1
|
Karimi Roshan M, Belikov S, Ix M, Protti N, Balducci C, Dodel R, Ross JA, Lundholm L. Fractionated alpha and mixed beam radiation promote stronger pro-inflammatory effects compared to acute exposure and trigger phagocytosis. Front Cell Neurosci 2024; 18:1440559. [PMID: 39717389 PMCID: PMC11663654 DOI: 10.3389/fncel.2024.1440559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/07/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction and methods Aiming to evaluate safety aspects of a recently proposed approach to target Alzheimer's disease, we mimicked a complex boron neutron capture therapy field using a mixed beam consisting of high- and low-linear energy transfer (LET) radiation, 241Am alpha particles (α) and/or X-ray radiation respectively, in human microglial (HMC3) cells. Results Acute exposure to 2 Gy X-rays induced the strongest response in the formation of γH2AX foci 30 min post irradiation, while α- and mixed beam-induced damage (α:X-ray = 3:1) sustained longer. Fractionation of the same total dose (0.4 Gy daily) induced a similar number of γH2AX foci as after acute radiation, however, α- or mixed irradiation caused a higher expression of DNA damage response genes CDKN1A and MDM2 24 h after the last fraction, as well as a stronger decrease in cell viability and clonogenic survival compared to acute exposure. Phosphorylation of STING, followed by phosphorylation of NF-κB subunit p65, was rapidly induced (1 or 3 h, respectively) after the last fraction by all radiation qualities. This led to IL-1β secretion into the medium, strongly elevated expression of pro-inflammatory cytokine genes and enhanced phagocytosis after fractionated exposure to α- and mixed beam-irradiation compared to their acute counterparts 24 h post-irradiation. Nevertheless, all inflammatory changes were returning to basal levels or below 10-14 days post irradiation. Discussion In conclusion, we demonstrate strong transient pro-inflammatory induction by daily high-LET radiation in a microglia model, triggering phagocytosis which may aid in clearing amyloid beta, but importantly, from a safety perspective, without long-term alterations.
Collapse
Affiliation(s)
- Mostafa Karimi Roshan
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melissa Ix
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Pavia, Italy
- Pavia Unit, National Institute of Nuclear Physics INFN, Pavia, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Richard Dodel
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - J. Alexander Ross
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Lovisa Lundholm
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Tomiyoshi K, Wilson LJ, Mourtada F, Mourtada JS, Namiki Y, Kamata W, Yang DJ, Inoue T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics 2024; 16:1458. [PMID: 39598580 PMCID: PMC11597032 DOI: 10.3390/pharmaceutics16111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted radionuclide therapy (TRT) for internal pathway-directed treatment is a game changer for precision medicine. TRT improves tumor control while minimizing damage to healthy tissue and extends the survival for patients with cancer. The application of theranostic-paired TRT along with cellular phenotype and genotype correlative analysis has the potential for malignant disease management. Chelation chemistry is essential for the development of theranostic-paired radiopharmaceuticals for TRT. Among image-guided TRT, 68Ga and 99mTc are the current standards for diagnostic radionuclides, while 177Lu and 225Ac have shown great promise for β- and α-TRT, respectively. Their long half-lives, potent radiobiology, favorable decay schemes, and ability to form stable chelation conjugates make them ideal for both manufacturing and clinical use. The current challenges include optimizing radionuclide production processes, coordinating chelation chemistry stability of theranostic-paired isotopes to reduce free daughters [this pertains to 225Ac daughters 221Fr and 213Bi]-induced tissue toxicity, and improving the modeling of micro dosimetry to refine dose-response evaluation. The empirical approach to TRT delivery is based on standard radionuclide administered activity levels, although clinical trials have revealed inconsistent outcomes and normal-tissue toxicities despite equivalent administered activities. This review presents the latest optimization methods for chelation-based theranostic radiopharmaceuticals, advancements in micro-dosimetry, and SPECT/CT technologies for quantifying whole-body uptake and monitoring therapeutic response as well as cytogenetic correlative analyses.
