostic indicator that can serve as a therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yiwei Liu
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yinqiao He
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Ning Zhang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Siyue Zhang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yaming Li
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Xiaolong Wang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Yiran Liang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Xi Chen
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Weijing Zhao
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Bing Chen
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Lijuan Wang
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Dan Luo
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
| | - Qifeng Yang
- Department of Breast SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
- Pathology Tissue BankQilu Hospital of Shandong UniversityJi'nanShandong250012P. R. China
- Research Institute of Breast CancerShandong UniversityJi'nanShandong250012P. R. China
| |
Collapse
|
7
|
Zheng T, Zilman A. Self-regulation of the nuclear pore complex enables clogging-free crowded transport. Proc Natl Acad Sci U S A 2023; 120:e2212874120. [PMID: 36757893 PMCID: PMC9963888 DOI: 10.1073/pnas.2212874120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the main conduits for macromolecular transport into and out of the nucleus of eukaryotic cells. The central component of the NPC transport mechanism is an assembly of intrinsically disordered proteins (IDPs) that fills the NPC channel. The channel interior is further crowded by large numbers of simultaneously translocating cargo-carrying and free transport proteins. How the NPC can efficiently, rapidly, and selectively transport varied cargoes in such crowded conditions remains ill understood. Past experimental results suggest that the NPC is surprisingly resistant to clogging and that transport may even become faster and more efficient as the concentration of transport protein increases. To understand the mechanisms behind these puzzling observations, we construct a computational model of the NPC comprising only a minimal set of commonly accepted consensus features. This model qualitatively reproduces the previous experimental results and identifies self-regulating mechanisms that relieve crowding. We show that some of the crowding-alleviating mechanisms-such as preventing saturation of the bulk flux-are "robust" and rely on very general properties of crowded dynamics in confined channels, pertaining to a broad class of selective transport nanopores. By contrast, the counterintuitive ability of the NPC to leverage crowding to achieve more efficient single-molecule translocation is "fine-tuned" and relies on the particular spatial architecture of the IDP assembly in the NPC channel.
Collapse
Affiliation(s)
- Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| |
Collapse
|
8
|
Del Tredici K, Braak H. Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis. Curr Opin Neurol 2022; 35:660-671. [PMID: 36069419 DOI: 10.1097/wco.0000000000001098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Intracellular inclusions consisting of the abnormal TDP-43 protein and its nucleocytoplasmic mislocalization in selected cell types are hallmark pathological features of sALS. Descriptive (histological, morphological), anatomical, and molecular studies all have improved our understanding of the neuropathology of sporadic amyotrophic lateral sclerosis (sALS). This review highlights some of the latest developments in the field. RECENT FINDINGS Increasing evidence exists from experimental models for the prion-like nature of abnormal TDP-43, including a strain-effect, and with the help of neuroimaging-based studies, for spreading of disease along corticofugal connectivities in sALS. Progress has also been made with respect to finding and establishing reliable biomarkers (neurofilament levels, diffusor tensor imaging). SUMMARY The latest findings may help to elucidate the preclinical phase of sALS and to define possible mechanisms for delaying or halting disease development and progression.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | |
Collapse
|
9
|
Li Y, Gu J, Wang C, Hu J, Zhang S, Liu C, Zhang S, Fang Y, Li D. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 2022; 25:104356. [PMID: 35620440 PMCID: PMC9127583 DOI: 10.1016/j.isci.2022.104356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Hsp70 is a key molecular chaperone in the protein quality control system to safeguard protein homeostasis in cells. Previous studies have shown that Hsp70 chaperones TDP-43, a pathogenic protein associated with amyotrophic lateral sclerosis (ALS), in nuclear bodies and prevents it from the pathological aggregation. In this work, we report that Hsp70 undergoes liquid-liquid phase separation, chaperones FUS, another ALS-linked pathogenic protein, in stress granules (SGs), and prevents condensed FUS from amyloid aggregation. Knock-down of Hsp70 does not influence SG assembly but results in the liquid-to-solid transition in SGs. NMR experiments further reveal Hsp70 predominantly uses its C-terminal substrate-binding domain to interact with the low complexity domain of FUS, which represents a mechanism distinct from that interacting with TDP-43. These findings suggest that Hsp70 is widely involved in chaperoning the physiological dynamics of various membrane-less organelles and adopts different mechanisms to prevent the pathological aggregation of different proteins.
