1
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 2025; 66:35. [PMID: 40116120 PMCID: PMC12002672 DOI: 10.3892/ijo.2025.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yanyu Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Lin Fu
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Huiling Chen
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China
| | - Zhongshu Wang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yan Zhang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yu Huang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yi Xiao
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
2
|
Cai WR, Sun XG, Yu Y, Wang X, Cao XC, Liu XF. Unveiling the prognostic value of ARID3A in breast cancer through bioinformatic analysis. Heliyon 2025; 11:e42024. [PMID: 40028521 PMCID: PMC11868939 DOI: 10.1016/j.heliyon.2025.e42024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Identifying reliable prognostic markers for breast cancer is crucial for improving survival rates and reducing mortality. Recent studies highlight the AT-rich interactive domain-containing protein (ARID) family, particularly ARID3A, as influential in cancer progression, though its specific role in breast cancer remains unclear. This study investigates ARID3A's expression, prognostic relevance, clinicopathological correlations, co-expression profiles, and protein-protein interactions in breast cancer. Methods ARID3A mRNA and protein expression levels were analyzed using UALCAN, GEPIA databases, and immunohistochemistry from our hospital samples. Clinical prognostic parameters and survival data were examined through bioinformatics tools, including GEPIA, Bc-GenExMiner, and BEST. Subtype-specific expression and co-expression, particularly with REXO1, were evaluated using LinkedOmics, TIMER, and bc-GenExMiner. Functional enrichment analysis was conducted via LinkedOmics. Protein-protein interactions (PPI) were established using GeneMANIA and STRING, with validation through molecular docking using Cluspro. Results Elevated ARID3A expression was associated with poor prognosis in breast cancer, particularly in Luminal and HER2-positive subtypes. A positive correlation with REXO1 was identified, and enrichment analysis emphasized ARID3A's involvement in immune-related pathways, such as "interferon gamma production" and "primary immunodeficiency." PPI network and docking studies identified TP53 as a potential binding partner, suggesting a novel interaction influencing tumor progression. Conclusion These findings indicate that ARID3A may serve as a prognostic biomarker and therapeutic target in breast cancer, providing insights into its involvement in oncogenic pathways and interactions, particularly with TP53, that may drive cancer development and progression.
Collapse
Affiliation(s)
- Wen-Run Cai
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xu-Gang Sun
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiao-Feng Liu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
3
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
4
|
Jaksic Karisik M, Lazarevic M, Mitic D, Milosevic Markovic M, Riberti N, Jelovac D, Milasin J. MicroRNA-21 as a Regulator of Cancer Stem Cell Properties in Oral Cancer. Cells 2025; 14:91. [PMID: 39851519 PMCID: PMC11763652 DOI: 10.3390/cells14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy with poor prognosis, mainly due to the presence of cancer stem cells (CSCs), a small subpopulation of cells that contribute to therapy resistance and tumor progression. The principal objective of this study was to investigate the role of miRNA-21 in the maintenance of cancer cell stemness and the possibility of altering it. The CD44 antigen was used as a marker for CSC isolation from oral cancer cell cultures. CD44+ and CD44- populations were sorted via magnetic separation. miRNA-21 inhibition was performed in CD44+ cells via transfection. CD44+ cells possessed a significantly higher migration and invasion potential compared to CD44- cells, higher levels of miRNA-21 (p = 0.004) and β-catenin (p = 0.005), and lower levels of BAX (p = 0.015). miRNA-21 inhibition in CD44+ cells reduced migration, invasion, and colony formation while increasing apoptosis. Stemness markers were significantly downregulated following miRNA-21 inhibition: OCT4 (p = 0.013), SOX2 (p = 0.008), and NANOG (p = 0.0001), as well as β-catenin gene (CTNNB1) (p < 0.05), an important member of WNT signaling pathway. Apoptotic activity was enhanced, with a significant downregulation of the antiapoptotic Bcl-2 (p = 0.008) gene. In conclusion, miRNA-21 plays a critical role in the regulation of oral cancer CD44+ cells properties. Targeting and inhibiting miRNA-21 in CD44+ cells could represent a promising novel strategy in OSCC treatment.
Collapse
Affiliation(s)
- Milica Jaksic Karisik
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia; (M.J.K.); (M.L.); (D.M.); (M.M.M.)
| | - Milos Lazarevic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia; (M.J.K.); (M.L.); (D.M.); (M.M.M.)
| | - Dijana Mitic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia; (M.J.K.); (M.L.); (D.M.); (M.M.M.)
| | - Maja Milosevic Markovic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia; (M.J.K.); (M.L.); (D.M.); (M.M.M.)
| | - Nicole Riberti
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Drago Jelovac
- Clinic for Maxillofacial Surgery, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia;
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia; (M.J.K.); (M.L.); (D.M.); (M.M.M.)
| |
Collapse
|
5
|
Xu J, Wan J, Huang HY, Chen Y, Huang Y, Huang J, Zhang Z, Su C, Zhou Y, Lin X, Lin YCD, Huang HD. miRStart 2.0: enhancing miRNA regulatory insights through deep learning-based TSS identification. Nucleic Acids Res 2025; 53:D138-D146. [PMID: 39578697 PMCID: PMC11701676 DOI: 10.1093/nar/gkae1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3'-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors' (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF-miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.
Collapse
Affiliation(s)
- Jiatong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Jingting Wan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Junyang Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Ziyue Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Chang Su
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yuming Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Xingqiao Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.9 Dongdansantiao Street, Dongcheng District, Beijing 100730, P.R. China
| |
Collapse
|
6
|
Cui S, Yu S, Huang HY, Lin YCD, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, Li G, Ma J, Chen B, Zhang H, Fu J, Wang L, Huang HD. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res 2025; 53:D147-D156. [PMID: 39578692 PMCID: PMC11701613 DOI: 10.1093/nar/gkae1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-26 nucleotides) that regulate gene expression by interacting with target mRNAs, affecting various physiological and pathological processes. miRTarBase, a database of experimentally validated miRNA-target interactions (MTIs), now features over 3 817 550 validated MTIs from 13 690 articles, significantly expanding its previous version. The updated database includes miRNA interactions with therapeutic agents, revealing roles in drug resistance and therapeutic strategies. It also highlights miRNAs as predictive, safety and monitoring biomarkers for toxicity assessment, clinical treatment guidance and therapeutic optimization. The expansion of miRNA-mRNA and miRNA-miRNA networks allows the identification of key regulatory genes and co-regulatory miRNAs, providing deeper insights into miRNA functions and critical target genes. Information on oxidized miRNA sequences has been added, shedding light on how oxidative modifications influence miRNA targeting and regulation. The integration of the LLAMA3 model into the NLP pipeline, alongside prompt engineering, enables the efficient identification of MTIs and miRNA-disease associations without large training datasets. An updated data integration and a redesigned user interface enhance accessibility, reinforcing miRTarBase as an essential resource for molecular oncology, drug development and related fields. The updated miRTarBase is available at https://mirtarbase.cuhk.edu.cn/∼miRTarBase/miRTarBase_2025.