Collapse
Affiliation(s)
- Katsumi Tomiyoshi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Lydia J. Wilson
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | - Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | | | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Wataru Kamata
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - David J. Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| |
Collapse
|
3
|
Levy OI, Altaras A, Binyamini L, Sagi-Assif O, Izraely S, Cooks T, Kobiler O, Gerlic M, Kelson I, Witz IP, Keisari Y. Melanoma Cells from Different Patients Differ in Their Sensitivity to Alpha Radiation-Mediated Killing, Sensitivity Which Correlates with Cell Nuclei Area and Double Strand Breaks. Cancers (Basel) 2024; 16:3804. [PMID: 39594759 PMCID: PMC11592378 DOI: 10.3390/cancers16223804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: In this study, for the first time, we examined and compared the sensitivity of four patient-derived cutaneous melanoma cell lines to alpha radiation in vitro and analyzed it in view of cell nucleus area and the formation of double-strand breaks (DSB). Melanoma cells sensitivity to alpha radiation was compared to photon radiation effects. Furthermore, we compared the sensitivity of the melanoma cells to squamous cell carcinoma. Methods: Human melanoma cell lines YDFR.C, DP.C, M12.C, and M16.C, and the squamous cell carcinoma cell line, CAL 27, were irradiated in vitro using Americium-241 as alpha-particle source. Cells were irradiated with doses of 0 to 2.8 gray (Gy). Cell viability, DNA DSB, and nuclear size were measured. Results: 1. Alpha radiation caused death and proliferation arrest of all four melanoma cell lines, but inter-tumor heterogeneity was observed. 2. The most sensitive cell line (DP.C) had a significantly larger nucleus area (408 µm2) and the highest mean number of DSB per cell (9.61) compared to more resistant cells. 3. The most resistant cell, M16.C, had a much lower nucleus area (236.99 µm2) and DSB per cell (6.9). 4. Alpha radiation was more lethal than photon radiation for all melanoma cells. 5. The SCC cell, CAL 27, was more sensitive to alpha radiation than all melanoma cells but had a similar number of DSB (6.67) and nucleus size (175.49 µm2) as the more resistant cells. 6. The cytotoxic effect of alpha radiation was not affected by proliferation arrest after serum starvation. 7. Killing of cells by alpha radiation was marginally elevated by ATR or topoisomerase 1 inhibition. Conclusions: This study demonstrates that various human melanoma cells can be killed by alpha radiation but exhibit variance in sensitivity to alpha radiation. Alpha radiation applied using the Intra-tumoral Diffusing alpha-emitters Radiation Therapy (Alpha DaRT) methodology may serve as an efficient treatment for human melanoma.
Collapse
Affiliation(s)
- Or I. Levy
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Anat Altaras
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Lior Binyamini
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| | - Itzhak Kelson
- Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.S.-A.); (S.I.); (I.P.W.)
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (O.I.L.); (A.A.); (L.B.); (O.K.); (M.G.)
| |
Collapse
|
4
|
Boroumand N, Baghdissar C, Elihn K, Lundholm L. Nicotine interacts with DNA lesions induced by alpha radiation which may contribute to erroneous repair in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117009. [PMID: 39244876 DOI: 10.1016/j.ecoenv.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epidemiological studies show that radon and cigarette smoke interact in inducing lung cancer, but the contribution of nicotine in response to alpha radiation emitted by radon is not well understood. MATERIALS AND METHODS Bronchial epithelial BEAS-2B cells were either pre-treated with 2 µM nicotine during 16 h, exposed to radiation, or the combination. DNA damage, cellular and chromosomal alterations, oxidative stress as well as inflammatory responses were assessed to investigate the role of nicotine in modulating responses. RESULTS Less γH2AX foci were detected at 1 h after alpha radiation exposure (1-2 Gy) in the combination group versus alpha radiation alone, whereas nicotine alone had no effect. Comet assay showed less DNA breaks already just after combined exposure, supported by reduced p-ATM, p-DNA-PK, p-p53 and RAD51 at 1 h, compared to alpha radiation alone. Yet the frequency of translocations was higher in the combination group at 27 h after irradiation. Although nicotine did not alter G2 arrest at 24 h, it assisted in cell cycle progression at 48 h post radiation. A slightly faster recovery was indicated in the combination group based on cell viability kinetics and viable cell counts, and significantly using colony formation assay. Pan-histone acetyl transferase inhibition using PU139 blocked the reduction in p-p53 and γH2AX activation, suggesting a role for nicotine-induced histone acetylation in enabling rapid DNA repair. Nicotine had a modest effect on reactive oxygen species induction, but tended to increase alpha particle-induced pro-inflammatory IL-6 and IL-1β (4 Gy). Interestingly, nicotine did not alter gamma radiation-induced γH2AX foci. CONCLUSIONS This study provides evidence that nicotine modulates alpha-radiation response by causing a faster but more error-prone repair, as well as rapid recovery, which may allow expansion of cells with genomic instabilities. These results hold implications for estimating radiation risk among nicotine users.
