1
|
Otake S, Saito S, Lin X, Saito CT, Kohno S, Takagi W, Hyodo S, Tominaga M, Katsu Y. Functional characterization of thermosensitive TRPV channels from holocephalan elephant shark (Callorhinchus milii) illuminate the ancestral thermosensory system in vertebrates. J Exp Biol 2025; 228:JEB249961. [PMID: 39916595 DOI: 10.1242/jeb.249961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2025] [Indexed: 03/11/2025]
Abstract
Homeostasis and survival of various animal species have been affected by changes in environmental temperature, causing animals to evolve physiological systems for sensing ambient and body temperature. Temperature-sensitive transient receptor potential (TRP) channels have multimodal properties that are activated by physical stimuli such as temperature, as well as by various chemical substances. Our goal is to understand the diversity of the vertebrate thermosensory system by characterizing the temperature-sensitive TRPV channels of the elephant shark, which belongs to the Holocephali of the cartilaginous fishes. Since elephant sharks are basal jawed vertebrates, analysis of elephant shark TRPs is critical to understanding the evolution of thermosensory systems in vertebrate lineages. We found that temperature stimulation activated elephant shark TRPVs in an electrophysiological analysis similarly to the mammalian ortholog. The thermal activation threshold of elephant shark TRPV1 (31°C) was similar to the thresholds reported for several other fish species, but was much lower than that of mammalian orthologs. Strikingly, the elephant shark TRPV4 was a cooling-activated channel with a threshold of 20°C, whereas, in several tetrapods, it is activated by warmth. These results suggest that the temperature sensitivity of TRPV4 has changed in vertebrate evolutionary lineages. Furthermore, we also found the elephant shark possesses heat-evoked TRPV3 with a threshold of 42°C, which is absent in more derived teleost fishes. Taken together, our findings elucidate that the vertebrate-type thermosensory system has already emerged in the common ancestor of jawed vertebrates, although their temperature-sensing ranges were different from those of mammals.
Collapse
Affiliation(s)
- Sumika Otake
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shigeru Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Xiaozhi Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Claire T Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Satomi Kohno
- Department of Biological Sciences, St Cloud State University, St Cloud, MN 56301, USA
| | - Wataru Takagi
- Faculty of Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Susumu Hyodo
- Faculty of Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya 467-8601, Aichi, Japan
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
York JM, Taylor TN, LaPotin S, Lu Y, Mueller U. Hymenopteran-specific TRPA channel from the Texas leaf cutter ant (Atta texana) is heat and cold activated and expression correlates with environmental temperature. INSECT SCIENCE 2025; 32:301-320. [PMID: 38605428 PMCID: PMC11824891 DOI: 10.1111/1744-7917.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.
Collapse
Affiliation(s)
- Julia M. York
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois Urbana‐ChampaignUrbanaUSA
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Timothy N. Taylor
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| | - Sarah LaPotin
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
- Department of Human GeneticsUniversity of UtahSalt Lake CityUSA
| | - Ying Lu
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Ulrich Mueller
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| |
Collapse
|
3
|
Ptakova A, Vlachova V. Thermosensing ability of TRPC5: current knowledge and unsettled questions. J Physiol Sci 2024; 74:50. [PMID: 39363236 PMCID: PMC11447943 DOI: 10.1186/s12576-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely that the physiological detection of cold temperatures involves multiple different channels and mechanisms that modulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these mechanisms and what molecular features are important for its role as a cold sensor.
Collapse
Affiliation(s)
- Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Qian Y, Yu Q, Zhang J, Han Y, Xie X, Zhu D. Identification of transient receptor potential channel genes from the swimming crab, Portunus Trituberculatus, and their expression profiles under acute temperature stress. BMC Genomics 2024; 25:72. [PMID: 38233779 PMCID: PMC10795286 DOI: 10.1186/s12864-024-09973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.