Collapse
Affiliation(s)
- Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Bojian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jihan Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhuoran Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Guanghao Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiajun Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Baiming Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Haoxuan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiehui Fu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P.R. China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
7
|
Abdi E, Latifi-Navid S, Kholghi-Oskooei V, Mostafaiy B, Pourfarzi F, Yazdanbod A. Roles of the lncRNAs MEG3, PVT1 and H19 tagSNPs in gastric cancer susceptibility. BMC Cancer 2024; 24:1440. [PMID: 39578780 PMCID: PMC11583566 DOI: 10.1186/s12885-024-13209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Improper expression of long noncoding RNAs (lncRNAs) can cause various cancers. Single nucleotide polymorphisms (SNPs) affect the expression and function of several key lncRNAs. We assessed the associations of MEG3, PVT1, and H19 lncRNA polymorphisms with susceptibility to gastric cancer (GC). METHODS In Ardabil (a high-risk area in North‒West Iran), 795 blood samples were collected from 396 cases and 399 controls. The control subjects were randomly selected from individuals receiving regular physical examinations in this hospital with no self-reported cancer history and were frequency-matched to the case group by sex and 5-year age intervals. All the samples were genotyped via the Infinium HTS platform, which was subsequently followed by rigorous data quality control, as well as statistical and bioinformatic analyses. RESULTS The H19 rs2107425 SNP was associated with GC risk in a recessive model of inheritance (TT vs. CC + CT: OR = 1.87). The PVT1 rs13255292 variant in the overdominant model significantly reduced GC risk (CT vs. CC + TT: OR = 0.74). There was no significant association between H19 rs2839698, MEG3 rs116907618, or rs11160608, or PVT1 rs7017386, rs13254990 tagSNPs and susceptibility to GC. The interaction between H19 rs2107425 TT and PVT1 rs7017386 TC increased GC risk (OR = 3.73; pbon < 0.05). The MEG3, PVT1, and H19 variants were not associated with clinicopathologic characteristics. CONCLUSIONS We revealed significant associations of the H19 rs2107425 and PVT1 rs13255292 genetic variants with GC. Interestingly, the novel SNP‒SNP interaction of H19 and PVT1 tagSNPs had a greater effect than single SNP impacts did on GC risk, providing us with invaluable data to identify potential biological mechanisms involved in the development of GC.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
| | | | - Behdad Mostafaiy
- Department of Statistics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, 5618953141, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, 5618953141, Iran
| |
Collapse
|
8
|
Ghasemzadeh N, Pourrajab F, Dehghani Firoozabadi A, Rahnama M. Liposome-Mediated MicroRNA Delivery: An Additional Layer of Gene Network Regulation and Nuclear Reprogramming. IRANIAN BIOMEDICAL JOURNAL 2024; 28:245-54. [PMID: 39891467 PMCID: PMC11829158 DOI: 10.61186/ibj.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 02/10/2025]
Abstract
Background Developing miRNA-mediated cell engineering introduces a novel technology for cell reprogramming and generating patient-specific tissues for therapeutic use, facilitating basic research on human adult stem cells. Furthermore, optimizing a reprogramming method without transduction minimizes the risk of tumorigenesis, especially for reprogrammed cells. This study aimed to explore the use of liposomes as vehicles for delivering miRNAs to cells, focusing on their role in regulating gene networks and facilitating nuclear reprogramming. Methods This study utilized cationic liposomal nanoparticles preserved under different conditions to introduce miRNAs into hMSCs. Using qPCR, the effective induction of pluripotency factors (OCT4, SOX2, and NANOG) was examined. Results Results indicated that miR-302a and miR-34a regulate pluripotency by interacting with key transcription factors, including OCT4, SOX2, and NANOG. Notably, the expression pattern of OCT4 showed that lipoplexes containing miR-302a increased the expression of this gene, while in the case of miR-34a, it decreased. Additionally, the study found that pluripotency precursors can be induced by delivering liposomal microRNA (LP-miRs). Conclusion LP-miRs, as small-molecule therapeutics, can influence reprogramming/engineering and the conversion of cells into other lineages. These findings have significant implications for our understanding of the mechanisms underlying the regulation of pluripotency and may have potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Pourrajab
- Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Rahnama
- Department of Applied Cell Science, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Shiraki K, Mishima M, Sato N, Imoto Y, Nishiwaki K. Convenient screening of the reproductive toxicity of favipiravir and antiviral drugs in Caenorhabditis elegans. Heliyon 2024; 10:e35331. [PMID: 39165990 PMCID: PMC11334893 DOI: 10.1016/j.heliyon.2024.e35331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Reproductive toxicity is one of the major concerns in drug development. Thus, we have developed its screening system using Caenorhabditis elegans, which has a life cycle of three days and similar coding genes as humans. Antiviral nucleoside analogs used for acute infections are known to cause reproductive toxicity, contraindicated for pregnant women, and are used for comparing their reproductive toxicity in C. elegans and experimental animals. None of the drug treatments affected the number of offspring and the concentrations without toxicity to nematodes were consistent with no cytotoxicity or toxicity in experimental animals or humans. Favipiravir, ribavirin, molnupiravir (NHC), acyclovir, ganciclovir, zidovudine, and thalidomide significantly increased the incidence of arrested embryos but amenamevir, letermovir, and guanosine did not. RNA-dependent RNA polymerase (RdRp) inhibitors, in the order of favipiravir, ribavirin, and NHC increased the incidence of arrested embryos, possibly due to the specificity of favipiravir for RdRp and less cytotoxicity. RdRp inhibitors would impair RNA interference through RdRp expressed by telomerase reverse transcriptase during embryogenesis and cause embryo-fetal toxicity. The incidence of arrested embryos may be affected by differences in the substrate specificity of DNA polymerases and metabolism between C. elegans, animals, and humans. The concordance between the results of the screening system for reproductive toxicity of antivirals in C. elegans and those in experimental animals based on the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, reproductive toxicology confirms its appropriateness as a screening system for reproductive toxicity. Favipiravir and zidovudine were the least toxic to C. e legans among the antiviral drugs examined.
Collapse
Affiliation(s)
| | - Mizuki Mishima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1339, Japan
| | - Noriaki Sato
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, 5-7-3 Shimoyamatedori, Chuo-ku, Kobe, 650-0011, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1339, Japan
| |
Collapse
|
10
|
Bai Y, Zhang Z, Bi J, Tang Q, Jiang K, Yao C, Wang W. miR-181c-5p/DERL1 pathway controls breast cancer progression mediated by TRAF6-linked K63 ubiquitination of AKT. Cancer Cell Int 2024; 24:204. [PMID: 38858669 PMCID: PMC11165795 DOI: 10.1186/s12935-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Aberrant Derlin-1 (DERL1) expression is associated with an overactivation of p-AKT, whose involvement in breast cancer (BRCA) development has been widely speculated. However, the precise mechanism that links DERL1 expression and AKT activation is less well-studied. METHODS Bioinformatic analyses hold a promising approach by which to detect genes' expression levels and their association with disease prognoses in patients. In the present work, a dual-luciferase assay was employed to investigate the relationship between DERL1 expression and the candidate miRNA by both in vitro and in vivo methods. Further in-depth studies involving immunoprecipitation-mass spectrum (IP-MS), co-immunoprecipitation (Co-IP), as well as Zdock prediction were performed. RESULTS Overexpression of DERL1 was detected in all phenotypes of BRCA, and its knockdown showed an inhibitory effect on BRCA cells both in vitro and in vivo. The Cancer Genome Atlas (TCGA) database reported that DERL1 overexpression was correlated with poor overall survival in BRCA cases, and so the quantification of DERL1 expression could be a potential marker for the clinical diagnosis of BRCA. On the other hand, miR-181c-5p was downregulated in BRCA, suggesting that its overexpression could be a potent therapeutic route to improve the overall survival of BRCA cases. Prior bioinformatic analyses indicated a somewhat positive correlation between DERL1 and TRAF6 as well as between TRAF6 and AKT, but not between miR-181c-5p and DERL1. In retrospect, DERL1 overexpression promoted p-AKT activation through K63 ubiquitination. DERL1 was believed to directly interact with the E3 ligase TRAF6. As Tyr77Ala or Tyr77Ala/Gln81Ala/Arg85Ala/Val158Ala attempts to prevent the interaction between DERL1 and TRAF domain of TRAF6, resulted in a significant reduction in K63-ubiquitinated p-AKT production. However, mutations in Gln81Ala, Arg85Ala, or Val158Ala could possibly interrupt with these processes. CONCLUSIONS Our data confirm that mediation of the miR-181c-5p/DERL1 pathway by TRAF6-linked AKT K63 ubiquitination holds one of the clues to set our focus on toward meeting the therapeutic goals of BRCA.
Collapse
Affiliation(s)
- Yang Bai
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhanqiang Zhang
- Department of Thyroid, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiong Bi
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Qian Tang
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550000, Guizhou, China
| | - Keying Jiang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chen Yao
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
11
|
Yi G, Luo H, Zheng Y, Liu W, Wang D, Zhang Y. Exosomal Proteomics: Unveiling Novel Insights into Lung Cancer. Aging Dis 2024; 16:876-900. [PMID: 38607736 PMCID: PMC11964432 DOI: 10.14336/ad.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Although significant progress has been made in early lung cancer screening over the past decade, it remains one of the most prevalent and deadliest forms of cancer worldwide. Exosomal proteomics has emerged as a transformative field in lung cancer research, with the potential to redefine diagnostics, prognostic assessments, and therapeutic strategies through the lens of precision medicine. This review discusses recent advances in exosome-related proteomic and glycoproteomic technologies, highlighting their potential to revolutionise lung cancer treatment by addressing issues of heterogeneity, integrating multiomics data, and utilising advanced analytical methods. While these technologies show promise, there are obstacles to overcome before they can be widely implemented, such as the need for standardization, gaps in clinical application, and the importance of dynamic monitoring. Future directions should aim to overcome the challenges to fully utilize the potential of exosomal proteomics in lung cancer. This promises a new era of personalized medicine that leverages the molecular complexity of exosomes for groundbreaking advancements in detection, prognosis, and treatment.