Collapse
Affiliation(s)
- Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Chavda V, Patel C, Modh D, Ertas YN, Sonak SS, Munshi NK, Anand K, Soni A, Pandey S. Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Curr Drug Metab 2022; 23:200-222. [PMID: 35272595 DOI: 10.2174/1389200223666220310113110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a terminal neuro-degenerative disorder that is clinically recognized as a gradual degeneration of the upper and lower motor neurons, with an average duration of 3 to 5 years from initiation of symptoms to death. The mechanisms underlying the pathogenesis and progression of the disease are multifactorial. Therefore, to find effective treatments, it is necessary to understand this heterogeneity underlying the progression of ALS. Recent developments in gene therapy have opened a new avenue to treat this condition, especially for the characterized genetic types. Gene therapy methods have been studied in a variety of pre-clinical settings and clinical trials, and they may be a promising path for developing an effective and safe ALS cure. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. The use and incorporation of high-throughput "omics" methods has radically transformed our thought about ALS, strengthening our understanding of the disease's dynamic molecular architecture, differentiating distinct patient subtypes, and creating a reasonable basis for the identification of biomarkers and novel individualised treatments. Future clinical and laboratory trials would also focus on the diverse relationships between metabolism and ALS to address the issue of whether targeting deficient metabolism in ALS is an effective way to change disease progression. In this review, we focus on the detailed pathogenesis of ALS and highlight principal genes, i.e., SOD1, TDP-43, C9orf72, and FUS, targeted therapeutic approaches of ALS. An attempt is made to provide up-to-date information on clinical outcomes, including various biomarkers which are thought to be important players in early ALS detection.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutic, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Chirag Patel
- Department of Pharmacology, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Dharti Modh
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering at Erciyes University, Kayseri, Turkey
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Shreya S Sonak
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Nafisa K Munshi
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Krishna Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein 9300, South Africa
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Silvassa, Dadra and Nagar Haveli - 396230(India)
| | - Sonal Pandey
- Research and Development, Meril Diagnostic Pvt. Ltd, Vapi - 396191 (India)
| |
Collapse
|
11
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
12
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
13
|
Navarro-Sempere A, Segovia Y, Rodrigues AS, Garcia PV, Camarinho R, García M. First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:171-183. [PMID: 32794111 DOI: 10.1007/s10653-020-00690-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The health effects of mercury vapor exposure on the brain in volcanic areas have not been previously addressed in the literature. However, 10% of the worldwide population inhabits in the vicinity of an active volcano, which are natural sources of elemental mercury emission. To evaluate the presence of mercury compounds in the brain after chronic exposure to volcanogenic mercury vapor, a histochemical study, using autometallographic silver, was carried out to compare the brain of mice chronically exposed to an active volcanic environment (Furnas village, Azores, Portugal) with those not exposed (Rabo de Peixe village, Azores, Portugal). Results demonstrated several mercury deposits in blood vessels, white matter and some cells of the hippocampus in the brain of chronically exposed mice. Our results highlight that chronic exposure to an active volcanic environment results in brain mercury accumulation, raising an alert regarding potential human health risks. These findings support the hypothesis that mercury exposure can be a risk factor in causing neurodegenerative diseases in the inhabitants of volcanically active areas.
Collapse
Affiliation(s)
- A Navarro-Sempere
- Department of Biotechnology, University of Alicante, Apartado 99, 03080, Alicante, Spain
| | - Y Segovia
- Department of Biotechnology, University of Alicante, Apartado 99, 03080, Alicante, Spain.
| | - A S Rodrigues
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - P V Garcia
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - R Camarinho
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - M García
- Department of Biotechnology, University of Alicante, Apartado 99, 03080, Alicante, Spain
| |
Collapse
|
14
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
15
|
Abstract
Abstract
Purpose of Review
Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum disorder is a rare fatal disease with strong genetic influences. The implementation of short-read sequencing methodologies in increasingly large patient cohorts has rapidly expanded our knowledge of the complex genetic architecture of the disease. We aim to convey the broad history of ALS gene discovery as context for a focused review of 11 ALS gene associations reported over the last 5 years. We also summarize the current level of genetic evidence for all previously reported genes.