Collapse
Affiliation(s)
- Yichen Qian
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoling Yu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaoyao Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xi Xie
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| | - Dongfa Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Uchida K. Temperature-Dependent Activation of Thermosensitive Transient Receptor Potential Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:47-59. [PMID: 39289273 DOI: 10.1007/978-981-97-4584-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense the body temperature and also the temperatures of the ambient air and the objects. In 1997, Dr. David Julius and his colleagues found that a receptor expressed in small-diameter primary sensory neurons was activated by capsaicin (the pungent chemical in hot pepper). This receptor was also activated by temperature above 42 °C. That was the first time that a thermal receptor in primary sensory neurons has been identified. This receptor is named transient receptor potential vanilloid 1 (TRPV1). Now, 11 thermosensitive TRP channels are known. In this chapter, we summarize the reports and analyze thermosensitive TRP channels in a variety of ways to clarify the activation mechanisms by which temperature changes are sensed.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Division of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
7
|
YAMAGUCHI T, UCHIDA K, YAMAZAKI J. Canine, mouse, and human transient receptor potential ankyrin 1 (TRPA1) channels show different sensitivity to menthol or cold stimulation. J Vet Med Sci 2023; 85:1301-1309. [PMID: 37821377 PMCID: PMC10788164 DOI: 10.1292/jvms.23-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel that is activated by a variety of stimuli and acts as a nociceptor. Mouse and human TRPA1 exhibit different reactivity to some stimuli, including chemicals such as menthol as well as cold stimuli. The cold sensitivity of TRPA1 in mammalian species is controversial. Here, we analyzed the reactivity of heterologously expressed canine TRPA1 as well as the mouse and human orthologs to menthol or cold stimulation in Ca2+-imaging experiments. Canine and human TRPA1 exhibited a similar response to menthol, that is, activation in a concentration-dependent manner, even at the high concentration range in contrast to the mouse ortholog, which did not respond to high concentration of menthol. In addition, the response during the removal of menthol was different; mouse TRPA1-expressing cells exhibited a typical response with a rapid and clear increase in [Ca2+]i ("off-response"), whereas [Ca2+]i in human TRPA1-expressing cells was dramatically decreased by the washout of menthol and [Ca2+]i in canine TRPA1-expressing cells was slightly decreased. Finally, canine TRPA1 as well as mouse and human TRPA1 were activated by cold stimulation (below 19-20°C). The sensitivity to cold stimulation differed between these species, that is, human TRPA1 activated at higher temperatures compared with the canine and mouse orthologs. All of the above responses were suppressed by the selective TRPA1 inhibitor HC-030031. Because the concentration-dependency and "off-response" of menthol as well as the cold sensitivity were not uniform among these species, studies of canine TRPA1 might be useful for understanding the species-specific functional properties of mammalian TRPA1.