Collapse
Affiliation(s)
- Nadia Boroumand
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Carol Baghdissar
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| |
Collapse
|
5
|
Riego ML, Meher PK, Brzozowska B, Akuwudike P, Bucher M, Oestreicher U, Lundholm L, Wojcik A. Chromosomal damage, gene expression and alternative transcription in human lymphocytes exposed to mixed ionizing radiation as encountered in space. Sci Rep 2024; 14:11502. [PMID: 38769353 PMCID: PMC11106305 DOI: 10.1038/s41598-024-62313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Astronauts travelling in space will be exposed to mixed beams of particle radiation and photons. Exposure limits that correspond to defined cancer risk are calculated by multiplying absorbed doses by a radiation-type specific quality factor that reflects the biological effectiveness of the particle without considering possible interaction with photons. We have shown previously that alpha radiation and X-rays may interact resulting in synergistic DNA damage responses in human peripheral blood lymphocytes but the level of intra-individual variability was high. In order to assess the variability and validate the synergism, blood from two male donors was drawn at 9 time points during 3 seasons of the year and exposed to 0-2 Gy of X-rays, alpha particles or 1:1 mixture of both (half the dose each). DNA damage response was quantified by chromosomal aberrations and by mRNA levels of 3 radiation-responsive genes FDXR, CDKN1A and MDM2 measured 24 h post exposure. The quality of response in terms of differential expression of alternative transcripts was assessed by using two primer pairs per gene. A consistently higher than expected effect of mixed beams was found in both donors for chromosomal aberrations and gene expression with some seasonal variability for the latter. No synergy was detected for alternative transcription.
Collapse
Affiliation(s)
- Milagrosa López Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Prabodha Kumar Meher
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Beata Brzozowska
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Martin Bucher
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | | | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
6
|
Mourtada F, Tomiyoshi K, Sims-Mourtada J, Mukai-Sasaki Y, Yagihashi T, Namiki Y, Murai T, Yang DJ, Inoue T. Actinium-225 Targeted Agents: Where Are We Now? Brachytherapy 2023; 22:697-708. [PMID: 37690972 PMCID: PMC10840862 DOI: 10.1016/j.brachy.2023.06.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 09/12/2023]
Abstract
α-particle targeted radionuclide therapy has shown promise for optimal cancer management, an exciting new era for brachytherapy. Alpha-emitting nuclides can have significant advantages over gamma- and beta-emitters due to their high linear energy transfer (LET). While their limited path length results in more specific tumor 0kill with less damage to surrounding normal tissues, their high LET can produce substantially more lethal double strand DNA breaks per radiation track than beta particles. Over the last decade, the physical and chemical attributes of Actinium-225 (225Ac) including its half-life, decay schemes, path length, and straightforward chelation ability has peaked interest for brachytherapy agent development. However, this has been met with challenges including source availability, accurate modeling for standardized dosimetry for brachytherapy treatment planning, and laboratory space allocation in the hospital setting for on-demand radiopharmaceuticals production. Current evidence suggests that a simple empirical approach based on 225Ac administered radioactivity may lead to inconsistent outcomes and toxicity. In this review article, we highlight the recent advances in 225Ac source production, dosimetry modeling, and current clinical studies.
Collapse
Affiliation(s)
- Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.