Recent Findings
The history of ALS gene discovery has occurred in at least four identifiable phases, each powered by different technologies and scale of investigation. The most recent epoch, benefitting from population-scale genome data, large international consortia, and low-cost sequencing, has yielded 11 new gene associations. We summarize the current level of genetic evidence supporting these ALS genes, highlighting any genotype-phenotype or genotype-pathology correlations, and discussing preliminary understanding of molecular pathogenesis. This era has also raised uncertainty around prior ALS-associated genes and clarified the role of others.
Summary
Our understanding of the genetic underpinning of ALS has expanded rapidly over the last 25 years and has led directly to the clinical application of molecularly driven therapies. Ongoing sequencing efforts in ALS will identify new causative and risk factor genes while clarifying the status of genes reported in prior eras of research.
Collapse
|
16
|
Martin APJ, Camonis JH. The hippo kinase STK38 ensures functionality of XPO1. Cell Cycle 2020; 19:2982-2995. [PMID: 33017560 PMCID: PMC7714482 DOI: 10.1080/15384101.2020.1826619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022] Open
Abstract
The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
17
|
Diez L, Wegmann S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front Neurol 2020; 11:1056. [PMID: 33101165 PMCID: PMC7546323 DOI: 10.3389/fneur.2020.01056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|
18
|
Montalbano M, McAllen S, Puangmalai N, Sengupta U, Bhatt N, Johnson OD, Kharas MG, Kayed R. RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. Nat Commun 2020; 11:4305. [PMID: 32855391 PMCID: PMC7453003 DOI: 10.1038/s41467-020-18022-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022] Open
Abstract
Oligomeric assemblies of tau and the RNA-binding proteins (RBPs) Musashi (MSI) are reported in Alzheimer's disease (AD). However, the role of MSI and tau interaction in their aggregation process and its effects are nor clearly known in neurodegenerative diseases. Here, we investigated the expression and cellular localization of MSI1 and MSI2 in the brains tissues of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as well as in the wild-type mice and tau knock-out and P301L tau mouse models. We observed that formation of pathologically relevant protein inclusions was driven by the aberrant interactions between MSI and tau in the nuclei associated with age-dependent extracellular depositions of tau/MSI complexes. Furthermore, tau and MSI interactions induced impairment of nuclear/cytoplasm transport, chromatin remodeling and nuclear lamina formation. Our findings provide mechanistic insight for pathological accumulation of MSI/tau aggregates providing a potential basis for therapeutic interventions in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Omar D Johnson
- School of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael G Kharas
- Division of Molecular Pharmacology, Memorial Sloan Kettering Institute Cancer Center, New York City, NY, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
19
|
Buckner N, Kemp KC, Scott HL, Shi G, Rivers C, Gialeli A, Wong LF, Cordero-LLana O, Allen N, Wilkins A, Uney JB. Abnormal scaffold attachment factor 1 expression and localization in spinocerebellar ataxias and Huntington's chorea. Brain Pathol 2020; 30:1041-1055. [PMID: 32580238 PMCID: PMC8018166 DOI: 10.1111/bpa.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SAFB1 is a DNA and RNA binding protein that is highly expressed in the cerebellum and hippocampus and is involved in the processing of coding and non-coding RNAs, splicing and dendritic function. We analyzed SAFB1 expression in the post-mortem brain tissue of spinocerebellar ataxia (SCA), Huntington's disease (HD), Multiple sclerosis (MS), Parkinson's disease patients and controls. In SCA cases, the expression of SAFB1 in the nucleus was increased and there was abnormal and extensive expression in the cytoplasm where it co-localized with the markers of Purkinje cell injury. Significantly, no SAFB1 expression was found in the cerebellar neurons of the dentate nucleus in control or MS patients; however, in SCA patients, SAFB1 expression was increased significantly in both the nucleus and cytoplasm of dentate neurons. In HD, we found that SAFB1 expression was increased in the nucleus and cytoplasm of striatal neurons; however, there was no SAFB1 staining in the striatal neurons of controls. In PD substantia nigra, we did not see any changes in neuronal SAFB1 expression. iCLIP analysis found that SAFB1 crosslink sites within ATXN1 RNA were adjacent to the start and within the glutamine repeat sequence. Further investigation found increased binding of SAFB1 to pathogenic ATXN1-85Q mRNA. These novel data strongly suggest SAFB1 contributes to the etiology of SCA and Huntington's chorea and that it may be a pathological marker of polyglutamine repeat expansion diseases.