Collapse
Affiliation(s)
- Takuya YAMAGUCHI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa,
Japan
| | - Kunitoshi UCHIDA
- Laboratory of Functional Physiology, Department of
Environmental and Life Sciences, School of Food and Nutritional Sciences, University of
Shizuoka, Shizuoka, Japan
| | - Jun YAMAZAKI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa,
Japan
| |
Collapse
|
8
|
Frutos-Rincón L, Luna C, Aleixandre-Carrera F, Velasco E, Diaz-Tahoces A, Meseguer V, Gallar J, Acosta MC. The Contribution of TRPA1 to Corneal Thermosensitivity and Blink Regulation in Young and Aged Mice. Int J Mol Sci 2023; 24:12620. [PMID: 37628800 PMCID: PMC10454529 DOI: 10.3390/ijms241612620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The role of TRPA1 in the thermosensitivity of the corneal cold thermoreceptor nerve endings was studied in young and aged mice. The contribution of the TRPA1-dependent activity to basal tearing and thermally-evoked blink was also explored. The corneal cold thermoreceptors' activity was recorded extracellularly in young (5-month-old) and aged (18-month-old) C57BL/6WT (WT) and TRPA1-/- knockout (TRPA1-KO) mice at basal temperature (34 °C) and during cooling (15 °C) and heating (45 °C) ramps. The blink response to cold and heat stimulation of the ocular surface and the basal tearing rate were also measured in young animals using orbicularis oculi muscle electromyography (OOemg) and phenol red threads, respectively. The background activity at 34 °C and the cooling- and heating-evoked responses of the cold thermoreceptors were similar in WT and TRPA1-KO animals, no matter the age. Similar to the aged WT mice, in the young and aged TRPA1-KO mice, most of the cold thermoreceptors presented low frequency background activity, a low cooling threshold, and a sluggish response to heating. The amplitude and duration of the OOemg signals correlated with the magnitude of the induced thermal change in the WT but not in the TRPA1-KO mice. The basal tearing was similar in the TRPA1-KO and WT mice. The electrophysiological data suggest that the TRPA1-dependent nerve activity, which declines with age, contributes to detecting the warming of the ocular surface and also to integrating the thermally-evoked reflex blink.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Fernando Aleixandre-Carrera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Ariadna Diaz-Tahoces
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Víctor Meseguer
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (C.L.); (F.A.-C.); (E.V.); (A.D.-T.); (V.M.); (J.G.)
| |
Collapse
|
9
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
10
|
Liu X, Gong R, Peng L, Zhao J. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Mol Pain 2023; 19:17448069231158290. [PMID: 36733260 PMCID: PMC9926008 DOI: 10.1177/17448069231158290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Remifentanil-induced postoperative hyperalgesia (RIH) refers to a state of hyperalgesia or aggravated pre-existing pain after remifentanil exposure. There has been considerable interest in understanding and preventing RIH. However, the mechanisms responsible for RIH are still not completely understood. Toll-like receptor 4 (TLR4), a classic innate immune receptor, has been detected in sensory neurons and participates in various nociceptive conditions, whereas its role in RIH remains unclear. Transient receptor potential ankyrin 1 (TRPA1) always serves as a nociceptive channel, whereas its role in RIH has not yet been investigated. This study aimed to determine whether the TLR4 signaling pathway in sensory neurons engaged in the development of RIH and the possible involvement of TRPA1 during this process. Methods: A rat model of remifentanil-induced postoperative hyperalgesia (RIH) was established, which presented decreased paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The mRNA and protein expression levels of TLR4, phosphorylated NF-κB, and TRPA1 in the dorsal root ganglion (DRG) from RIH model were analyzed by real-time PCR, western blot, and immunofluorescence. The TLR4 antagonist TAK-242 and the TRPA1 antagonist HC-030031 were applied to determine the role of sensory neuron TLR4 signaling and TRPA1 in RIH. Results: Compared with control, PWMT and PWTL were significantly decreased in RIH model. Moreover, the mRNA and protein expression of TLR4 and TRPA1 in DRG were upregulated after remifentanil exposure together with increased NF-κB phosphorylation. TLR4 antagonist TAK-242 mitigated mechanical pain in RIH together with downregulated expression of TLR4, phosphorylated NF-κB, and TRPA1 in DRG neurons. In addition, TRPA1 antagonist HC-030031 also alleviated mechanical pain and decreased TRPA1 expression in RIH without affecting TLR4 signaling in DRG. Conclusions: Taken together, these results suggested that activation of TLR4 signaling pathway engaged in the development of RIH by regulating TRPA1 in DRG neurons. Blocking TLR4 and TRPA1 might serve as a promising therapeutic strategy for RIH.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China
| | - Ruisong Gong
- Department of Anesthesiology,
Peking
Union Medical College Hospital,
Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for
Immune-Mediated Inflammatory Diseases, Institute of Medical Science,
China-Japan Friendship Hospital,
Beijing, China
| | - Jing Zhao
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China,Jing Zhao, Department of Anesthesiology,
China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing 100029,
China.