| | - Katsumi Tomiyoshi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | - Yuki Mukai-Sasaki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Takayuki Yagihashi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Taro Murai
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - David J Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
7
|
Akuwudike P, López-Riego M, Ginter J, Cheng L, Wieczorek A, Życieńska K, Łysek-Gładysińska M, Wojcik A, Brzozowska B, Lundholm L. Mechanistic insights from high resolution DNA damage analysis to understand mixed radiation exposure. DNA Repair (Amst) 2023; 130:103554. [PMID: 37595330 DOI: 10.1016/j.dnarep.2023.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Cells exposed to densely ionising high and scattered low linear energy transfer (LET) radiation (50 % dose of each) react more strongly than to the same dose of each separately. The relationship between DNA double strand break location inside the nucleus and chromatin structure was evaluated, using high-resolution transmission electron microscopy (TEM) in breast cancer MDA-MB-231 cells at 30 min post 5 Gy. Additionally, response to high and/or low LET radiation was assessed using single (1 ×1.5 Gy) versus fractionated dose delivery (5 ×0.3 Gy). By TEM analysis, the highest total number of γH2AX nanobeads were found in cells irradiated with alpha radiation just prior to gamma radiation (called mixed beam), followed by alpha, then gamma radiation. γH2AX foci induced by mixed beam radiation tended to be surrounded by open chromatin (lighter TEM regions), yet foci containing the highest number of beads, i.e. larger foci representing complex damage, remained in the heterochromatic areas. The γH2AX large focus area was also greater in mixed beam-treated cells when analysed by immunofluorescence. Fractionated mixed beams given daily induced the strongest reduction in cell viability and colony formation in MDA-MB-231 and osteosarcoma U2OS cells compared to the other radiation qualities, as well as versus acute exposure. This may partially be explained by recurring low LET oxidative DNA damage by every fraction together with a delay in recompaction of chromatin after high LET, demonstrated by low levels of heterochromatin marker H3K9me3 at 2 h after the last mixed beam fraction in MDA-MB-231. In conclusion, early differences in response to complex DNA damage may lead to a stronger cell kill induced by fractionated exposure, which suggest a therapeutic potential of combined high and low LET irradiation.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Milagrosa López-Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
8
|
Tartas A, Lundholm L, Scherthan H, Wojcik A, Brzozowska B. The order of sequential exposure of U2OS cells to gamma and alpha radiation influences the formation and decay dynamics of NBS1 foci. PLoS One 2023; 18:e0286902. [PMID: 37307266 DOI: 10.1371/journal.pone.0286902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
DNA double strand breaks (DSBs) are a deleterious form of DNA damage. Densely ionising alpha radiation predominantly induces complex DSBs and sparsely ionising gamma radiation-simple DSBs. We have shown that alphas and gammas, when applied simultaneously, interact in producing a higher DNA damage response (DDR) than predicted by additivity. The mechanisms of the interaction remain obscure. The present study aimed at testing whether the sequence of exposure to alphas and gammas has an impact on the DDR, visualised by live NBS1-GFP (green fluorescent protein) focus dynamics in U2OS cells. Focus formation, decay, intensity and mobility were analysed up to 5 h post exposure. Focus frequencies directly after sequential alpha → gamma and gamma → alpha exposure were similar to gamma alone, but gamma → alpha foci quickly declined below the expected values. Focus intensities and areas following alpha alone and alpha → gamma were larger than after gamma alone and gamma → alpha. Focus movement was most strongly attenuated by alpha → gamma. Overall, sequential alpha → gamma exposure induced the strongest change in characteristics and dynamics of NBS1-GFP foci. Possible explanation is that activation of the DDR is stronger when alpha-induced DNA damage precedes gamma-induced DNA damage.
Collapse
Affiliation(s)
- Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the Univ. of Ulm, Munich, Germany
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Optimization of breast treatment planning towards lower dose rate: A Monte Carlo simulation study. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
10
|
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A Brief Review on Chemoresistance; Targeting Cancer Stem Cells as an Alternative Approach. Int J Mol Sci 2023; 24:ijms24054487. [PMID: 36901917 PMCID: PMC10003376 DOI: 10.3390/ijms24054487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The acquisition of resistance to traditional chemotherapy and the chemoresistant metastatic relapse of minimal residual disease both play a key role in the treatment failure and poor prognosis of cancer. Understanding how cancer cells overcome chemotherapy-induced cell death is critical to improve patient survival rate. Here, we briefly describe the technical approach directed at obtaining chemoresistant cell lines and we will focus on the main defense mechanisms against common chemotherapy triggers by tumor cells. Such as, the alteration of drug influx/efflux, the enhancement of drug metabolic neutralization, the improvement of DNA-repair mechanisms, the inhibition of apoptosis-related cell death, and the role of p53 and reactive oxygen species (ROS) levels in chemoresistance. Furthermore, we will focus on cancer stem cells (CSCs), the cell population that subsists after chemotherapy, increasing drug resistance by different processes such as epithelial-mesenchymal transition (EMT), an enhanced DNA repair machinery, and the capacity to avoid apoptosis mediated by BCL2 family proteins, such as BCL-XL, and the flexibility of their metabolism. Finally, we will review the latest approaches aimed at decreasing CSCs. Nevertheless, the development of long-term therapies to manage and control CSCs populations within the tumors is still necessary.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Aitor González-Titos
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Correspondence: (P.H.-C.); (M.P.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine, Institute (IBIMER), University of Granada, Centre for Biomedical Research (CIBM), 18071 Granada, Spain
- Correspondence: (P.H.-C.); (M.P.)