Collapse
Affiliation(s)
- Nicola Buckner
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Helen L Scott
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gongyu Shi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Caroline Rivers
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andriana Gialeli
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Liang-Fong Wong
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Oscar Cordero-LLana
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | | | - Alastair Wilkins
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - James B Uney
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Wang C, Duan Y, Duan G, Wang Q, Zhang K, Deng X, Qian B, Gu J, Ma Z, Zhang S, Guo L, Liu C, Fang Y. Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Mol Cell 2020; 79:443-458.e7. [PMID: 32649883 DOI: 10.1016/j.molcel.2020.06.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beituo Qian
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
22
|
Vanneste J, Vercruysse T, Van Damme P, Van Den Bosch L, Daelemans D. Quantitative Nucleocytoplasmic Transport Assays in Cellular Models of Neurodegeneration. Bio Protoc 2020; 10:e3659. [PMID: 33659329 DOI: 10.21769/bioprotoc.3659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/29/2020] [Accepted: 04/21/2020] [Indexed: 11/02/2022] Open
Abstract
Nucleocytoplasmic transport deficits are suggested to play a role in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Given the importance and complexity of this process, understanding when these aberrations occur and which pathways are involved is of great importance. Here, we make use of CRISPR-Cas9 technology to design cell lines stably expressing fluorophore proteins shuttling between the nucleus and cytoplasm by karyopherins of choice. To validate this protocol, we measured an ALS-associated nucleocytoplasmic transport pathway in the presence of the disease-associated peptide poly-PR. This technique allows measuring a particular active nucleocytoplasmic transport pathway in intact cells in a neurodegenerative disease-associated context. Moreover, these experiments can be performed without the need for expensive equipment and have the potential to be upscaled for high-throughput screening purposes.
Collapse
Affiliation(s)
- Joni Vanneste
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI) KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain & Disease Research - Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Thomas Vercruysse
- Department of Microbiology, Immunology and Transplantation - Laboratory of Virology and Chemotherapy, KU Leuven - Rega Institute for Medical Research, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI) KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain & Disease Research - Laboratory of Neurobiology, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI) KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain & Disease Research - Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation - Laboratory of Virology and Chemotherapy, KU Leuven - Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
23
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet 2020; 139:277-290. [PMID: 31144030 PMCID: PMC6884674 DOI: 10.1007/s00439-019-02031-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of the process of autophagy and its role in health and diseases has grown remarkably in the last two decades. Early work established autophagy as a general bulk recycling process which involves the sequestration and transport of intracellular material to the lysosome for degradation. Currently, autophagy is viewed as a nexus of metabolic and proteostatic signalling that can determine key physiological decisions from cell fate to organismal lifespan. Here, we review the latest literature on the role of autophagy and lysosomes in stress response and longevity. We highlight the connections between autophagy and metabolic processes, the network associated with its regulation, and the links between autophagic dysfunction, neurodegenerative diseases, and aging.