| |
Collapse
|
11
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
12
|
Zhang H, Wang C, Zhang K, Kamau PM, Luo A, Tian L, Lai R. The role of TRPA1 channels in thermosensation. CELL INSIGHT 2022; 1:100059. [PMID: 37193355 PMCID: PMC10120293 DOI: 10.1016/j.cellin.2022.100059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/18/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Chengsan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
13
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
14
|
Lewis CM, Griffith TN. The mechanisms of cold encoding. Curr Opin Neurobiol 2022; 75:102571. [DOI: 10.1016/j.conb.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022]
|
15
|
Habgood M, Seiferth D, Zaki AM, Alibay I, Biggin PC. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci Rep 2022; 12:4929. [PMID: 35322090 PMCID: PMC8943162 DOI: 10.1038/s41598-022-08824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Collapse
Affiliation(s)
- Matthew Habgood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK.
| | - David Seiferth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Afroditi-Maria Zaki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
16
|
Hoffmann T, Klemm F, I Kichko T, Sauer SK, Kistner K, Riedl B, Raboisson P, Luo L, Babes A, Kocher L, Carli G, Fischer MJM, Reeh PW. The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiol Rep 2022; 10:e15194. [PMID: 35340127 PMCID: PMC8957662 DOI: 10.14814/phy2.15194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
The most widely used formalin test to screen antinociceptive drug candidates is still apostrophized as targeting inflammatory pain, in spite of strong opposing evidence published. In our rat skin-nerve preparation ex vivo, recording from all classes of sensory single-fibers (n = 32), 30 units were transiently excited by formaldehyde concentrations 1-100 mM applied to receptive fields (RFs) for 3 min, C and Aδ-fibers being more sensitive (1-30 mM) than Aβ-fibers. From 30 mM on, ~1% of the concentration usually injected in vivo, all RFs were defunctionalized and conduction in an isolated sciatic nerve preparation was irreversibly blocked. Thus, formaldehyde, generated a state of 'anesthesia dolorosa' in the RFs in so far as after a quiescent interphase all fibers with unmyelinated terminals developed a second phase of vigorous discharge activity which correlated well in time course and magnitude with published pain-related behaviors. Sural nerve filament recordings in vivo confirmed that higher formalin concentrations (> 42 mM) have to be injected to the skin to induce this second phase of discharge. Patch-clamp and calcium-imaging confirmed TRPA1 as the primary transducer of formaldehyde (10 mM) effects on mouse sensory neurons. However, stimulated CGRP release from isolated skin of TRPA1+/+ and TRPA1-/- mice showed a convergence of the saturating concentration-response curves at 100 mM formaldehyde, which did not occur with nerve and trachea preparations. Finally, skin-nerve recordings from C and Aδ-fibers of TRPA1-/- mice revealed a massive reduction in formaldehyde (30 mM)-evoked discharge. However, the remaining activity was still biphasic, thus confirming additional unspecific excitotoxic actions of the fixative that diffuses along still excitable axons as previously published. The multiplicity of formaldehyde's actions requires extensive discussion and literature review, leading to a fundamental reevaluation of the formalin test.