| |
Collapse
|
11
|
Diniz Filho JFS, de Barros AODS, Pijeira MSO, Ricci-Junior E, Midlej V, Baroni MPMA, dos Santos CC, Alencar LMR, Santos-Oliveira R. Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([ 223Ra]RaCl 2): Understanding the Effect on Cell Structure. Cells 2023; 12:451. [PMID: 36766793 PMCID: PMC9913731 DOI: 10.3390/cells12030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
The use of alpha-particle (α-particle) radionuclides, especially [223Ra]RaCl2 (radium dichloride), for targeted alpha therapy is steadily increasing. Despite the positive clinical outcomes of this therapy, very little data are available about the effect on the ultrastructure of cells. The purpose of this study was to evaluate the nanomechanical and ultrastructure effect of [223Ra] RaCl2 on cancer cells. To analyze the effect of [223Ra]RaCl2 on tumor cells, human breast cancer cells (lineage MDA-MB-231) were cultured and treated with the radiopharmaceutical at doses of 2 µCi and 0.9 µCi. The effect was evaluated using atomic force microscopy (AFM) and transmission electron microscopy (TEM) combined with Raman spectroscopy. The results showed massive destruction of the cell membrane but preservation of the nucleus membrane. No evidence of DNA alteration was observed. The data demonstrated the formation of lysosomes and phagosomes. These findings help elucidate the main mechanism involved in cell death during α-particle therapy.
Collapse
Affiliation(s)
- Joel Félix Silva Diniz Filho
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis 65065690, MA, Brazil
| | - Aline Oliveira da Silva de Barros
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, RJ, Brazil
| | - Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, RJ, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941900, RJ, Brazil
| | - Victor Midlej
- Laboratory of Structural Biology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro 21040900, RJ, Brazil
| | | | - Clenilton Costa dos Santos
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis 65065690, MA, Brazil
| | | | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, RJ, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro 23070200, RJ, Brazil
| |
Collapse
|
12
|
Nie Q, Huan X, Kang J, Yin J, Zhao J, Li Y, Zhang Z. MG149 Inhibits MOF-Mediated p53 Acetylation to Attenuate X-Ray Radiation-Induced Apoptosis in H9c2 Cells. Radiat Res 2022; 198:590-598. [PMID: 36481803 DOI: 10.1667/rade-22-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte apoptosis is involved in the pathogenesis of radiation-induced heart disease, but the underlying epigenetic mechanism remains elusive. We evaluated the potential mediating role of males absent on the first (MOF) in the association between epigenetic activation of p53 lysine 120 (p53K120) and X-ray radiation-induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 24 h with the MOF inhibitor MG149 after 4 Gy irradiation, followed by assessment of cell proliferation, injury, and apoptosis. MOF expression was upregulated by X-ray radiation. MG149 suppressed the proliferation inhibition, reduction of mitochondrial membrane potential, ROS production, and cell apoptosis. MG149 may promote the survival of H9c2 cells via inhibition of MOF-mediated p53K120 acetylation in response to X-ray radiation-induced apoptosis. Our data indicates a MOF-associated epigenetic mechanism in H9c2 cells that promotes attenuation of X-ray radiation-induced injury.