Collapse
Affiliation(s)
- Shi Q Wong
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Anita V Kumar
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Montalbano M, McAllen S, Sengupta U, Puangmalai N, Bhatt N, Ellsworth A, Kayed R. Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. Aging Cell 2019; 18:e13035. [PMID: 31532069 PMCID: PMC6826126 DOI: 10.1111/acel.13035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 01/01/2023] Open
Abstract
The exact mechanisms leading to neurodegeneration in Alzheimer's disease (AD) and other tauopathies are not yet entirely understood. However, it is known that several RNA-binding proteins (RBPs) form toxic aggregates and also interact with tau in such granules in tauopathies, including AD. The Musashi (MSI) family of RBPs, consisting of two homologues: Musashi1 and Musashi2, have not been extensively investigated in neurodegenerative diseases. Here, using a tau inducible HEK (iHEK) model we investigate whether MSI proteins contribute to the aggregation of toxic tau oligomers (TauO). Wild-type and mutant P301L tau iHEK cells are used to study the effect of different tau variants on the cellular localization of MSI proteins. Interestingly, we observe that tau co-localizes with MSI in the cytoplasm and nuclei, altering the nuclear transport of MSI. Furthermore, incremental changes in the size and density of nuclear MSI/tau foci are observed. We also report here that TauO interact with MSI to cause the formation of distinct nuclear aggregates. Moreover, tau/MSI aggregates induce structural changes to LaminB1, leading to nuclear instability. These results illustrate a possible mechanism of neurodegeneration mediated by the aggregation of MSI proteins and TauO, suggesting that MSI plays a critical role in cellular dysfunction.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
25
|
Sabharwal V, Koushika SP. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 2019; 13:470. [PMID: 31708745 PMCID: PMC6823667 DOI: 10.3389/fncel.2019.00470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon's narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
Collapse
Affiliation(s)
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
26
|
Mercury in the retina and optic nerve following prenatal exposure to mercury vapor. PLoS One 2019; 14:e0220859. [PMID: 31390377 PMCID: PMC6685637 DOI: 10.1371/journal.pone.0220859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Damage to the retina and optic nerve is found in some neurodegenerative disorders, but it is unclear whether the optic pathway and central nervous system (CNS) are affected by the same injurious agent, or whether optic pathway damage is due to retrograde degeneration following the CNS damage. Finding an environmental agent that could be responsible for the optic pathway damage would support the hypothesis that this environmental toxicant also triggers the CNS lesions. Toxic metals have been implicated in neurodegenerative disorders, and mercury has been found in the retina and optic nerve of experimentally-exposed animals. Therefore, to see if mercury exposure in the prenatal period could be one link between optic pathway damage and human CNS disorders of later life, we examined the retina and optic nerve of neonatal mice that had been exposed prenatally to mercury vapor, using a technique, autometallography, that detects the presence of mercury within cells. Pregnant mice were exposed to a non-toxic dose of mercury vapor for four hours a day for five days in late gestation, when the mouse placenta most closely resembles the human placenta. The neonatal offspring were sacrificed one day after birth and gapless serial sections of formalin-fixed paraffin-embedded blocks containing the eyes were stained with silver nitrate autometallography to detect inorganic mercury. Mercury was seen in the nuclear membranes of retinal ganglion cells and endothelial cells. A smaller amount of mercury was present in the retinal inner plexiform and inner nuclear layers. Mercury was conspicuous in the peripapillary retinal pigment epithelium. In the optic nerve, mercury was seen in the nuclear membranes and processes of glia and in endothelial cells. Optic pathway and CNS endothelial cells contained mercury. In conclusion, mercury is taken up preferentially by fetal retinal ganglion cells, optic nerve glial cells, the retinal pigment epithelium, and endothelial cells. Mercury induces free radical formation, autoimmunity, and genetic and epigenetic changes, so these findings raise the possibility that mercury plays a part in the pathogenesis of degenerative CNS disorders that also affect the retina and optic nerve.
Collapse
|
27
|
Fichtman B, Harel T, Biran N, Zagairy F, Applegate CD, Salzberg Y, Gilboa T, Salah S, Shaag A, Simanovsky N, Ayoubieh H, Sobreira N, Punzi G, Pierri CL, Hamosh A, Elpeleg O, Harel A, Edvardson S. Pathogenic Variants in NUP214 Cause "Plugged" Nuclear Pore Channels and Acute Febrile Encephalopathy. Am J Hum Genet 2019; 105:48-64. [PMID: 31178128 DOI: 10.1016/j.ajhg.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.
Collapse
Affiliation(s)
- Boris Fichtman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nitzan Biran
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fadia Zagairy
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuval Salzberg
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tal Gilboa
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Somaya Salah
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Avraham Shaag
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Natalia Simanovsky
- Department of Medical Imaging, Hadassah Medical Center, Jerusalem 91240, Israel
| | - Houriya Ayoubieh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Giuseppe Punzi
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Baylor-Hopkins Center for Mendelian Genomics, Jerusalem 91240, Israel, Jerusalem 91240, Israel
| | - Orly Elpeleg
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91240, Israel; Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
28
|
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137:859-877. [PMID: 30721407 PMCID: PMC6531423 DOI: 10.1007/s00401-019-01964-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3-5 years and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identified and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany.
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Benarroch EE. Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease. Neurology 2019; 92:757-764. [PMID: 30894450 DOI: 10.1212/wnl.0000000000007305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|