Collapse
Affiliation(s)
- Tal Hoffmann
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
| | - Florian Klemm
- Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
| | - Tatjana I Kichko
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
| | - Susanne K Sauer
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
| | - Katrin Kistner
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
| | - Bernhard Riedl
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
| | | | - Lei Luo
- AstraZeneca, CNS and Pain Innovative Medicines UnitSödertäljeSweden
| | - Alexandru Babes
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
- Department of Anatomy, Physiology and BiophysicsUniversity of BucharestBucharestRomania
| | - Laurence Kocher
- Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
- Laboratoire de PhysiologieCentre Hospitalier Lyon SudFaculté de MédecineUniversité de LyonFrance
| | - Giancarlo Carli
- Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
- Department of PhysiologyUniversità degli Studi di SienaSienaItaly
| | - Michael J. M. Fischer
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
- Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Peter W. Reeh
- Institute of Physiology and PathophysiologyUniversity of Erlangen‐NürnbergErlangenGermany
- Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
17
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
18
|
Nishi M, Ogata T, Kobayakawa K, Kobayakawa R, Matsuo T, Cannistraci CV, Tomita S, Taminishi S, Suga T, Kitani T, Higuchi Y, Sakamoto A, Tsuji Y, Soga T, Matoba S. Energy-sparing by 2-methyl-2-thiazoline protects heart from ischaemia/reperfusion injury. ESC Heart Fail 2021; 9:428-441. [PMID: 34854235 PMCID: PMC8787978 DOI: 10.1002/ehf2.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
AIMS Cardiac ischaemia/reperfusion (I/R) injury remains a critical issue in the therapeutic management of ischaemic heart failure. Although mild hypothermia has a protective effect on cardiac I/R injury, more rapid and safe methods that can obtain similar results to hypothermia therapy are required. 2-Methyl-2-thiazoline (2MT), an innate fear inducer, causes mild hypothermia resulting in resistance to critical hypoxia in cutaneous or cerebral I/R injury. The aim of this study is to demonstrate the protective effect of systemically administered 2MT on cardiac I/R injury and to elucidate the mechanism underlying this effect. METHODS AND RESULTS A single subcutaneous injection of 2MT (50 mg/kg) was given prior to reperfusion of the I/R injured 10 week-old male mouse heart and its efficacy was evaluated 24 h after the ligation of the left anterior descending coronary artery. 2MT preserved left ventricular systolic function following I/R injury (ejection fraction, %: control 37.9 ± 6.7, 2MT 54.1 ± 6.4, P < 0.01). 2MT also decreased infarct size (infarct size/ischaemic area at risk, %: control 48.3 ± 12.1, 2MT 25.6 ± 4.2, P < 0.05) and serum cardiac troponin levels (ng/mL: control 8.9 ± 1.1, 2MT 1.9 ± 0.1, P < 0.01) after I/R. Moreover, 2MT reduced the oxidative stress-exposed area within the heart (%: control 25.3 ± 4.7, 2MT 10.8 ± 1.4, P < 0.01). These results were supported by microarray analysis of the mouse hearts. 2MT induced a transient, mild decrease in core body temperature (°C: -2.4 ± 1.4), which gradually recovered over several hours. Metabolome analysis of the mouse hearts suggested that 2MT minimized energy metabolism towards suppressing oxidative stress. Furthermore, 18F-fluorodeoxyglucose-positron emission tomography/computed tomography imaging revealed that 2MT reduced the activity of brown adipose tissue (standardized uptake value: control 24.3 ± 6.4, 2MT 18.4 ± 5.8, P < 0.05). 2MT also inhibited mitochondrial respiration and glycolysis in rat cardiomyoblasts. CONCLUSIONS We identified the cardioprotective effect of systemically administered 2MT on cardiac I/R injury by sparing energy metabolism with reversible hypothermia. Our results highlight the potential of drug-induced hypothermia therapy as an adjunct to coronary intervention in severe ischaemic heart disease.
Collapse
Affiliation(s)
- Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Ko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Reiko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Tomohiko Matsuo
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Japan
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Computer Science, Department of Biomedical Engineering, Tsinghua University, China.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neurosci Lett 2021; 764:136286. [PMID: 34624396 DOI: 10.1016/j.neulet.2021.136286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023]
Abstract
Over the last 17 years since its cloning in 2003, the receptor-channel TRPA1 has received increasing attention due to its polymodal features and prominent role in pain signaling in a variety of human disease states. While evidence has been accumulating for non-neuronal TRPA1 expression, it is the presence of this channel in nociceptive nerve endings which has taken centre stage, due to its potential clinical ramifications. As a consequence, we shall focus in this review on the sensory functions of TRPA1 related to its expression in the peripheral nervous system. While substantial research has been focused on the putative role of TRPA1 in detecting irritant compounds, noxious cold and mechanical stimuli, the current overall picture is, to some extent, still cloudy. The chemosensory function of the channel is well demonstrated, as well as its involvement in the detection of oxidative and nitrosative stress; however, the other sensory features of TRPA1 have not been fully elucidated yet. The current state of the experimental evidence for these physiological roles of TRPA1 in mammals, and particularly in humans, will be discussed in this review.