Collapse
Affiliation(s)
- Qianwen Nie
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Xuan Huan
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jing Kang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiangyan Yin
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiahui Zhao
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - ZhengYi Zhang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| |
Collapse
|
13
|
Mellhammar E, Dahlbom M, Vilhelmsson-Timmermand O, Strand SE. Small-scale dosimetry for alpha particle 241Am source cell irradiation and estimation of γ-H2AX foci distribution in prostate cancer cell line PC3. EJNMMI Phys 2022; 9:46. [PMID: 35852717 PMCID: PMC9296737 DOI: 10.1186/s40658-022-00475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The development of new targeted alpha therapies motivates improving alpha particle dosimetry. For alpha particles, microscopic targets must be considered to estimate dosimetric quantities that can predict the biological response. As double-strand breaks (DSB) on DNA are the main cause of cell death by ionizing radiation, cell nuclei are relevant volumes necessary to consider as targets. Since a large variance is expected of alpha particle hits in individual cell nuclei irradiated by an uncollimated alpha-emitting source, the damage induced should have a similar distribution. The induction of DSB can be measured by immunofluorescent γ-H2AX staining. The cell γ-H2AX foci distribution and alpha particle hits distribution should be comparable and thereby verify the necessity to consider the relevant dosimetric volumes. Methods A Monte Carlo simulation model of an 241Am source alpha particle irradiation setup was combined with two versions of realistic cell nuclei phantoms. These were generated from DAPI-stained PC3 cells imaged with fluorescent microscopy, one consisting of elliptical cylinders and the other of segmented mesh volumes. PC3 cells were irradiated with the 241Am source for 4, 8 and 12 min, and after 30 min fixated and stained with immunofluorescent γ-H2AX marker. The detected radiation-induced foci (RIF) were compared to simulated RIF. Results The mesh volume phantom detected a higher mean of alpha particle hits and energy imparted (MeV) per cell nuclei than the elliptical cylinder phantom, but the mean specific energy (Gy) was very similar. The mesh volume phantom detected a slightly larger variance between individual cells, stemming from the more extreme and less continuous distribution of cell nuclei sizes represented in this phantom. The simulated RIF distribution from both phantoms was in good agreement with the detected RIF, although the detected distribution had a zero-inflated shape not seen in the simulated distributions. An estimate of undetected foci was used to correct the detected RIF distribution and improved the agreement with the simulations. Conclusion Two methods to generate cell nuclei phantoms for Monte Carlo dosimetry simulations were tested and generated similar results. The simulated and detected RIF distributions from alpha particle-irradiated PC3 cells were in good agreement, proposing the necessity to consider microscopic targets in alpha particle dosimetry. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00475-x.
Collapse
Affiliation(s)
- Emma Mellhammar
- Department of Clinical Sciences Lund, Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Oskar Vilhelmsson-Timmermand
- Department of Clinical Sciences Lund, Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.,Imaging Chemistry and Biology, Kings Collage London, London, UK
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Rajon DA, Canter BS, Leung CN, Bäck TA, Fritton JC, Azzam EI, Howell RW. Modeling bystander effects that cause growth delay of breast cancer xenografts in bone marrow of mice treated with radium-223. Int J Radiat Biol 2021; 97:1217-1228. [PMID: 34232830 PMCID: PMC8560015 DOI: 10.1080/09553002.2021.1951392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The role of radiation-induced bystander effects in cancer therapy with alpha-particle emitting radiopharmaceuticals remains unclear. With renewed interest in using alpha-particle emitters to sterilize disseminated tumor cells, micrometastases, and tumors, a better understanding of the direct effects of alpha particles and the contribution of the bystander responses they induce is needed to refine dosimetric models that help predict clinical benefit. Accordingly, this work models and quantifies the relative importance of direct effects (DE) and bystander effects (BE) in the growth delay of human breast cancer xenografts observed previously in the tibiae of mice treated with 223RaCl2. METHODS A computational model of MDA-MB-231 and MCF-7 human breast cancer xenografts in the tibial bone marrow of mice administered 223RaCl2 was created. A Monte Carlo radiation transport simulation was performed to assess individual cell absorbed doses. The responses of the breast cancer cells to direct alpha particle irradiation and gamma irradiation were needed as input data for the model and were determined experimentally using a colony-forming assay and compared to the responses of preosteoblast MC3T3-E1 and osteocyte-like MLO-Y4 bone cells. Using these data, a scheme was devised to simulate the dynamic proliferation of the tumors in vivo, including DE and BE propagated from the irradiated cells. The parameters of the scheme were estimated semi-empirically to fit experimental tumor growth. RESULTS A robust BE component, in addition to a much smaller DE component, was required to simulate the in vivo tumor proliferation. We also found that the relative biological effectiveness (RBE) for cell killing by alpha particle radiation was greater for the bone cells than the tumor cells. CONCLUSION This modeling study demonstrates that DE of radiation alone cannot explain experimental observations of 223RaCl2-induced growth delay of human breast cancer xenografts. Furthermore, while the mechanisms underlying BE remain unclear, the addition of a BE component to the model is necessary to provide an accurate prediction of the growth delay. More complex models are needed to further comprehend the extent and complexity of 223RaCl2-induced BE.
Collapse
Affiliation(s)
- Didier A. Rajon
- Department of Neurosurgery, University of Florida, Gainesville, FL USA
| | - Brian S. Canter
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ USA
| | - Calvin N. Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ USA
| | - Tom A. Bäck
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ USA
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ USA
| |
Collapse
|
16
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|