Collapse
Affiliation(s)
- Guanhua Yi
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haixin Luo
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yalin Zheng
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenjing Liu
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Denian Wang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Mahmoud SF, Holah NS, Alhanafy AM, Serag El-Edien MM. Do Fibroblast Growth Factor Receptor (FGFR) 2 and 3 Proteins Play a Role in Prognosis of Invasive Urothelial Bladder Carcinoma? IRANIAN JOURNAL OF PATHOLOGY 2024; 19:81-88. [PMID: 38864084 PMCID: PMC11164307 DOI: 10.30699/ijp.2024.2012115.3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Bladder carcinoma ranks second in prevalence among males in Egypt. As a family of tyrosine kinases, fibroblast growth factor receptor (FGFR) dysregulation has been linked to some malignancies in humans. The aim of this study is to analyze the clinicopathological data of patients while investigating FGFR2 and FGFR3 immunohistochemical expression in invasive urothelial bladder carcinoma. Methods This retrospective cross-sectional study included 60 invasive urothelial carcinoma (UC) cases in the Pathology department, Faculty of Medicine, Menoufia University, from 2009 to 2020. All biopsies were stained for FGFR2 and FGFR3 antibodies. Complete clinical data were available for 44 patients treated and followed in clinical oncology and nuclear medicine departments. Results Advanced stage and high grade are significantly correlated with FGFR2 positivity (P=0.048 and 0.044, respectively). Cases presented with Perineural invasion showed a higher percentage of FGFR2 (P=0.023). There is a significant indirect linear correlation between FGFR3 expression and lymph node positivity (r= -0.265, P=0.041). Conclusion A high FGFR2 expression could be associated with poor prognostic parameters, while high FGFR3 expression would be associated with good prognostic parameters. These findings might highlight the importance of FGFR-targeted therapy as a FGFR2 antagonist and FGFR3 agonist for the treatment of urothelial carcinoma patients.
Collapse
Affiliation(s)
| | - Nanis Shawky Holah
- Department of Pathology, Faculty of Medicine, Menoufia University, Minufiyah, Egypt
| | - Alshimaa Mahmoud Alhanafy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Minufiyah, Egypt
| | | |
Collapse
|
13
|
Liu W, Huang X, Luo W, Liu X, Chen W. Progerin Inhibits the Proliferation and Migration of Melanoma Cells by Regulating the Expression of Paxillin. Onco Targets Ther 2024; 17:227-242. [PMID: 38533131 PMCID: PMC10964789 DOI: 10.2147/ott.s442504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Progerin, the underlying cause of Hutchinson-Gilford Progeria Syndrome (HGPS), has been extensively studied for its impact on normal cells and premature aging patients. However, there is a lack of research on its specific effects on tumor cells. Melanoma is one of the most common malignant tumors with high morbidity and mortality. This study aimed to elucidate the potential therapeutic role of progerin in melanoma. Materials and Methods We constructed the melanoma A375 cell line and M14 cell line with stable expression of progerin. The expression of progerin, paxillin, and epithelial-mesenchymal transition (EMT) marker proteins in each cell group was measured using Western blot. The migration, proliferation, and cell cycle of cancer cells were assessed using the transwell assay, wound healing assay, colony formation assay, CCK 8 assay, and flow cytometry. RT-qPCR technology was used to examine the impact of progerin overexpression on microRNA expression. Finally, we transfected paxillin into the progerin overexpression cell group to verify whether progerin regulates the phenotype of tumor cells through paxillin. Results Our study demonstrated that overexpression of progerin leads to decreased expression of paxillin and inhibits cancer cell migration, proliferation, EMT process and cell cycle progression. Additionally, rescue experiments revealed that the migration, proliferation ability, and EMT marker protein expression in progerin overexpressing cancer cells could be partially restored by transfecting a plasmid containing the paxillin gene. Mechanistic investigations further revealed that progerin achieves this inhibition of paxillin expression by upregulating miR-212. Conclusion This study reveals that progerin may inhibit the migration and proliferation of melanoma cells through the miR-212/paxillin axis, which provides a new approach for the future treatment of this disease.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
- School of Medical Technology, Guangdong Medical University, Dongguan, People’s Republic of China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, People’s Republic of China
- Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| |
Collapse
|
14
|
Wan R, Chen Y, Feng X, Luo Z, Peng Z, Qi B, Qin H, Lin J, Chen S, Xu L, Tang J, Zhang T. Exercise potentially prevents colorectal cancer liver metastases by suppressing tumor epithelial cell stemness via RPS4X downregulation. Heliyon 2024; 10:e26604. [PMID: 38439884 PMCID: PMC10909670 DOI: 10.1016/j.heliyon.2024.e26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent tumor globally. The liver is the most common site for CRC metastasis, and the involvement of the liver is a common cause of death in patients with late-stage CRC. Consequently, mitigating CRC liver metastasis (CRLM) is key to improving CRC prognosis and increasing survival. Exercise has been shown to be an effective method of improving the prognosis of many tumor types. However, the ability of exercise to inhibit CRLM is yet to be thoroughly investigated. METHODS The GSE157600 and GSE97084 datasets were used for analysis. A pan-cancer dataset which was uniformly normalized was downloaded and analyzed from the UCSC database: TCGA, TARGET, GTEx (PANCAN, n = 19,131, G = 60,499). Several advanced bioinformatics analyses were conducted, including single-cell sequencing analysis, correlation algorithm, and prognostic screen. CRC tumor microarray (TMA) as well as cell/animal experiments are used to further validate the results of the analysis. RESULTS The greatest variability was found in epithelial cells from the tumor group. RPS4X was generally upregulated in all types of CRC, while exercise downregulated RPS4X expression. A lowered expression of RPS4X may prolong tumor survival and reduce CRC metastasis. RPS4X and tumor stemness marker-CD44 were highly positively correlated and knockdown of RPS4X expression reduced tumor stemness both in vitro and in vivo. CONCLUSION RPS4X upregulation may enhance CRC stemness and increase the odds of metastasis. Exercise may reduce CRC metastasis through the regulation of RPS4X.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Affiliated Pudong Medical Center, Shanghai 201399, China
| | - Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liangfeng Xu
- Department of Gastroenterology, Sheyang County People's Hospital, Yancheng 224300, Jiangsu, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai 200127, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Li M, Zhang FJ, Bai RJ. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J Inflamm Res 2024; 17:1105-1120. [PMID: 38406325 PMCID: PMC10891274 DOI: 10.2147/jir.s444758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arthritis is the most prevalent joint disease and is characterized by articular cartilage degradation, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) have significant effects on the proliferation, migration, and survival of chondrocytes and fibroblast-like synovial cells (FLSs). YAP/TAZ signaling pathway, as well as the related Hippo-YAP signaling pathway, are responsible for the condition of cells and articular cartilage in joints. They are tightly regulated to maintain metabolism in chondrocytes and FLSs because abnormal expression may result in cartilage damage. However, the roles and mechanisms of the Hippo-YAP pathway in arthritis remain largely unknown. This review summarizes the roles and key functions of YAP/TAZ and the Hippo-YAP signaling pathway in FLSs and chondrocytes for the induction of proliferation, migration, survival, and differentiation in rheumatoid arthritis (RA) and osteoarthritis (OA) research. We also discuss the therapeutic strategies involving YAP/TAZ and the related Hippo-YAP signaling pathway involved in OA.