Collapse
|
20
|
Crayfish (Procambarus clarkii) TRPA1 is required for the defense against Aeromonas hydrophila infection under high temperature conditions and contributes to heat sensing. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110654. [PMID: 34371155 DOI: 10.1016/j.cbpb.2021.110654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Temperature is an important environmental factor influencing immune responses of crayfish. However, the mechanism underlying how temperature affects immune responses remains unclear. Here, we identified an ortholog of the transient receptor potential ankyrin subtype 1 (TRPA1), a temperature sensor of Drosophila, from Procambarus clarkii (PcTRPA1-1). Its expression was induced by high temperature and challenge with heat-killed A. hydrophila at high temperature, but not at lower temperature. PcTRPA1-1 silencing led to increased mortality of crayfish challenged with live A. hydrophila at high temperature (32 °C), but had no statistically significant effect on crayfish mortality at 24 °C. This suggests that PcTRPA1-1 is involved in the immune responses of crayfish at high temperature as a potential temperature sensor. Further assay exhibited that PcTRPA1-1 silencing affected immune responses of crayfish, including increase of lipid peroxidation, reduction of total antioxidant capacity, decreased phenoloxidase activity and disruption of circadian rhythm of total hemocyte count entrained by temperature cycles. PcTRPA1-1 silencing also decreased the expression of PcHSP70 and PcHSP90 which are responsive to heat stimuli and bacterial challenge. The results collectively indicate that TRPA1 contributes to heat sensing of crayfish and is required for crayfish defense against bacterial infection.
Collapse
|
21
|
Sinica V, Vlachová V. Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor. Physiol Res 2021; 70:363-381. [PMID: 33982589 DOI: 10.33549/physiolres.934697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.
Collapse
Affiliation(s)
- V Sinica
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | |
Collapse
|
22
|
Rhyu MR, Kim Y, Lyall V. Interactions between Chemesthesis and Taste: Role of TRPA1 and TRPV1. Int J Mol Sci 2021; 22:ijms22073360. [PMID: 33806052 PMCID: PMC8038011 DOI: 10.3390/ijms22073360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Korea Food Research Institute, Wanju-gun 55365, Korea;
- Correspondence: ; Tel.: +82-63-219-9268
| | - Yiseul Kim
- Korea Food Research Institute, Wanju-gun 55365, Korea;
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
23
|
Luo Y, Ma H, Niu S, Li X, Nie L, Li G. Effects of norepinephrine on colonic tight junction protein expression during heat stress. Exp Ther Med 2021; 21:421. [PMID: 33747161 PMCID: PMC7967871 DOI: 10.3892/etm.2021.9865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Stress induced by changes in the internal or external environment in humans and animals leads to intestinal epithelial damage, in a manner that is associated with impaired intestinal barrier function. However, the role of the stress hormone norepinephrine (NE) in impairments in barrier function remains poorly understood. In the present study, a rat heat-exposed model was used to observe changes in the tight junction proteins Occludin and zonula occludens-1 (ZO-1), in addition to those in protease-activated receptor 2 (PAR-2) and transient receptor potential ankyrin 1 channel (TRPA1) in colon. The levels of plasma NE were detected using an ELISA kit. Different concentrations of NE were used to culture the human colon cell line Caco-2 for 6 and 24 h to investigate the cell viability using Cell Counting Kit-8 assay, whilst the expression levels of Occludin, ZO-1, PAR-2 and TRPA1 were examined using western blotting and immunofluorescence in Caco-2 cells and immunohistrochemistry in rat colon tissues. Although there was no clear histological damage to the rat colonic mucosa, there were decreased expression levels of tight junction proteins Occludin and ZO-1 after heat exposure. In addition, PAR-2 expression was increased by heat exposure. It was found that TRPA1 expression was concentrated to the luminal surface of the colon in the heat exposed group compared with that in the control group. After the administration of increasing concentrations of NE for 6 h, treatment did not affect cell viability. Furthermore, after application of NE for 24 h, cell viability gradually increased as the NE concentration was elevated from 10 to 100 µM. However, no significant increase in viability was observed when the cells were treated with 120 and 160 µM NE. Occludin expression was decreased when 10 µM NE was applied for 6 or 24 h. By contrast, 60 µM NE significantly downregulated Occludin expression in the 6 h group, but caused an insignificant decrease in the 24 h group. It was found that ZO-1 expression was upregulated after treatment with 10 µM NE for 6 h, whilst downregulation was observed after treatment with 10 µM NE for 24 h. PAR-2 protein expression was increased after application of NE for both 6 and 24 h, but not after treatment with 60 µM NE. In addition, TRPA1 expression was not affected by the treatment of NE, but increased positive staining was observed on the luminal side of the mucosa, which appeared to be concentrated in the cells of the luminal side in the rat colon after heat exposure. Collectively, the present results suggested that expression of tight junction proteins Occludin and ZO-1, in addition to that of PAR-2, can be regulated by NE, which may contribute to impairments in barrier function observed during heat stress.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Shibo Niu
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Xu Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750021, P.R China
| | - Lihong Nie
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Guanghua Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| |
Collapse
|
24
|
Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal. Int J Mol Sci 2021; 22:ijms22020481. [PMID: 33418928 PMCID: PMC7825137 DOI: 10.3390/ijms22020481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.
Collapse
|
25
|
Moparthi L, Zygmunt PM. Human TRPA1 is an inherently mechanosensitive bilayer-gated ion channel. Cell Calcium 2020; 91:102255. [DOI: 10.1016/j.ceca.2020.102255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
|
26
|
Yoshida M, Yamamiya R, Shimizu Y, Yoshimura K. Transgenic Chlamydomonas Expressing Human Transient Receptor Potential Ankyrin 1 (TRPA1) Channels to Assess the Effect of Agonists and Antagonists. Front Pharmacol 2020; 11:578955. [PMID: 33117171 PMCID: PMC7550780 DOI: 10.3389/fphar.2020.578955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is an ion channel whose gating is controlled by agonists, such as allyl isothiocyanate (AITC), and temperature. Since TRPA1 is associated with various disease symptoms and chemotherapeutic side effects, it is a frequent target of drug development. To facilitate the screening of TRPA1 agonists and antagonists, this study aimed to develop a simple bioassay for TRPA1 activity. To this end, transgenic Chlamydomonas reinhardtii expressing human TRPA1 was constructed. The transformants exhibited positive phototaxis at high temperatures (≥20°C) but negative phototaxis at low temperatures (≤15°C); wild-type cells showed positive phototaxis at all temperatures examined. In the transgenic cells, negative phototaxis was inhibited by TRPA1 antagonists, such as HC030031, A-967079, and AP18, at low temperatures. Negative phototaxis was induced by TRPA1 agonists, such as icilin and AITC, at high temperatures. The effects of these agonists were blocked by TRPA1 antagonists. In wild-type cells, none of these substances had any effects on phototaxis. These results indicate that the action of TRPA1 agonists and antagonists can be readily assessed using the behavior of C. reinhardtii expressing human TRPA1 as an assessment tool.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Ryodai Yamamiya
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yuto Shimizu
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Bio-Inteligence for Well Being, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
27
|
Novel Insights into Molecular Mechanisms of Chronic Pain. Cells 2020; 9:cells9102220. [PMID: 33019536 PMCID: PMC7601569 DOI: 10.3390/cells9102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pain is the most frequent cause triggering patients to visit a physician. The worldwide incidence of chronic pain is in the range of 20% of adults, and chronic pain conditions are frequently associated with several comorbidities and a drastic decrease in patients’ quality of life. Although several approved analgesics are available, such therapy is often not satisfying due to insufficient efficacy and/or severe side effects. Therefore, novel strategies for the development of safe and highly efficacious pain killers are urgently needed. To reach this goal, it is necessary to clarify the causes and signal transduction cascades underlying the onset and progression of the different types of chronic pain. The papers in this Special Issue cover a wide variety of mechanisms involved in different pain types such as inflammatory, neuropathic or cancer pain. Therefore, the results summarized here might contribute to a better understanding of the mechanisms in chronic pain and thereby to the development of novel therapeutic strategies for pain patients.