Collapse
Affiliation(s)
- Min Li
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, People’s Republic of China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Rui-Jun Bai
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| |
Collapse
|
17
|
Huang W, Luo T, Lan M, Zhou W, Zhang M, Wu L, Lu Z, Fan L. Identification and Characterization of a ceRNA Regulatory Network Involving LINC00482 and PRRC2B in Peripheral Blood Mononuclear Cells: Implications for COPD Pathogenesis and Diagnosis. Int J Chron Obstruct Pulmon Dis 2024; 19:419-430. [PMID: 38348310 PMCID: PMC10860591 DOI: 10.2147/copd.s437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by intense lung infiltrations of immune cells (macrophages and monocytes). While existing studies have highlighted the crucial role of the competitive endogenous RNA (ceRNA) regulatory network in COPD development, the complexity and characteristics of the ceRNA network in monocytes remain unexplored. Methods We downloaded messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) microarray data from GSE146560, GSE102915, and GSE71220 in the Gene Expression Omnibus (GEO) database. This data was used to identify differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs). Predicted miRNAs that bind to DElncRNAs were intersected with DEmiRNAs, forming a set of intersecting miRNAs. This set was then used to predict potential binding mRNAs, intersected with DEmRNAs, and underwent functional enrichment analysis using R software and the STRING database. The resulting triple regulatory network and hub genes were constructed using Cytoscape. Comparative Toxicomics Database (CTD) was utilized for disease correlation predictions, and ROC curve analysis assessed diagnostic accuracy. Results Our study identified 5 lncRNAs, 4 miRNAs, and 149 mRNAs as differentially expressed. A lncRNA-miRNA-mRNA regulatory network was constructed, and hub genes were selected through hub analysis. Enrichment analysis highlighted terms related to cell movement and gene expression regulation. We established a LINC00482-has-miR-6088-PRRC2B ceRNA network with diagnostic relevance for COPD. ROC analysis demonstrated the diagnostic value of these genes. Moreover, a positive correlation between LINC00482 and PRRC2B expression was observed in COPD PBMCs. The CTD database indicated their involvement in inflammatory responses. Conclusion In summary, our study not only identified pivotal hub genes in peripheral blood mononuclear cells (PBMCs) of COPD but also constructed a ceRNA regulatory network. This contributes to understanding the pathophysiological processes of COPD through bioinformatics analysis, expanding our knowledge of COPD, and providing a foundation for potential diagnostic and therapeutic targets for COPD.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Ting Luo
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Mengqiu Lan
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Wenting Zhou
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Ming Zhang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Lihong Wu
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Zhenni Lu
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Li Fan
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| |
Collapse
|
18
|
He X, Xu Z, Ren R, Wan P, Zhang Y, Wang L, Han Y. A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeutic response in pancreatic adenocarcinoma. Heliyon 2024; 10:e23659. [PMID: 38173505 PMCID: PMC10761810 DOI: 10.1016/j.heliyon.2023.e23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Sphingolipid metabolism affects prognosis and resistance to immunotherapy in patients with cancer and is an emerging target in cancer therapy with promising diagnostic and prognostic value. Long noncoding ribonucleic acids (lncRNAs) broadly regulate tumour-associated metabolic reprogramming. However, the potential of sphingolipid metabolism-related lncRNAs in pancreatic adenocarcinoma (PAAD) is poorly understood. In this study, coexpression algorithms were employed to identify sphingolipid metabolism-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm was used to develop a sphingolipid metabolism-related lncRNA signature (SMLs). The prognostic predictive stability of the SMLs was validated using Kaplan-Meier. Univariate and multivariate Cox, receiver operating characteristic (ROC) and clinical stratification analyses were used to comprehensively assess the SMLs. Gene set variation analysis (GSVE), gene ontology (GO) and tumor mutation burden (TMB) analysis explored the potential mechanisms. Additionally, single sample gene set enrichment analysis (ssGSEA), ESTIMATE, immune checkpoints and drug sensitivity analysis were used to investigate the potential predictive function of the SMLs. Finally, an SMLs-based consensus clustering algorithm was utilized to differentiate patients and determine the suitable population for immunotherapy. The results showed that the SMLs consists of seven sphingolipid metabolism-related lncRNAs, which can well determine the clinical outcome of individuals with PAAD, with high stability and general applicability. In addition, the SMLs-based consensus clustering algorithm divided the TCGA-PAAD cohort into two clusters, with Cluster 1 showing better survival than Cluster 2. Additionally, Cluster 1 had a higher level of immune cell infiltration than Cluster 2, which combined with the higher levels of immune checkpoints in Cluster 1 suggests that Cluster 1 is more consistent with an immune 'hot tumor' profile and may respond better to immune checkpoint inhibitors (ICIs). This study offers new insights regarding the potential role of sphingolipid metabolism-related lncRNAs as biomarkers in PAAD. The constructed SMLs and the SMLs-based clustering are valuable tools for predicting clinical outcomes in PAAD and provide a basis for clinical selection of individualized treatments.
Collapse
Affiliation(s)
- Xiaolan He
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Zhengyang Xu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ruiping Ren
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yu Zhang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ying Han
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
20
|
Faghihkhorasani A, Dalvand A, Derafsh E, Tavakoli F, Younis NK, Yasamineh S, Gholizadeh O, Shokri P. The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: a review of virus in cancer stem cells. Cancer Cell Int 2023; 23:250. [PMID: 37880659 PMCID: PMC10599042 DOI: 10.1186/s12935-023-03099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer Stem Cells (CSCs) are the main "seeds" for the initiation, growth, metastasis, and recurrence of tumors. According to many studies, several viral infections, including the human papillomaviruses, hepatitis B virus, Epstein-Barr virus, and hepatitis C virus, promote the aggressiveness of cancer by encouraging the development of CSC features. Therefore, a better method for the targeted elimination of CSCs and knowledge of their regulatory mechanisms in human carcinogenesis may lead to the development of a future tool for the management and treatment of cancer. Oncolytic viruses (OVs), which include the herpes virus, adenovirus, vaccinia, and reovirus, are also a new class of cancer therapeutics that have favorable properties such as selective replication in tumor cells, delivery of numerous eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumor immunity, as well as a tolerable safety profile that essentially differs from that of other cancer therapeutics. The effects of viral infection on the development of CSCs and the suppression of CSCs by OV therapy were examined in this paper. The purpose of this review is to investigate the dual role of viruses in CSCs (oncolytic virotherapy and viral oncogenes).
Collapse
Affiliation(s)
| | - Alaleh Dalvand
- Tehran Medical Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, St. Kitts And Nevis
| | - Farnaz Tavakoli
- Nephrology and Transplantation Ward, Shariati Hospital Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooria Shokri
- Department of Medical Science, Faculty of Medical Science, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
21
|
Kim JK, Chang I, Jung Y, Kaplan Z, Hill EE, Taichman RS, Krebsbach PH. Mycoplasma hyorhinis infection promotes TNF-α signaling and SMAC mimetic-mediated apoptosis in human prostate cancer. Heliyon 2023; 9:e20655. [PMID: 37867861 PMCID: PMC10585237 DOI: 10.1016/j.heliyon.2023.e20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Growing evidence suggests an association between Mycoplasma infections and the development and progression of prostate cancer (PCa). In this study, we report that chronic and persistent M. hyorhinis infection induced robust TNF-α secretion from PCa cells. TNF-α secreted from M. hyorhinis-infected PCa cells subsequently led to activation of the NF-κB pathway. Chronic M. hyorhinis infection induced gene expression of pro-inflammatory cytokines and chemokines in a NF-κB-dependent manner and promoted cell proliferation, migration, and invasion in PCa cells. The elimination of M. hyorhinis in PCa cells significantly blocked TNF-α secretion, gene expression of cytokines and chemokines, migration, and invasion in PCa cells, suggesting M. hyorhinis-induced TNF-α plays an important role to promote malignant transformation of PCa. Furthermore, second mitochondria-derived activator of caspases (SMAC) mimetics potentiated caspase activation and cell death in M. hyorhinis-infected PCa by antagonizing inhibitor of apoptosis proteins (IAPs) activity. Tissue microarray analysis indicated that TNF-α is co-expressed in M. hyorhinis-infected human patient tissues. Findings from this study advance our understanding of the mycoplasma-oncogenesis process and suggest the potential for new approaches for preventions, diagnosis, and therapeutic approaches against prostate cancers.