Collapse
|
28
|
Electrophile-Induced Conformational Switch of the Human TRPA1 Ion Channel Detected by Mass Spectrometry. Int J Mol Sci 2020; 21:ijms21186667. [PMID: 32933054 PMCID: PMC7555621 DOI: 10.3390/ijms21186667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/26/2023] Open
Abstract
The human Transient Receptor Potential A1 (hTRPA1) ion channel, also known as the wasabi receptor, acts as a biosensor of various potentially harmful stimuli. It is activated by a wide range of chemicals, including the electrophilic compound N-methylmaleimide (NMM), but the mechanism of activation is not fully understood. Here, we used mass spectrometry to map and quantify the covalent labeling in hTRPA1 at three different concentrations of NMM. A functional truncated version of hTRPA1 (Δ1-688 hTRPA1), lacking the large N-terminal ankyrin repeat domain (ARD), was also assessed in the same way. In the full length hTRPA1, the labeling of different cysteines ranged from nil up to 95% already at the lowest concentration of NMM, suggesting large differences in reactivity of the thiols. Most important, the labeling of some cysteine residues increased while others decreased with the concentration of NMM, both in the full length and the truncated protein. These findings indicate a conformational switch of the proteins, possibly associated with activation or desensitization of the ion channel. In addition, several lysines in the transmembrane domain and the proximal N-terminal region were labeled by NMM, raising the possibility that lysines are also key targets for electrophilic activation of hTRPA1.
Collapse
|
29
|
Shin N, Lee SH, Cho Y, Park TH, Hong S. Bioelectronic Skin Based on Nociceptive Ion Channel for Human-Like Perception of Cold Pains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001469. [PMID: 32578398 DOI: 10.1002/smll.202001469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
A bioelectronic skin device based on nociceptive ion channels in nanovesicles is developed for the detection of chemical cold-pain stimuli and cold environments just like human somesthetic sensory systems. The human transient receptor potential ankyrin 1 (hTRPA1) is involved in transmission and modulation of cold-pain sensations. In the bioelectronic skin, the nanovesicles containing the hTRPA1 nociceptive ion channel protein reacts to cold-pain stimuli, and it is electrically monitored through carbon nanotube transistor devices based on floating electrodes. The bioelectronic skin devices sensitively detect chemical cold-pain stimuli like cinnamaldehyde at 10 fm, and selectively discriminate cinnamaldehyde among other chemical stimuli. Further, the bioelectronic skin is used to evaluate the effect of cold environments on the response of the hTRPA1, finding that the nociceptive ion channel responds more sensitively to cinnamaldehyde at lower temperatures than at higher temperatures. The bioelectronic skin device could be useful for a basic study on somesthetic systems such as cold-pain sensation, and should be used for versatile applications such as screening of foods and drugs.
Collapse
Affiliation(s)
- Narae Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
30
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
31
|
Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front Physiol 2020; 11:189. [PMID: 32226391 PMCID: PMC7081373 DOI: 10.3389/fphys.2020.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|