Collapse
Affiliation(s)
- Jin Koo Kim
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Insoon Chang
- Section of Endodontics, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Zach Kaplan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Elliott E. Hill
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Periodontics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul H. Krebsbach
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
22
|
Navarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, D′Marco L, Parra H, Bernal MC, Castro A, Escalona D, García-Pacheco H, Bermúdez V. Intrinsic and environmental basis of aging: A narrative review. Heliyon 2023; 9:e18239. [PMID: 37576279 PMCID: PMC10415626 DOI: 10.1016/j.heliyon.2023.e18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Longevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Maricarmen Chacin
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Luis D′Marco
- Universidad Cardenal Herrera-CEU Medicine Department, CEU Universities, 46115 Valencia, Spain
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | | | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Henry García-Pacheco
- Universidad del Zulia, Facultad de Medicina, Departamento de Cirugía. Hospital General del Sur “Dr. Pedro Iturbe”. Maracaibo, Venezuela
- Unidad de Cirugía para la Obesidad y Metabolismo (UCOM). Maracaibo, Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
23
|
Hao H, Wang B, Yang L, Sang Y, Xu W, Liu W, Zhang L, Jiang D. miRNA-186-5p inhibits migration, invasion and proliferation of breast cancer cells by targeting SBEM. Aging (Albany NY) 2023; 15:6993-7007. [PMID: 37477531 PMCID: PMC10415540 DOI: 10.18632/aging.204887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
The paper aimed to investigate the effect of miR186-5p on invasion and migration of breast cancer cells and its molecular mechanism. MicroRNA-186-5p was found to be low expressed in breast cancer and highly expressed in SBEM by bioinformatics analysis. After transfecting MDA-MB-231 cells with miR-186-5p inhibitor NC, miR-186-5p inhibitor, miR-186-5p mimic NC and miR-186-5p mimic, respectively. The migration and invasive ability of breast cancer cells were detected by cell scratch test and Transwell test. Moreover, after adding 740 Y-P to the miR-186-5p mimic NC group and miR-186-5p mimic group cells, SBEM and PI3K pathway-related proteins were detected by Western blotting and proliferation of the cancer cells was evaluated by monoclonal cell experiment. Meanwhile, exogenous miR-186-5p mimic in MDA-MB-231 cells significantly inhibited the expression of SBEM, p-PI3K, p-AKT and their downstream pathways, MMP1, MMP3, MMP9, CyclinD1, PCNA and CyclinB1 proteins and reduced proliferation of breast cancer cells. Furthermore, the expression of SBEM protein in the miR-186-5p mimic + 740Y-P group was significantly lower than the miR-186-5p mimic NC + 740Y-P group after adding 740 Y-P. However, there were no significant changes in the protein's levels associated with PI3K pathway and the cancer cells proliferation. These results suggest that low expression of miR-186-5p in breast cancer results in an abnormally high expression of SBEM, activation of PI3K/AKT signaling pathway, promoting migration and invasion of human breast cancer cells.
Collapse
Affiliation(s)
- Hui Hao
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bingsheng Wang
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lin Yang
- Graduate School, Chengde Medical University and Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Yinzhou Sang
- Department of Pathology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Xu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Liu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lili Zhang
- Department of Medicine, Cangzhou Medical College, Cangzhou 061011, China
| | - Da Jiang
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
24
|
Uppaluri KR, Challa HJ, Gaur A, Jain R, Krishna Vardhani K, Geddam A, Natya K, Aswini K, Palasamudram K, K SM. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl Oncol 2023; 35:101730. [PMID: 37406550 PMCID: PMC10366642 DOI: 10.1016/j.tranon.2023.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, with growing evidence implicating their involvement in cancer development and progression. The potential of ncRNAs as diagnostic and prognostic biomarkers for cancer is promising, with emphasis on their use in liquid biopsy and tissue-based diagnostics. In a nutshell, the review comprehensively summarizes the diverse classes of ncRNAs implicated in cancer, including microRNAs, long non-coding RNAs, and circular RNAs, and their functions and mechanisms of action. Furthermore, we describe the potential therapeutic applications of ncRNAs, including anti-miRNA oligonucleotides, siRNAs, and other RNA-based therapeutics in cancer treatment. However, significant challenges remain in developing effective ncRNA-based diagnostics and therapeutics, including the lack of specificity, limited understanding of mechanisms, and delivery challenges. This review also covers the current state-of-the-art non-coding RNA research technologies and bioinformatic analysis tools. Lastly, we outline future research directions in non-coding RNA research in cancer, including developing novel biomarkers, therapeutic targets, and modalities. In summary, this review provides a comprehensive understanding of non-coding RNAs in cancer and their potential clinical applications, highlighting both the opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kalyan Ram Uppaluri
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| | - Hima J Challa
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Ashish Gaur
- Department of Biotechnology, GLA University, Mathura, India
| | - Rajul Jain
- Dayalbagh Educational Institute, Agra, India
| | - K Krishna Vardhani
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Anusha Geddam
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Natya
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Aswini
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Kalyani Palasamudram
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Sri Manjari K
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| |
Collapse
|
25
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Song L, Yang J, Qin Z, Ou C, Luo R, Yang W, Wang L, Wang N, Ma S, Wu Q, Gong C. Multi-Targeted and On-Demand Non-Coding RNA Regulation Nanoplatform against Metastasis and Recurrence of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207576. [PMID: 36905244 DOI: 10.1002/smll.202207576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Indexed: 06/08/2023]
Abstract
Dysregulation of microRNAs (miRs) is the hallmark of triple-negative breast cancer (TNBC), which is closely involved with its growth, metastasis, and recurrence. Dysregulated miRs are promising targets for TNBC therapy, however, targeted and accurate regulation of multiple disordered miRs in tumors is still a great challenge. Here, a multi-targeting and on-demand non-coding RNA regulation nanoplatform (MTOR) is reported to precisely regulate disordered miRs, leading to dramatical suppression of TNBC growth, metastasis, and recurrence. With the assistance of long blood circulation, ligands of urokinase-type plasminogen activator peptide and hyaluronan located in multi-functional shells enable MTOR to actively target TNBC cells and breast cancer stem cell-like cells (BrCSCs). After entering TNBC cells and BrCSCs, MTOR is subjected to lysosomal hyaluronidase-induced shell detachment, leading to an explosion of the TAT-enriched core, thereby enhancing nuclear targeting. Subsequently, MTOR could precisely and simultaneously downregulate microRNA-21 expression and upregulate microRNA-205 expression in TNBC. In subcutaneous xenograft, orthotopic xenograft, pulmonary metastasis, and recurrence TNBC mouse models, MTOR shows remarkably synergetic effects on the inhibition of tumor growth, metastasis, and recurrence due to its on-demand regulation of disordered miRs. This MTOR system opens a new avenue for on-demand regulation of disordered miRs against growth, metastasis, and recurrence of TNBC.
Collapse
Affiliation(s)
- Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zeyi Qin
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
27
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
28
|
Wu C, Rakhshandehroo T, Wettersten HI, Campos A, von Schalscha T, Jain S, Yu Z, Tan J, Mose E, Childers BG, Lowy AM, Weis SM, Cheresh DA. Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ECM-enriched niche and support tumour initiation. Nat Cell Biol 2023; 25:309-322. [PMID: 36646789 PMCID: PMC10280815 DOI: 10.1038/s41556-022-01055-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
Defining drivers of tumour initiation can provide opportunities to control cancer progression. Here we report that lysophosphatidic acid receptor 4 (LPAR4) becomes transiently upregulated on pancreatic cancer cells exposed to environmental stress or chemotherapy where it promotes stress tolerance, drug resistance, self-renewal and tumour initiation. Pancreatic cancer cells gain LPAR4 expression in response to stress by downregulating a tumour suppressor, miR-139-5p. Even in the absence of exogenous lysophosphatidic acid, LPAR4-expressing tumour cells display an enrichment of extracellular matrix genes that are established drivers of cancer stemness. Mechanistically, upregulation of fibronectin via an LPAR4/AKT/CREB axis is indispensable for LPAR4-induced tumour initiation and stress tolerance. Moreover, ligation of this fibronectin-containing matrix via integrins α5β1 or αVβ3 can transfer stress tolerance to LPAR4-negative cells. Therefore, stress- or drug-induced LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix, allowing cells to survive 'isolation stress' and compensate for the absence of stromal-derived factors by creating their own tumour-initiating niche.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Taha Rakhshandehroo
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Hiromi I Wettersten
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Alejandro Campos
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Tami von Schalscha
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Shashi Jain
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Ziqi Yu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Jiali Tan
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Evangeline Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Betzaira G Childers
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sara M Weis
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
30
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Shirvani H, Ghanavi J, Aliabadi A, Mousavinasab F, Talebi M, Majidpoor J, Najafi S, Miryounesi SM, Aghaei Zarch SM. MiR-211 plays a dual role in cancer development: From tumor suppressor to tumor enhancer. Cell Signal 2023; 101:110504. [PMID: 36309329 DOI: 10.1016/j.cellsig.2022.110504] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
Abstract
Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.
Collapse
Affiliation(s)
- Hanieh Shirvani
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jalaledin Ghanavi
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aliabadi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Mousavinasab
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Li Z, Zhang Y, Fang J, Xu Z, Zhang H, Mao M, Chen Y, Zhang L, Pian C. NcPath: a novel platform for visualization and enrichment analysis of human non-coding RNA and KEGG signaling pathways. Bioinformatics 2022; 39:6917072. [PMID: 36525367 PMCID: PMC9825761 DOI: 10.1093/bioinformatics/btac812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Non-coding RNAs play important roles in transcriptional processes and participate in the regulation of various biological functions, in particular miRNAs and lncRNAs. Despite their importance for several biological functions, the existing signaling pathway databases do not include information on miRNA and lncRNA. Here, we redesigned a novel pathway database named NcPath by integrating and visualizing a total of 178 308 human experimentally validated miRNA-target interactions (MTIs), 32 282 experimentally verified lncRNA-target interactions (LTIs) and 4837 experimentally validated human ceRNA networks across 222 KEGG pathways (including 27 sub-categories). To expand the application potential of the redesigned NcPath database, we identified 556 798 reliable lncRNA-protein-coding genes (PCG) interaction pairs by integrating co-expression relations, ceRNA relations, co-TF-binding interactions, co-histone-modification interactions, cis-regulation relations and lncPro Tool predictions between lncRNAs and PCG. In addition, to determine the pathways in which miRNA/lncRNA targets are involved, we performed a KEGG enrichment analysis using a hypergeometric test. The NcPath database also provides information on MTIs/LTIs/ceRNA networks, PubMed IDs, gene annotations and the experimental verification method used. In summary, the NcPath database will serve as an important and continually updated platform that provides annotation and visualization of the pathways on which non-coding RNAs (miRNA and lncRNA) are involved, and provide support to multimodal non-coding RNAs enrichment analysis. The NcPath database is freely accessible at http://ncpath.pianlab.cn/. AVAILABILITY AND IMPLEMENTATION NcPath database is freely available at http://ncpath.pianlab.cn/. The code and manual to use NcPath can be found at https://github.com/Marscolono/NcPath/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zutan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210023, China
| | - Hao Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Minfang Mao
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Cong Pian
- To whom correspondence should be addressed. or or
| |
Collapse
|
33
|
Biswas D, Banerjee R, Sarkar S, Choudhury S, Sanyal P, Tiwari M, Kumar H. Nigrosome and Neuromelanin Imaging as Tools to Differentiate Parkinson's Disease and Parkinsonism. Ann Indian Acad Neurol 2022; 25:1029-1035. [PMID: 36911494 PMCID: PMC9996486 DOI: 10.4103/aian.aian_285_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) lacks a definitive diagnosis due to a lack of pathological validation of patients at antemortem. The risk of misdiagnosis is high in the early stages of PD, often eluded by atypical parkinsonian symptoms. Neuroimaging and laboratory biomarkers are being sought to aid in the clinical diagnosis of PD. Nigrosome imaging and neuromelanin (NM)-sensitive magnetic resonance imaging (MRI) are the new emerging tools, both technically simple plus cost-effective for studying nigral pathology, and have shown potential for authenticating the clinical diagnosis of PD. Visual assessment of the nigrosome-1 appearance, at 3 or 7 Tesla, yields excellent diagnostic accuracy for differentiating idiopathic PD from healthy controls. Moreover, midbrain atrophy and putaminal hypointensity in nigrosome-1 imaging are valid pointers in distinguishing PD from allied parkinsonian disorders. The majority of studies employed T2 and susceptibility-weighted imaging MRI sequences to visualize nigrosome abnormalities, whereas T1-weighted fast-spin echo sequences were used for NM imaging. The diagnostic performance of NM-sensitive MRI in discriminating PD from normal HC can be improved further. Longitudinal studies with adequate sampling of varied uncertain PD cases should be designed to accurately evaluate the sensitivity and diagnostic potential of nigrosome and NM imaging techniques. Equal weightage is to be given to uniformity and standardization of protocols, data analysis, and interpretation of results. There is tremendous scope for identifying disease-specific structural changes in varied forms of parkinsonism with these low-cost imaging tools. Nigrosome-1 and midbrain NM imaging may not only provide an accurate diagnosis of PD but could mature into tools for personally tailored treatment and prognosis.
Collapse
Affiliation(s)
- Deblina Biswas
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Rebecca Banerjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Swagata Sarkar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Pritimoy Sanyal
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Mona Tiwari
- Department of Radiology, Institute of Neurosciences, Kolkata, West Bengal, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
34
|
Inhibitory effect of the novel tyrosine kinase inhibitor DCC-2036 on triple-negative breast cancer stem cells through AXL-KLF5 positive feedback loop. Cell Death Dis 2022; 13:749. [PMID: 36042208 PMCID: PMC9428169 DOI: 10.1038/s41419-022-05185-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Triple-negative breast cancer (TNBC), an aggressive histological subtype of breast cancer, exhibits a high risk of early recurrence rate and a poor prognosis, and it is primarily associated with the abundance of cancer stem cells (CSCs). At present, the strategies for effectively eradicating or inhibiting TNBC CSCs are still limited, which makes the development of novel drugs with anti-CSCs function be of great value for the treatment of TNBC, especially the refractory TNBC. In this study, we found that the small-molecule tyrosine kinase inhibitor DCC-2036 suppressed TNBC stem cells by inhibiting the tyrosine kinase AXL and the transcription factor KLF5. DCC-2036 downregulated the expression of KLF5 by decreasing the protein stability of KLF5 via the AXL-Akt-GSK3β signal axis, and in turn, the downregulation of KLF5 further reduced the expression of AXL via binding to its promotor (-171 to -162 bp). In addition, p-AXL/AXL levels were positively correlated with KLF5 expression in human TNBC specimens. These findings indicated that DCC-2036 is able to suppress the CSCs in TNBC by targeting the AXL-KLF5 positive feedback loop. Moreover, our findings indicated that DCC-2036 increased the sensitivity of TNBC chemotherapy. Therefore, this study proposes a potential drug candidate and several targets for the treatment of refractory TNBC.
Collapse
|
35
|
Alnasser SM. Stem cell challenge in cancer progression, oncology and therapy. Gene X 2022; 840:146748. [PMID: 35868413 DOI: 10.1016/j.gene.2022.146748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022] Open
Abstract
Stem cell therapy consisted in the use of cells to treat damaged tissue, especially in cancer cases. Several cancer treatment techniques are developed today. However, the effectiveness of the treatments as well as the results remain too limited. We will discuss in this work the main advantages of the use of several categories of cells in the treatment of various cancerous diseases. The analysis of the obtained results related to cell therapy across the world over a period of twenty years can help to orient the researchers to the objectives in a more relevant and more reliable manner. The complex challenges of funded cancer care are discussed to provide a clear perspective on the future of administration and current treatment methods.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Saudi Arabia.
| |
Collapse
|
36
|
PITPNA-AS1/miR-98-5p to Mediate the Cisplatin Resistance of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7981711. [PMID: 35578599 PMCID: PMC9107361 DOI: 10.1155/2022/7981711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides, PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p. Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.
Collapse
|
37
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
38
|
Ashrafnezhad Z, Naji M, Aleyasin A, Hedayatpour A, Mahdavinezhad F, Gharaei R, Qasemi M, Amidi F. Evaluating the Differential Expression of miR-146a, miR-222, and miR-9 in Matched Serum and Follicular Fluid of Polycystic Ovary Syndrome Patients: Profiling and Predictive Value. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:320-333. [PMID: 37727646 PMCID: PMC10506678 DOI: 10.22088/ijmcm.bums.11.4.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 09/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder of women in reproductive age with significant effects on reproductive and metabolic functions. Many molecular players may be involved in PCOS pathology; however, miRNAs possess great ability in gene expression control in normal ovarian function and folliculogenesis. We appraised the relative expression of miR-146a, miR-222, miR-9, and miR-224 in serum and follicular fluid (FF) of PCOS patients compared to control subjects. PCOS (n = 35) and control (n = 30) subjects were recruited in the study during their enrolment in IVF cycles. Serum and FF of human subjects were collected and stored. Total RNA was isolated from samples and cDNA was synthesized using miRNA-specific stem-loop RT primers. Quantitative real-time PCR was used to evaluate the expression of miRNAs relative to U6 expression. The predictive value of miRNAs' expression for discrimination of PCOS patients from control subjects was evaluated by receiver-operating characteristic (ROC) curve analysis. miR-224 was not detected in serum and FF samples. Significantly, higher levels of miR-146a and miR-9 in serum of PCOS group were detected. In contrast, relative expression of miR-146a and miR-9 significantly decreased in FF. In PCOS group, relative expression of all detected miRNAs was elevated in serum in comparison to FF, whereas in control group no change was noticed. Combination of FF miRNAs showed improved predictive value with area under the ROC curve (AUC) of 0.84, 93.8% sensitivity, and 83.3% specificity. Contradicting alternations of miRNAs in serum and FF are indicative of different sources of miRNAs in body fluids. Presumptive target genes of studied miRNAs in signalling pathways may show the potential role of these miRNA in folliculogenesis.
Collapse
Affiliation(s)
- Zhale Ashrafnezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ashraf Aleyasin
- Department of Obstetrics and Gynecology, Infertility Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences,BIOCEV, Vestec, Czech Republic.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, Wang W, Li J, Ni J, Ruan Y, Li L, Chen Y, Xie Y, Zhu Z, Cai X, Chen X, Yao L, Chen Y, Luo Y, LuXu S, Luo M, Chiu CM, Ma K, Zhu L, Cheng GJ, Bai C, Chiang YC, Wang L, Wei F, Lee TY, Huang HD. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2021; 50:D222-D230. [PMID: 34850920 PMCID: PMC8728135 DOI: 10.1093/nar/gkab1079] [Citation(s) in RCA: 510] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 18–26 nucleotides; they pair with target mRNAs to regulate gene expression and produce significant changes in various physiological and pathological processes. In recent years, the interaction between miRNAs and their target genes has become one of the mainstream directions for drug development. As a large-scale biological database that mainly provides miRNA–target interactions (MTIs) verified by biological experiments, miRTarBase has undergone five revisions and enhancements. The database has accumulated >2 200 449 verified MTIs from 13 389 manually curated articles and CLIP-seq data. An optimized scoring system is adopted to enhance this update’s critical recognition of MTI-related articles and corresponding disease information. In addition, single-nucleotide polymorphisms and disease-related variants related to the binding efficiency of miRNA and target were characterized in miRNAs and gene 3′ untranslated regions. miRNA expression profiles across extracellular vesicles, blood and different tissues, including exosomal miRNAs and tissue-specific miRNAs, were integrated to explore miRNA functions and biomarkers. For the user interface, we have classified attributes, including RNA expression, specific interaction, protein expression and biological function, for various validation experiments related to the role of miRNA. We also used seed sequence information to evaluate the binding sites of miRNA. In summary, these enhancements render miRTarBase as one of the most research-amicable MTI databases that contain comprehensive and experimentally verified annotations. The newly updated version of miRTarBase is now available at https://miRTarBase.cuhk.edu.cn/.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yang-Chi-Dung Lin
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Shidong Cui
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yixian Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jiatong Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jiayang Bao
- Division of Biological Sciences, Section of Bioinformatics, University of California, San Diego, San Diego, CA 92093, USA
| | - Yulin Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jia Wen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Huali Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Weijuan Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jie Ni
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yini Ruan
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Liping Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yidan Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yueyang Xie
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Zihao Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Xiaoxuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Xinyi Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yigang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yijun Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Shupeng LuXu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Chih-Min Chiu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Kun Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Lizhe Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Gui-Juan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Chen Bai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Liping Wang
- Department of Reproductive Medicine Centre, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,Department of Cell Biology, Jiamusi University, Jiamusi, Heilongjiang 154007, China.,Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong518172, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Hsien-Da Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| |
Collapse
|
40
|
Li Z, Li S, Wen Y, Chen J, Liu K, Jia J. MiR-495 Inhibits Cisplatin Resistance and Angiogenesis in Esophageal Cancer by Targeting ATP7A. Technol Cancer Res Treat 2021; 20:15330338211039127. [PMID: 34747666 PMCID: PMC8579362 DOI: 10.1177/15330338211039127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Cancer resistance to chemotherapy is closely associated with changes in transporter systems. In this study, we investigated the possible regulation of 1 copper ion transporter (ATP7A; ATPase copper transporting alpha) by microRNA miR-495 and its implications in cisplatin resistance and angiogenesis in esophageal cancer. Methods: MiR-495 and ATP7A mRNA expression in clinical tissue samples and 2 cancer cell lines (Eca-109 and TE1) were detected by quantitative real-time polymerase chain reaction. The levels of miR-495 and ATP7A expression in Eca-109 and TE1 cells were increased by transfection with miR-495 mimics and ATP7A-overexpression vectors. Cell proliferation, apoptosis, and angiogenesis were assessed by CCK-8, flow cytometry, and tube formation assays, respectively. The levels of TNF-α and VEGF in cell culture supernatants were detected by enzyme linked immunosorbent assay, and in situ expression of NLRP3 was measured by immunofluorescence. The binding of miR-495 to ATP7A sequences was verified by dual luciferase reporter assays. Results:ATP7A expression was significantly increased, while miR-495 expression was decreased in the cancer tissues of esophageal cancer patients. MiR-495 mimics decreased the proliferation and promoted the apoptosis of cisplatin-resistant Eca-109 and TE1 cells. Furthermore, tube formation by human umbilical vein endothelial cells, TNF-α and VEGF secretion, and the levels of MRP1, ABCG1, ABCA1, and NLRP3 expression in cisplatin-resistant Eca-109 and TE1 cells were all reduced by miR-495 mimics. MiR-495 was shown to directly bind to ATP7A gene sequences to repress ATP7A expression in Eca-109 and TE1 cells. ATP7A overexpression substantially abrogated the changes in proliferation, apoptosis, angiogenesis, and above-mentioned gene expression in cisplatin-resistant Eca-109 and TE1 cells. Conclusions: MiR-495 suppressed cisplatin resistance and angiogenesis in esophageal cancer cells by targeting ATP7A gene expression.
Collapse
Affiliation(s)
- Zhuanghua Li
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Shaowen Li
- Shenzhen People's Hospital, Shenzhen, China
| | - Yongqin Wen
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Jingtang Chen
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Kejun Liu
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Jun Jia
- Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
41
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
42
|
Pang H, Zhang W, Liang X, Zhang Z, Chen X, Zhao L, Liu K, Galiullin D, Yang K, Chen X, Hu J. Prognostic Score System Using Preoperative Inflammatory, Nutritional and Tumor Markers to Predict Prognosis for Gastric Cancer: A Two-Center Cohort Study. Adv Ther 2021; 38:4917-4934. [PMID: 34379305 DOI: 10.1007/s12325-021-01870-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Our study aimed to investigate the prognostic value of preoperative inflammatory, nutritional and tumor markers and develop an effective prognostic score system to predict the prognosis of GC patients. METHODS We retrospectively analyzed 1587 consecutive GC patients who received curative gastrectomy from two medical centers. A novel prognostic score system was proposed based on independently preoperative markers associated with overall survival (OS) of GC patients. A nomogram based on prognostic score system was further established and validated internally and externally. RESULTS Based on multivariate analysis in the training set, a novel BLC (body mass index-lymphocyte-carbohydrate antigen 19-9) score system was proposed, which showed an effective predictability of OS in GC patients (log-rank P < 0.001). Moreover, receiver-operating characteristic (ROC) analysis showed that BLC had better performance in predicting OS than the traditional prognostic markers. The C-index of the BLC based-nomogram was 0.710 (95% CI 0.686-0.734), and the areas under ROC curves for predicting 3- and 5-year OS were 0.781 (95% CI 0.750-0.813) and 0.755 (95% CI 0.723-0.786), respectively, which were higher than those of tumor node metastasis (TNM) staging system alone. The calibration curve for probability of 3- and 5-year OS rate showed a good fitting effect between prediction by nomogram and actual observation. Verification in the internal and external validation sets showed results consistent with those in the training set. CONCLUSIONS The BLC combining inflammatory, nutritional and tumor markers was an independent prognostic predictor for GC patients, and the nomogram based on BLC could accurately predict the personalized survival of patients with GC.
Collapse
Affiliation(s)
- Huayang Pang
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Weihan Zhang
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Xianwen Liang
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
- Department of Gastrointestinal Surgery, Hai Kou Hospital, Central South University, Hai Kou, China
| | - Ziqi Zhang
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Xiaolong Chen
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Linyong Zhao
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Kai Liu
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Danil Galiullin
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Xinzu Chen
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Department of Gastrointestinal Surgery, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No 37 GuoXue Xiang Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Li Q, Qiu Y, Jin T, Liu M, Hou Y. [MiR- 4719 inhibits migration and invasion of human breast cancer cells via targeting ARHGAP36]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:854-861. [PMID: 34238737 DOI: 10.12122/j.issn.1673-4254.2021.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect the expression of miR-4719 in breast cancer tissues and cells and explore its role in regulating invasion and migration of breast cancer cells. OBJECTIVE qRT-PCR was used to detect the expression of miR-4719 and ARHGAP36 in 30 pairs of human breast cancer tissues and adjacent tissues, two breast cancer cell lines (BT549 and MDA-MB- 231) and normal breast cells (MCF-10A). Bioinformatic methods were utilized to analyze the relationship between miR-4719 expression and overall survival of breast cancer patients and predict the potential target gene miR- 4719. miR-4719 mimics, ARHGAP36 shRNA and ARHGAP36 plasmids were transfected into breast cancer cells to test the effects of miR-4719 overexpression, ARHGAP36 knockdown and ARHGAP36 overexpression on cell migration and invasion using wound healing assay and Transwell assay. A dual-luciferase reporter assay was used to verify the direct binding between miR-4719 and 3'-UTR of ARHGAP36. OBJECTIVE Compared with those in adjacent tissues or normal breast cells, the expressions of miR-4719 were significantly decreased and the expression of ARHGAP36 was increased in breast cancer tissues (P < 0.001) and breast cancer cell lines (P < 0.01). A low expression of miR-4719 was correlated with a poorer overall survival of breast cancer patients (P < 0.05). Overexpression of miR-4719 and ARHGAP36 knockdown both significantly attenuated the invasion and migration abilities of breast cancer cells (P < 0.05). The expression of miR-4719 was inversely correlated to that of ARHGAP36 in breast cancer tissues (P < 0.01). Dual-luciferase reporter assay confirmed that ARHGAP36 was the target gene of miR-4719 (P < 0.01), and exogenous miR-4719 could significantly lower the expression of ARHGAP36 (P < 0.05). ARHGAP36 overexpression significantly reversed the inhibitory effects of miR-4719 mimics on migration and invasion of breast cancer cells (P < 0.05). OBJECTIVE The expression of miR-4719 is aberrantly decreased in breast cancer tissues to promote migration and invasion of breast cancer cells by up-regulating ARHGAP36 expression.
Collapse
Affiliation(s)
- Q Li
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - Y Qiu
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - T Jin
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - M Liu
- Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education Chongqing Medical University, Chongqing 400016, China
| | - Y Hou
- Experimental Teaching Center of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
44
|
Zhan P, Shu X, Chen M, Sun L, Yu L, Liu J, Sun L, Yang Z, Ran Y. miR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. Life Sci 2021; 276:119405. [PMID: 33798550 DOI: 10.1016/j.lfs.2021.119405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
AIMS Gastric cancer stem cells (GCSCs) have been used as a therapeutic target. This study aims to estimate the role of miR-98-5p (termed miR-98) in the development of GCSCs. MAIN METHODS The expression of miR-98 in CD44+ GCSCs was verified by RT-PCR. The miR-98 was overexpressed in CD44+ GCSCs by Lentivirus. The ability of self-renewal, invasion, chemoresistance and tumorigenicity was detected in vitro or in vivo after overexpression of miR-98. The target genes of miR-98 were predicted and verified by luciferase reporter assays. The effects miR-98/BCAT1 signaling on the chemoresistance and tumorigenicity of CD44+ GCSCs were investigated in a xenograft model by rescue experiments. KEY FINDINGS We have shown that miR-98 was decreased in CD44+ GCSCs. The overexpression of miR-98 could inhibit the expression of stem-related genes and the ability of self-renewal, invasion, and tumorigenicity of GCSCs. Also, we found that miR-98 overexpression enhances the sensitivity to cisplatin treatment in vitro. Using a xenograft model, we showed that miR-98 overexpression reversed paclitaxel resistance to CD44+ GCSCs. Finally, we found that branched-chain aminotransferases 1 (BCAT1) is a target gene of miR-98. Overexpressed BCAT1 reversed xenograft tumor formation ability and attenuated the paclitaxel chemosensitivity induced by miR-98 downregulation. Furthermore, BCAT1 restoration affected the expression of invasion and drug resistance-related genes. SIGNIFICANCE This study revealed miR-98 inhibits gastric cancer cell stemness and chemoresistance by targeting BCAT1, suggesting that this miR-98/BCAT1 axis represents a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Panpan Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xiong Shu
- Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, PR China
| | - Meng Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
45
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
46
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
47
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
48
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
49
|
El-Kalyoubi S, Agili F. Synthesis, In Silico Prediction and In Vitro Evaluation of Antitumor Activities of Novel Pyrido[2,3- d]pyrimidine, Xanthine and Lumazine Derivatives. Molecules 2020; 25:molecules25215205. [PMID: 33182318 PMCID: PMC7672615 DOI: 10.3390/molecules25215205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Ethyl 5-arylpyridopyrimidine-6-carboxylates 3a–d were prepared as a one pot three component reaction via the condensation of different aromatic aldehydes and ethyl acetoacetate with 6-amino-1-benzyluracil 1a under reflux condition in ethanol. Additionally, condensation of ethyl 2-(2-hydroxybenzylidene) acetoacetate with 6-amino-1-benzyluracil in DMF afforded 6-acetylpyridopyrimidine-7-one 3e; a facile, operationally, simple and efficient one-pot synthesis of 8-arylxanthines 6a–f is reported by refluxing 5,6-diaminouracil 4 with aromatic aldehydes in DMF. Moreover, 6-aryllumazines 7a–d was obtained via the reaction of 5,6-diaminouracil with the appropriate aromatic aldehydes in triethyl orthoformate under reflux condition. The synthesized compounds were characterized by spectral (1H-NMR, 13C-NMR, IR and mass spectra) and elemental analyses. The newly synthesized compounds were screened for their anticancer activity against lung cancer A549 cell line. Furthermore, a molecular-docking study was employed to determine the possible mode of action of the synthesized compounds against a group of proteins highly implicated in cancer progression, especially lung cancer. Docking results showed that compounds 3b, 6c, 6d, 6e, 7c and 7d were the best potential docked compounds against most of the tested proteins, especially CDK2, Jak2, and DHFR proteins. These results are in agreement with cytotoxicity results, which shed a light on the promising activity of these novel six heterocyclic derivatives for further investigation as potential chemotherapeutics.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
- Correspondence: ; Tel.: +20-111-995-2620
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia;
| |
Collapse
|
50
|
Wen XQ, Qian XL, Sun HK, Zheng LL, Zhu WQ, Li TY, Hu JP. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. Onco Targets Ther 2020; 13:10851-10866. [PMID: 33149603 PMCID: PMC7602903 DOI: 10.2147/ott.s265580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third-commonest malignant cancer, and its metastasis is the major reason for cancer-related death. The process of metastasis is highly coordinated and involves a complex cascade of multiple steps. In recent years, miRNAs, as highly conserved, endogenous, noncoding, single-stranded RNA, has been confirmed to be involved in the development of various cancers. Considering that miRNA is also involved in a series of biological behaviors, regulating CRC occurrence and development, we review and summarize the role of miRNAs and related signaling pathways in several CRC-metastasis stages, including invasion and migration, mobility, metabolism, epithelial-mesenchymal transition, tumor-microenvironment communication, angiogenesis, anoikis, premetastatic-niche formation, and cancer stemness. In addition, we review the application of miRNAs as diagnostic CRC markers and in clinical treatment resistance. This review can contribute to understanding of the mechanism of miRNAs in CRC progression and provide a theoretical basis for clinical CRC treatment.
Collapse
Affiliation(s)
- Xiang-Qiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xian-Ling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Medical Imaging, Shanghai Medical College,Fudan University, Shanghai, 200032, People's Republic of China
| | - Huan-Kui Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lin-Lin Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Wei-Quan Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jia-Ping Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|